
UCT

Program Size Complexity II

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Prefix Complexity

2 Incompleteness

3 Solovay’s Theorem

Where Are We? 2

Kolmogorov-Chaitin algorithmic information theory provides a measure
for the “complexity” of a bit string (or any other finite object). This is in
contrast to language based models that only differentiate between infinite
collections.

Since the definition is closely connected to Halting, the complexity func-
tion K(x) fails to be computable, but it provides an elegant theoretical
tool and can be used in lower bound arguments.

And it absolutely critical in the context of randomness; more later.

A Nuisance 3

Recall that our model of computation used in Kolmogorov-Chaitin complexity
is a universal, one-tape Turing machine over the tape alphabet Γ = {0, 1, b},
with binary input and output.

As we have seen, this causes a number of problems because it is difficult to
decode an input string of the form

p = q z

into an instruction part q and a data part z, with the intended semantics: run
program q on input z.

Of course, this kind of problem would not surface if we used real programs
instead of just binary strings: it is clear where a real program ends.

We should try to eliminate this issue in our setting, too.

The Book 4

M. Li, P. Vitányi
An Introduction to Kolmogorov Complexity and its Applications
Springer, 1993 (3ed 2009)

Encyclopedic treatment, some 850 references.

Terminology Warning 5

In language theory, a language L ⊆ Σ⋆ is said to be prefix if no string in L is a
prefix of another.

Yes, this should be called prefix-free (some authors prefer this saner version),
but the traditional form is prefix. Grin and bear it.

Always remember, obscure terminology keeps the uninitiated at bay.
Works great in job interviews.

Prefix Programs 6

The key idea is to restrict our universal machine a little bit.

Upre
p x

We require that P ⊆ 2⋆, the collection of all syntactically correct programs for
Upre, is a prefix set: no valid program is a proper prefix of another.

Note that this condition trivially holds for most ordinary programming
languages (at least in spirit; in the real world no one combines code and data in
a single file).

Prefix Machines 7

Call a Turing machine M prefix if its halting set { p ∈ 2⋆ | M(p) ↓ } is prefix.

In order to compute U(p), machine U tries to parse the string p from left to
right. Think about the machine tracing a branch in the tree 2⋆. If p turns out
to be syntactically correct, it is executed. If not, U diverges.

This convention is perfect for the code/data model: since no program is an
extension of another, there cannot be two different instruction parts q and q′

such that q z = q′ z′.

Simulations 8

Simulations are also particularly simple for prefix machines: to simulate M on
M′ we can set up a header h such that

M′(hp) ≃ M(p)

for all M-admissible programs p: M′ can uniquely parse h, and then run M
on the remaining string p.

This means that the difference in program-size complexity between various
universal machines is rather small (unless the machines are of the cheating type
that artificially encode a few strings with astronomical complexity by just a few
bits).

Converting to Prefix 9

We have to make sure that prefix machines exist and can do the same as
ordinary ones.

Lemma
For any Turing machine M, we can effectively construct a prefix Turing
machine M′ such that

∀ p ∈ 2⋆
(
M′(p) ↓ ⇒ M(p) ≃ M′(p)

)
M prefix ⇒ ∀ p ∈ 2⋆

(
M(p) ≃ M′(p)

)

Of course, in general M′ will halt on fewer inputs and the two machines are by
no means equivalent (just think what happens to a machine with halting set
contained in 0⋆).

As a consequence, we can effectively enumerate all prefix functions {e}pre just
as we can effectively enumerate ordinary computable functions.

Proof 10

Suppose we have an ordinary machine M and some input p ∈ 2⋆. Recall that
the halting set of M is semidecidable, and thus recursively enumerable. M′

computes on p as follows:

Enumerate the halting set of M: q0, q1, q2, . . . ∈ 2⋆.

If qi = p, return M(p).

If qi is a proper prefix of p, or conversely, diverge.

Machine M also diverges if p is unrelated to any of the qi. Essentially, we use
the order of the enumeration to resolve prefix conflicts.

It is easy to check that M′ is prefix and will define the same function as M,
provided M itself is already prefix.

