
UCT

Probabilistic Classes

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Randomized Polynomial Time

2 ZPP, BPP, RP, PP

Where Are We? 2

We have seen a number of examples of probabilistic algorithms, many of
them workhorses that are in heavy use.

In some cases, deterministic “fast” counterparts exist, but are much infe-
rior in practice (order statistics, primality testing).

In some cases, randomness seems inherently necessary (Monte Carlo simu-
lations, cryptography).

Reasonably good sources of pseudo-random and truly random bits are
available, but PRNGs should not be used blindly.

Probabilistic Classes 3

These examples and many more make it tempting to expand our complexity
zoo a bit: there should be complexity classes corresponding to probabilistic
algorithms.

For anyone familiar with nondeterministic classes like NP this is not much of a
stretch: we already have computation trees

All we need to do is impose additional conditions on the number of accepting
branches so we have error bounds.

Probabilistic Turing Machines 4

Technically, it is convenient to define a probabilistic Turing machine (PTM) M
to be a Turing machine acceptor with two transition functions δ0 and δ1.

At each step in the computation, M chooses δ0/1 with probability 1/2, and, of
course, independently of all other choices. These are the critical probabilistic
properties we need for analysis; they are trivially satisfied if our bits are truly
random.

It is preferable to use this specific type of nondeterminism since

It simplifies the probabilistic analysis significantly.

It may inflate the size of the corresponding Turing machine by a O(log |Q|)
factor; that seems to be entirely irrelevant.

Projections 5

As with NP, one can avoid the funky probabilistic Turing machines by invoking
witnesses and polynomially bounded projections.

Suppose we have a standard NP machine M. We may safely assume that

M first generates a short sequence α ∈ 2⋆ by nondeterministic guessing.

M then runs entirely deterministically, using α to remove nondeterminism
from all transitions.

So all the nondeterminism is front-loaded, we first generate a choice sequence
and then use it to disambiguate the rest of the computation.

Think about deterministic simulation, it’s very similar (enumerate all choice
sequences, check each one).

Probability via Projections 6

In our setting, to check instance x, we need a witness whose length is
polynomially bounded by n = |x|. We have a deterministic machine M that
requires a potential witness r ∈ 2p(n) as additional input and verifies some
polynomially checkable property of r and x. So we can write

accM(x) = { r ∈ 2p(|x|) | M(x, r) accepts }

We can think of the machine as performing a few (fictitious) coin tosses and
can talk about the probability of success:

Pr[M(x) accepts] = |accM(x)|
2p(|x|)

We need to make sure that the acceptance probability is high.

Notation 7

This should really be written more carefully as

Pr
r∈2p(|x|) [M(x, r) = 1]

with the understanding that the random bits r are chosen uniformly at random.
So this is a finite sample space, and we are really dealing with counting
arguments, dressed up in a probabilistic manner.

Usually, one does not bother with this level of detail.

Recall: Counting 8

We have already encountered the idea of counting accepting computations in
the class #P.

There we used accepting computations as a workaround to the problem of
defining nondeterministic transducers that compute functions (which are
single-valued by definition, the exact opposite of nondeterministic
computation).

This leads to a useful and interesting complexity class, so we should expect
good results in our probabilistic setting.

Running Time 9

For the definition of, say, NP it suffices to have at least one short witness, there
is no harm if other computations are longer (and we could eliminate them if we
wanted to).

In the probabilistic case, we say that M runs in time t(n) if it halts in at most
t(|x|) steps regardless of the random choices made. Note that this is certainly
motivated by examples from ordinary nondeterministic computation: a
nondeterministic SAT algorithm first guesses a truth assignment, and then
evaluates the formula.

Actually, since we are dealing with probabilities anyway, we might also consider
expected running time. We mostly won’t go there.

Random Variables 10

Write M(x) ∈ 2 for the random variable that indicates acceptance/rejection.

Again, to say that M(x) is a random variable is incomplete information: we
really should specify the probability space. By default, we use the uniform
distribution: we flip a fair coin a polynomial number of times.

We could additionally consider other distributions on the instances (as in
ordinary average case running time), but we will ignore this.

Bounding Error 11

The critical part of any argument here will be a bound on errors. There are two
types of errors that are a priori independent. We would like M(x) = L(x) for
some language L ⊆ 2⋆ (conflating L with its characteristic function, as usual).
Alas . . .

False Positives
We may have x /∈ L but M(x) = 1.

False Negatives
We may have x ∈ L but M(x) = 0.

The obvious remedy is to insist that these errors occur with small probability.

So we need to figure out what precisely we mean by “small” to obtain useful
probabilistic classes.

BPP 12

Let t : N → N be a reasonable running time and L ⊆ 2⋆ a language.