2

Universal Prefix Machines 11

Since the support in our construction typically shrinks (potentially by a lot), we
have to make sure that there is a universal prefix machine. Programming
languages suggest that should work, but we need make sure we can handle this
for Turing machines.

No problem, really, we can control the syntax of correct input strings. Suppose
U is a universal machine with two separate program/data tapes. Then define
U ′ so that it checks for inputs of the form

p = u10u20 . . . 0ur1 x

Thus, if the input has the form (20)⋆212⋆, then U ′ runs U(u1 . . . ur, x).

Otherwise it simply diverges.

Prefix Complexity 12

Definition
Let Upre be a universal prefix Turing machine. Define the prefix
Kolmogorov-Chaitin complexity of a string x by

C(x) = min
(

|p| | Upre(p) ≃ x
)

Note that in general C(x) > K(x): there are fewer programs available, so in
general the shortest program for a fixed string will be longer than in the
unconstrained case. Counting arguments become easier in this context.

Of course, C(x) is again not computable, for essentially the same reasons.

Connection 13

The following mutual bounds are due to Robert Solovay:

C(x) ≤ K(x) + K(K(x)) + O(K(K(K(x))))

K(x) ≤ C(x) − C(C(x)) − O(C(C(C(x))))

This pins down the cost of dealing with prefix programs as opposed to arbitrary
ones. So the difference between K(x) and C(x) is not too large, we expect the
non-leading terms on the right-hand side to be fairly small.

Still, C(x) is much better behaved than K(x) in many ways.

Print x Revisited 14

Recall that for ordinary Kolmogorov-Chaitin complexity it is easy to get an
upper bound for K(x): the informal program

print “x1x2 . . . xn”

certainly does the job: this programming language is prefix. Alas, we need to
worry about prefix TMs.

We could use delimiters around x as in the informal code snippet above, but
remember that our input and output alphabet is fixed to be 2 = {0, 1}.

We could add symbols to our base alphabet, but that does not solve the
problem.

Self-Delimiting Programs 15

In the absence of delimiters, we can return to our old idea of self-delimiting
programs. Informally, we could write

print next n bits x1x2 . . . xn

In pseudo-code this is fine, the only place where the prefix property could be
violated is in the x part, but n fixes this problem. We obtain a complexity of at
most n + log n + c.

Again, we need to deal with prefix Turing machines, and that leads straight to
cumbersome technical coding details.

To obtain a reliable bound on C(x), there is no way around actually spelling
out the coding details, at least in some detail.

A Standard Prefix Code 16

We already know one way to satisfy the prefix condition: code x ∈ 2⋆ as

E(x1 . . . xn) = x10 x20 . . . xn−10 xn1

so that |E(x)| = 2|x|.

Again, there are other obvious solutions such as 0|x|1x.

Both approaches double the length of the string, which doubling would lead to
a rather crude upper bound 2n + O(1) for the prefix complexity of a string via
the program

print E(x)

We really would like n + O(1). Can we get there? Or at least closer?

String Length 17

We have used the notation |x| for a string x to denote its length. So

|.| : 2⋆ −→ N

In the following, it will be convenient to have another function

blen : 2⋆ −→ 2⋆

x 7−→ bin(|x|)

where the length is expressed as a number written in binary (say, MSD first, no
leading zeros). We can think of blen as a kind of discrete logarithm.

Improving the Prefix Code 18

How about leaving x = x1x2 . . . xn unchanged, but using E to code n = |x|,
the length of x:

E(blen x) x

Note that this still is a prefix code and we now only use some 2 log n + n bits
to code x. But why stop here? We can also use

E(blen2 x) blen x x

This requires only some 2 log2 n + log n + n bits. And so on and so forth . . .

E(blen3 x) blen2 x blen x x

Going Wild 19

In fact, we can iterate this step of pushing the costly E encoding down to
shorter and shorter strings. Let

E0(x) := E(x)

Ei+1(x) := Ei(blen x) x

Since the prefix Ei(blen x) is uniquely decodable, we can unravel the remainder
of the string from there.

Exercise
Show that all the Ei are prefix codes.

Piling On 20

Here is an example, using the string “abc . . . xyz” to represent any bit sequence
of length 26.

0 a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0y0z1 52
1 1010001001 | abcdefghijklmnopqrstuvwxyz 36
2 100011 | 11010abcdefghijklmnopqrstuvwxyz 37
3 1011 | 10111010abcdefghijklmnopqrstuvwxyz 38
4 1001 | 1110111010abcdefghijklmnopqrstuvwxyz 40
5 1001 | 101110111010abcdefghijklmnopqrstuvwxyz 42

The vertical bar is just for legibility, it ain’t there in the actual code.

Note that E1 is optimal in this particular case.

When To Stop? 21

So there is a little problem: how do we choose the encoding level k as a
function of the length of x?

There are at least two natural ways to do this:

Iterate discrete logarithms to get below a fixed threshold (like length 2).

Let k be minimal such that |Ek(x)| ≤ |Eℓ(x)| for all ℓ.

The second method is arguably more elegant, since it may produce better
results. Alas, it leads to a few unpleasant surprises (non-monotonicity). Also
note that there may well be better alternatives, these two just seem to be the
most obvious choices (at least to me).

Iterated Logs 22

We’ll stick with the first method. To this end, define blen⋆ x, a discrete version
of an iterated logarithm log∗. To avoid pesky edge cases, only consider |x| ≥ 2.

blen⋆ : 2⋆ → N x 7→ min
(

k | blenk x ∈ {10, 11}
)

For example, for x = bin(10100) we get the following sequence of values, in
binary and in decimal:

binary x 101001101 1001 100 11 10 10 . . .
decimal 10100 333 9 4 3 2 2 . . .

So blen⋆ x = 4.

Note that the numerical value of x does not really matter, it’s just the number
of bits the determine blen⋆ x.

Infinity Code 23

We can use this iterated logarithm to determine the encoding level, for any
binary string x:

E∞(x) = E(k) Ek(x) k = blen⋆(x)

As written, this is a bit clumsy, we are using our basic prefix code E in two
places; figure out how to get rid of this feature.

Example 24

Suppose we have a bit-string x of length 125000. Iterating , we get the
following sequence of binary strings (lengths in decimal).

0 x 125000
1 11000011010100000 17
2 10001 5
3 101 3
4 11 2

So our method as stated would use k = 4 and thus add

17 + 5 + 3 + 2 × 4 = 33

bits to the length of string, less that the typical 64-bit word length. A non-issue
compared to the 125000 bits in x.

How Good Is It? 25

How much do we have to pay for a prefix version of x? Essentially a sum of
iterated logs (we are shamelessly disregarding the necessary floors and/or
ceilings).

Lemma

|E∞(x)| = n + log n + log2 n + log3 n . . . + log∗(n) + O(1)

So this is an upper bound on C(x).

Of course, some other coding scheme might produce even better results.

In the real world, a good rough approximation to C(x) is n + log n, in perfect
keeping with our intuition about

print next n bits x1x2 . . . xn

Why Bother? 26

It’s clear that prefix complexity is a bit harder to deal with than ordinary
Kolmogorov-Chaitin complexity. What are the payoffs?

For one thing, it is much easier to combine programs. This is useful, say, for
concatenation: we want to generate xy. Suppose we have prefix programs p
and q that produce x and y, respectively.

But then pq is uniquely parsable, and we can easily find a header program h
such that

h p q

is an admissible program for Upre that executes p and q to obtain xy.

Thus
C(xy) ≤ C(x) + C(y) + O(1)

Even Better 27

Define C(x, y) to be the length of the shortest program that writes x b y on the
tape (recall that our tape alphabet is {0, 1, b}). So this is essentially the pair
(x, y), expressed as a string.

Note that C(xy) ≤ C(x, y) + O(1), but getting a bound in the opposite
direction is tricky (think about x, y ∈ 0⋆).

At any rate, the last argument shows that C(.) is subadditive:

C(x, y) ≤ C(x) + C(y) + O(1)

This property simply fails for ordinary non-prefix complexity.

Better Mousetrap 28

A higher level complaint is that plain non-prefix KC complexity does not help
much when applied to the problem of infinite random sequences. To be sure,
many arguments still work out fine, but there is a sense that the theory could
be improved.

Sure enough, here is the killer app for prefix complexity.