Definition (Bounded Error Probabilistic Polynomial Time)
A PTM M decides L in time t(n) if for all x ∈ 2⋆, M on x halts in at most
t(|x|) steps (regardless of random choices) and

Pr[M(x) = L(x)] ≥ 2/3

BPP is the class of all languages decided by a PTM in time O(poly).

Do not worry about the magic number 2/3, we will get rid of it below.

BPP, Again 13

Our assumption Pr[M(x) = L(x)] ≥ 2/3 really comes in two parts:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3

x /∈ L ⇒ Pr[M(x) = 0] ≥ 2/3

We will later discuss asymmetric cases where the two bounds do not agree.

The whole analysis of the algorithm is based on these probabilities and its
internal logic.

It’s only for actual execution of the algorithm that we need to worry about a
source of sufficiently random bits.

The Old Classic 14

Primality, the problem of determining whether a number is prime, is obviously
in co-NP.

V. Pratt showed that Primality is in NP by constructing short witnesses to
primality, a clever use of basic number theory. Alas, his method does not yield
a BPP algorithm: guessing prime decompositions is entirely hopeless.

Probabilistic primality testing algorithms in the 1970s showed Primality to be
indeed in BPP (and actually in co-RP), but it was not known to be in P at the
time.

Then in 2002 Agrawal, Kayena and Saxena ruined everything by showing that
Primality is in fact in P (using no more than high school arithmetic in the
process; the paper is a must-read).

Big Claim 15

BPP seems to capture the intuitive notion of a problem efficiently
solvable by a feasible algorithm very well.

Probably (no pun intended) better than P.

Truth Amplification (aka Error Reduction) 16

An error probability of 1/3 or so is, of course, much too high for practical
purposes. In the real world, given a probabilistic algorithm A, we would run it
repeatedly and tally the answers.

The critical assumption here is that the runs are independent, without
independence there is not much one can say.

In some cases this is fairly straightforward: e.g. our probabilistic primality tests
have no false negatives, and the error probability for a false positive is at most
1/2.

So if we run the algorithm ρ times (independently!) and get no negatives along
the way, the error bound is down to 2−ρ.

General Case 17

In the general case we count answers:

Run A some number ρ times, independently, and

take a majority vote.

The repetition factor ρ should be reasonably small, certainly polynomial
(otherwise we might as well construct the whole computation tree of A).

Naturally there will be a trade-off between ρ and the error bound, we’d like to
find a sweet spot.

Weak Machines 18

Consider a poly time PTM M such that for some constant c > 0:

Pr[M(x) = L(x)] ≥ 1/2 + |x|−c

For c = 1 this would mean

Pr[M(x) = L(x)] ≥ 1/2 + 1/|x|

which seems a like a rather weak assumption. Intuitively, something like
Pr[M(x) = L(x)] ≥ 1/2 + ε for a constant ε would seem to make more sense.

Incidentally, in the RealWorldTM, this would be the same.

Destroying Error 19

Theorem
Let M be a PTM such that Pr[M(x) = L(x)] ≥ 1/2 + |x|−c.
By taking a majority vote with O(|x|2c+d) repetitions, d > 0 a constant, we
improve the performance guarantee

Pr[M′(x) = L(x)] ≥ 1 − 2−|x|d

So the error is now exponentially small and the repetition factor is polynomial,
as required.

For example, for c = d = 1 we get an error of 2−n with a cubic number of
repetitions.

Recall: Chernoff Bound 20

Consider the Bernoulli trial X = X1 + X2 + . . . + Xn where the Xi are
independent indicator variables with probability p, so µ = E[X] = np.

Theorem (Chernoff Bound)
Lower tail, 0 < δ ≤ 1:

Pr[X < (1 − δ)µ] ≤
(

e−δ

(1 − δ)1−δ

)µ

Upper tail, 0 < δ:

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

Eyeballing It 21

The expressions in the bounds are pretty messy, it is often more convenient and
still sufficient to replace them by looser estimates. Chernoff-Hoeffding bounds
are popular for example. Here is one, valid for 0 < ε ≤ 1:

Pr[X ≥ (1 + ε)µ] ≤ exp(−µ ε2/3)

We will use this in the weaker form

Pr[X ≥ (1 + ε)µ] ≤ 2−µε2/4

Plots 22

Below µ = 1. For 0 < δ ≤ 1 the picture shows lower tails on the left, upper
tails on the right. Red is the “real” bound, blue a simplified one.

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Not too bad.

Back to BPP 23

We are given a PTM M such that

Pr[M(x) = L(x)] ≥ 1/2 + |x|−c

We claim that, for any constant d, we can design a new PTM M′, performing
a majority vote, such that

Pr[M′(x) = L(x)] ≥ 1 − 2−|x|d

The magic repetition number that makes this happen is

ρ = 4|x|2c+d

for |x| sufficiently large.