Chaitin’s Ω 29

Definition
The total halting probability of any prefix program is defined to be

Ω =
∑

Upre(p)↓

2−|p|

Ignoring the motivation behind this for a moment, note that this definition
works because of the following bound.

Lemma (Kraft Inequality)
Let S ⊆ 2⋆ be a prefix set. Then

∑
x∈S

2−|x| ≤ 1.

But Why? 30

We can define the halting probability for a single target string x to be

P (x) =
∑

Upre(p)≃x

2−|p|

and extend this to sets of strings via additivity: P (S) =
∑

x∈S
P (x).

Then Ω = P (2⋆).

Note that Ω depends quite heavily on the choice of Upre, so one could write
Ω(Upre) or some such for emphasis.

A Strange Real 31

Proposition
Ω is a real number and 0 < Ω < 1.

In fact, for one particular Upre, one can show with quite some pain that

0.00106502 < Ω(Upre) < 0.217643

To establish this result one needs to get down into the weeds and, following the
details of the definition of Upre, produce a

Lower Bound: show that some specific, short programs really converge.

Upper Bound: show that some specific, short programs really diverge.

So, this is unpleasantly close to Halting and rather messy in actuality–recall the
Busy Beaver problem. For slightly longer programs, this type of analysis
becomes quickly unmanageable.

Randomness 32

Proposition
Ω is incompressible in the sense that K(Ω[n]) ≥ n − c, for all n.

Here Ω([n]) denotes the first n bits of Ω. As a consequence, Ω is Martin-Löf
random (nowadays the standard definition of randomness for infinite
sequences).

This may seem a bit odd since we have a perfectly good definition of Ω in
terms of a converging infinite series. But remember, the Halting Problem is
lurking in the summation – from a strictly constructivist point of view Ω is in
fact quite poorly defined.

Random strings are useful for certain algorithms, but one would think
intuitively that they are quite useless as a direct source of information
(compared to Wiles’ proof of FLT, say).

Halting and Ω 33

Lemma
Consider q ∈ 2≤n. Given Ω[n], it is decidable whether Upre halts on input q.

Proof.
Start with a lower bound Ω0 = 0.
Dovetail computations of Upre on all inputs using the standard approach.
Whenever convergence occurs on some program p, update the approximation:
Ω0 := Ω0 + 2−|p|.
Stop as soon as Ω0 ≥ Ω[n]. Then we have the following lower and upper
bounds:

Ω[n] ≤ Ω0 < Ω < Ω[n] + 2−n.

But then no program of length at most n can converge at any later stage; we
just have to check whenever q has already terminated. 2

If Only . . . 34

For n ≈ 10000, knowledge of Ω[n] would settle, at least in principle, several
major open problems in mathematics such as the Goldbach Conjecture or even
the Riemann Hypothesis.

As mentioned some time ago, the Riemann Hypothesis can be checked by a
Turing machine that fails to halt iff the RH is true.

Scott Aaronson has shown that the machine would need at most 744 states,
and possibly far fewer. So a corresponding prefix program could probably be
written in 10000 bits (just eyeballing things, I have not checked anything).

Goldbach could be handled this way for sure, supposedly there is a 27-state
Turing machine that halts iff the conjecture is false.

The Abyss of Time 35

Of course, we don’t have the first 10000 bits of Ω, nor will we ever.

In fact, things are much, much worse than that.

Suppose some dæmon gave you these bits. It would take a long time to exploit
this information: the running time of the oracle algorithm above is not bounded
by any recursive function of n.

All the answers would be staring at us, but we could not pull them out.

1 Prefix Complexity

2 Incompleteness

3 Solovay’s Theorem

Hilbert’s Dream 37

David Hilbert wanted to crown
2000+ years of development
in math by constructing an
axiomatic system that is

consistent
complete
decidable

Alas . . .

Harsh Reality 38

Theorem (Gödel 1931)
Every consistent reasonable theory of mathematics is incomplete.

Theorem (Turing 1936)
Every consistent reasonable theory of mathematics is undecidable.

Reasonable here just means: at least as strong as basic arithmetic, and the
axioms are decidable.

This is good news for anyone interested in foundations, who would want to live
in a boring world?

The Proofs 39

Gödel’s argument is a very careful elaboration and formalization of the old
Liar’s Paradox:

This here sentence is false.

Turing uses classical Cantor-style diagonalization applied to computable reals.

Both arguments are perfectly correct, but they seem a bit ephemeral; they
don’t quite have the devastating bite one might expect.

Incompleteness 40

For example, Gödel’s version of the Liar is an arithmetic statement φ that says:
this sentence is not provable in the given system.

By consistency, φ must indeed fail to be provable in the chosen system, hence
the sentence is true—so our theory is incomplete.

The problem is that the sentence in question is logical in nature, rather than
just pure arithmetic. A lot of work has since gone into finding true but
unprovable statements that are more mathematical in nature. Still, they are
not totally compelling. Look at Harvey Friedman’s work for several examples.

Ω can help to make the limitations of the formalist/axiomatic approach much
more concrete. First a warm-up.

Normal Numbers 41

Émile Borel defined a normal number in base B to be a real r with the
property that all digits in the base B expansion of r appear with limiting
frequency 1/B.

Theorem (Borel)
With probability 1, a randomly chosen real is normal in any base.

Alright, but how about concrete examples? It seems that
√

2, π and e are
normal (billions of digits have been computed), but no one currently has a
proof.

Champernowne’s Number 42

C = 0.12345678910111213141516171819202122 . . .

Champernowne showed that this number is normal in base 10 (and powers
thereof), the proof is not difficult. The number is transcendental; it is open
whether it is normal in any other base.

Proposition
Ω is normal in any base.

Of course, there is a trade-off: we don’t know much about the individual digits
of Ω. In fact, we basically know nothing, see the next section.

Proving Theorems 43

Time to get serious. Fix some cutoff n. Suppose we want to prove all correct
“theorems” of the form

C(x) = m < n or C(x) ≥ n

In other words, we want to prove a lower bound N for some concrete string x,
or pin down the complexity exactly.

How much logic strength would we need to do this? Clearly, we have to
contend with Halting, but we can use a powerful theory, say, Zermelo-Fraenkel
with Choice. It should not be too hard to reason about Halting in that sort of
environment, right?

More Precisely 44

To establish assertions like C(x) = m < n or C(x) ≥ n in the obvious way, we
need the maximal halting time τ of all programs of length at most n − 1. Then
we can simply run all the relevant programs and see what happens.

It is not hard to see that
C(τ) = n + O(1)

Essentially, nothing less will do.

Alas, this is the obvious, computational approach, we want to reason about
theorem proving. Who knows, maybe there is some clever argument that does
not require τ?

Theories 45

In the following we assume that T is some axiomatic theory of mathematics
that includes arithmetic (first-order logic is fine).

Think of T as Dedekind-Peano Arithmetic, though stronger systems such as
Zermelo-Fraenkel with Choice is perfectly fine, too (some technical details get
a bit more complicated; we have to interpret arithmetic within the stronger
theory).

Since we have arithmetic, we can certainly formalize assertions like C(x) = m
and C(x) ≥ n in T . We need to figure out how easily these “theorems” might
be provable in T .

Consistency 46

We need T to be consistent: it must not prove wrong assertions. This is
strictly analogous to the situation in Gödel’s theorem: inconsistent theories
have no trouble proving any assertion whatsoever.

Actually, technically all we need is Σ1 consistency: any theorem of the
following simple form, provable in T , must be true:

∃ x φ(x)

where φ is primitive recursive (defines a primitive recursive property in T) and
the existential quantifier is arithmetic.

Measuring Theories 47

We assume that suitable rules of inference for first-order logic are fixed, once
and for all. So the theory T comes down to its set of axioms.

If there only finitely many axioms, we can think of their conjunction as a single
string and define C(T) accordingly.

If there are infinitely many axioms (as in DPA, think about induction), the set
of all axioms is still decidable and we can define C(T) as the complexity of the
corresponding decision algorithm.

Note that this approach totally clobbers anything resembling semantics: it does
not matter how clever and/or elegant the axioms are, just how large a program
is needed to specify them.

Chaitin’s Theorem 48

Theorem (Chaitin 1974/75)
If T proves the assertion C(x) ≥ n, then n ≤ C(T) + O(1).