Error Bound 24

Here is one direction.

Suppose x /∈ L, |x| = n, and Pr[Xi = 1] ≤ 1/2 − δ where δ = n−c. Since
1/2 > (1/2 − δ)(1 + 2δ), the likelihood of error in our majority vote is

Pr[X > ρ/2] ≤ Pr[X > ρ(1/2 − δ)(1 + 2δ)]

≤ 2−ρ(1/2−δ)δ2

≤ 2−nd

The last step follows from ρ = 4 n2c+d provided that log n ≥ 2/c. 2

So even for d = 1 we have exponentially small error.

Closure 25

Lemma
BPP is closed under union, intersection and complement.

Proof.
Closure under complementation follows directly from the definitions.

To show closure under intersection, suppose Mi decides Li in BPP, i = 1, 2.
Build a new machine M∩ that does the following:

Compute bi = Mi(x).
Return min(b1, b2).

The two runs use independent random bits.

Clearly, M∩ runs in polynomial time, so we only have to show it obeys our
error bounds, potentially after error reduction.

Proof 26

Case 1: x ∈ L1 ∩ L2

Then Pr[M∩(x) = 1] ≥ 2/3 · 2/3 = 4/9, which can be fixed by amplifying
M1 and M2 (say, to 5/6).

Case 2: x /∈ L1 ∩ L2

Pr[M∩(x) = 0] = Pr[M1(x) = 0 ∨ M2(x) = 0]

= Pr[M1(x) = 0] + Pr[M2(x) = 0] − Pr[M1(x) = M2(x) = 0]

≥ 2/3

For the last step, consider the cases x /∈ L1 ∪ L2, x ∈ Li − L3−i and find the
minima.

And P? 27

It is trivial from the definitions that P ⊆ BPP.

How about equality? From the error reduction result and the Boolean closure
properties, it is entirely conceivable that P = BPP. Alas, that is an open
problem.

As already mentioned, quite a few researchers think that equality holds. This
means that we can derandomize all these algorithms without relinquishing a
polynomial time bound.

But note that equality per se does not mean much: a linear probabilistic
algorithm could go to n1000 deterministic. This is very similar to the P versus
NP situation: the classes might be the same without any impact on practical
algorithms.

Feeble Derandomization 28

Theorem
Suppose M decides a BPP language L with witnesses of length p(n).
Then for all n ∈ N there is a special witness rn ∈ 2p(n) such that

∀ x ∈ 2n
(
x ∈ L ⇐⇒ M(x, rn) accepts

)

Proof.
Use error reduction to get an error bound of 4−n.

Consider the set of bad witnesses for x ∈ 2n:

Bx = { r ∈ 2p(n) | M(x, r) = 1 − L(x) }

Proof Contd 29

If we pick r ∈ 2p(n) uniformly at random we have Pr[r ∈ Bx] ≤ 4−n.

Then

Pr[r ∈
⋃

Bx] ≤ 2n · 4−n = 2−n

But then

Pr[r ∈
⋂

Bx] ≥ 1 − 2−n > 0
2

Yup, that’s totally non-constructive; we don’t really know what the universal
witness is.

Note that a similar result for NP seems rather unlikely.

1 Randomized Polynomial Time

2 ZPP, BPP, RP, PP

One-Sided Error 31

A BPP machine can make errors in both directions. Here is a more restricted
version in the case where there are no false positives.

x ∈ L ⇒ Pr[M(x) = 1] ≥ 2/3

x /∈ L ⇒ Pr[M(x) = 0] = 1

Definition
RP is the class of all languages decided by a one-sided error PTM in
polynomial time.

So RP produces no false positives, but may produce false negatives, with low
probability.

It follows immediately that RP ⊆ NP; alas, (provable) closure under
complementation vanishes.

Error Reduction 32

If we run a RP machine ρ times on a yes-instance, the likelihood for at least
one Yes answer is at least

1 − (1 − 2/3)ρ = 1 − 3−ρ

If we keep running till a Yes appears, we are dealing with a geometric
distribution and the expected number of runs is 3/2. Of course, on a
no-instance we would go forever.

More generally, we could change the 2/3 to any positive constant or even
something like n−c without changing the class.

The Other Side 33

Similarly one defines co-RP, the complements of all languages in RP.

So this means no false negatives, but potentially false positives.

Schwartz-Zippel, Solovay-Strassen and Miller-Rabin are all in co-RP.

We have little information about NP ∩ co-NP, but the analogous question here
has a nice answer, see below.

Lemma
ZPP = RP ∩ co-RP

Closure 34

Lemma
RP is closed under union and intersection.

Proof.
Here is intersection. We have two RP machines Mi accepting languages Li.