Proof.
Enumerate all theorems of T , looking for statements of the form C(x) ≥ n.

For any k ≥ 0, let xk be the string in the first theorem so discovered where
n > C(T) + k, if it exists. We have to make sure there are only finitely many
such k.

By consistency, we have

C(T) + k < C(xk)

By construction and subadditivity we get

C(xk) ≤ C(T , C(T), k) + O(1)

≤ C(T) + C(k) + O(1)

Proofs are Useless 49

But then it follows immediately that

k < C(k) + O(1) ≤ log k + O(1)

and thus k ≤ k0 for some fixed k0. 2

Similarly one can prove that no consistent theory can determine more than

C(T) + O(1)

bits of Ω.

We have a perfectly well-defined real, but, in the context of any formal theory
mathematics, we can only figure out a the first few of its digits.

Number Theory 50

Here is an application of Ω in number theory. Recall

Theorem (Y. Matiyasevic, 1970)
It is undecidable whether a Diophantine equation has a solution in the integers.

One important step towards the proof was to show that any semidecidable set
can be expressed in terms of a exponential Diophantine equation:

a ∈ A ⇐⇒ ∃ x1, . . . , xn E(a, x1, x2, . . . , xn) = 0

Of course, exponential Diophantine equations are scary in general, even over N:

(x + 1)n+3 + (y + 1)n+3 = (z + 1)n+3

Counting Roots 51

Incidentally, if E(a, x1, x2, . . . , xn) = 0 has α many solutions, then there is a
program of size

C(α) + O(1)

to find them: brute-force search until they are all discovered.

But how about infinitely many solutions?

Theorem (Chaitin)
There is an exponential Diophantine equation E(k, x) = 0 such that:
there are infinitely many solutions x iff the kth bit of Ω is 1.

Loosely speaking: randomness and chaos lurks even within integer
polynomials–not a place where one would usually be looking for these scary
things.

1 Prefix Complexity

2 Incompleteness

3 Solovay’s Theorem

Solovay’s Theorem 53

One can sharpen Chaitin’s theorem to a point where it almost seems absurd:

Theorem
Let T be as before. Then there is a universal prefix machine Upre such that

Peano Arithmetic proves that Upre is indeed universal.

T cannot determine a single digit of Ω = Ω(Upre).

This result is rather counter-intuitive, one might think that the standard
approach towards identifying a few digits of Ω should work just fine. The proof
depends on a very clever construction of a particular universal prefix machine
and uses Kleene’s recursion theorem.

Sketchy Proof Sketch 54

Start with any old universal prefix machine V whose universality can be proven
in DPA (any standard machine will do).

Define Upre in three cases as follows:

Upre(ε) ↑

Upre(0p) ≃ V(p)

Upre(1p): batten down the hatches

Note that Upre is already guaranteed to be universal, provably in DPA. We will
use the missing inputs 1p to destroy any semblance of predictability of Ω.

Kleene to the Rescue 55

Let |p| = n. We will not use p as an actual program (unlike in the 0p case) but
only as a yardstick to determine n, and later to determine a rational number.

Enumerate the theorems of T of the form

Θ(n, b) = the nth bit of Ω is b.

Here b ∈ 2 is a single bit.

Wait, we are in the middle of the definition of Upre, but the formalization of
Θ(n, b) requires knowledge of Upre. This is when the Recursion Theorem
strikes: in the definition of Upre, we may safely assume that we have access to
an index for Upre.

We ignore all messy details.

What’s Wrong? 56

Suppose we discover Θ(n, b). Now do the following:

For any program p of length n, let r0 be the rational with dyadic expansion
pb ∈ 2n+1 and let r1 = r0 + 2−(n+1). Note that for the right p we must have
r0 < Ω < r1.

Now search for a stage σ ≥ 0 where we already have

r0 < Ωσ < r1

for the standard, computable approximation Ωσ. If the search succeeds, let
Upre(1p) halt, adding a bit to Ω and promptly kicking us out of the interval.

But if T correctly determines the nth bit of Ω (i.e., proves a correct theorem
Θ(n, b)), then Ω will be in this interval, for the right program p of length n.

Contradiction.

	Prefix Complexity
	Incompleteness
	Solovay's Theorem