A machine M∩ for L = L1 ∩ L2 simulates both machines and accepts iff both
accepts.

Suppose x ∈ L. Then both machines accept with probability at least (2/3)2,
but we can amplify to get M∩ to accept with probability at least 2/3.

Suppose x /∈ L, say, x /∈ L1. But then M1 never accepts x, and neither does
M∩.

2

Zero-Sided Error 35

Here is a wild idea: how about a PTM that never makes a mistake?

x ∈ L ⇒ M(x) = 1

x /∈ L ⇒ M(x) = 0

Here is the glitch: for some computations the running time may not be
polynomial; the machine is fast only on average.

ZPP is the class of all such PTM with expected polynomial running time.

These are also called Las Vegas algorithms, as opposed to the more civilized
Monte Carlo algorithms.

The randomized version of quicksort can be construed as a Las Vegas type
algorithm (though within poly time): with small probability it will have
quadratic running time, on average the running time is log-linear.

Clocking a ZPP Algorithm 36

In reality, we would use a clock to halt the algorithm if it has not returned any
(necessarily correct) answer after a polynomial amount of time.

In this case we can think of the output as “don’t know.”

Lemma
A problem is in ZPP iff it has an always-correct algorithm that has polynomial
average-case running time.

Of course, in reality we rerun the algorithm whenever we get a “don’t know”
(meaning the algorithm is out of time).

Some Inclusions 37

Lemma
P ⊆ ZPP = RP ∩ co-RP

RP, co-RP ⊆ BPP

But note, as usual, that we may have collapse: it could be that P = BPP, so
these classes are all the same.

The difference between this and the P = NP question is that a lot of people
think that collapse is likely in the probabilistic case but not in the
nondeterministic case (not everybody, though).

And NP? 38

Alas, the relationship between BPP and NP is currently open.

It is known, though, that
BPP ⊆ Σp

2 ∩ Πp
2

near the bottom of the polynomial time hierarchy.

It follows that P = NP implies P = BPP.

Pushing Things: PP 39

All our classes BPP, ZPP, RP and co-RP are quite reasonable. The question
arises whether more general probabilistic algorithms could also be of interest.

Could we possibly relax our conditions and still get an intuitively plausible
randomized algorithm?

How about this: a string is in the language iff it is accepted by a majority of
computations:

x ∈ L ⇒ Pr[M(x) = 1] > 1/2

x /∈ L ⇒ Pr[M(x) = 1] ≤ 1/2

Note that this is much weaker than our previous probabilistic classes, we are
not specifying a lower bound of the sort 1/2 + ε for some sort of ε.

Robustness 40

So if M uses random bitstrings of length p(|x|), then x belongs to L iff

accM(x)
2p(|x|) > 1/2

It turns out that we can replace the (>, ≤) conditions by (≥, <).

Also, we could change the cutoff to some other value c > 1/2.

Exercise
Think about how one might go about proving this.

Properties? 41

We have
RP ⊆ PP ⊆ PSPACE

since we can simply count the witnesses leading to acceptance in exponential
time and linear space.

Alas, it looks like PP is overshooting a bit when it comes to capturing feasible
computation:

Theorem
NP ⊆ PP

Note that this is not entirely clear, we have to amplify a potentially single
accepting computation to a majority.

Proof 42

Let M be an NP machine accepting L with witnesses of length p(n).

Define a new machine M′ that uses witnesses of length p(n) + 2:
M′(x, 00r) = M(x, r).
M′(x, abr) = 1 for ab ̸= 00 unless abr ∈ 1⋆.

Now choose w ∈ 2p(n)+2 uniformly at random. Then since M is an NP
machine
x ∈ L: Pr[M′(x, w) accepts] ≥ 3/4

x /∈ L: Pr[M′(x, w) accepts] < 3/4.

By our comments above, this establishes membership in PP.
2

Closure 43

Lemma
PP is closed under complement, union and intersection.

Proof.
These results are tricky, we will only discuss complements here.

Note that it suffices to show that we can symmetrize our definition so that

x ∈ L ⇒ Pr[M(x) = 1] > 1/2

x /∈ L ⇒ Pr[M(x) = 1] < 1/2

Proof Contd 44

Let M be a PP machine recognizing L, and let p(n) be a polynomial bound on
the witness length.

For any input x ∈ 2n, machine M uses p(n) random bits, so we have a bit of
granularity:

x ∈ L ⇒ Pr[M(x) = 1] ≥ 1/2 + 2−p(n)

We build a new machine M′ that returns M(x) ∧ X where X is a random
indicator variable such that Pr[X = 0] = 2−p(n). X is easy to realize in
polynomial time. Hence

Pr[M′(x) = 1] = (1 − 2−p(n)) Pr[M(x) = 1]

Proof Contd 45

Hence, if x ∈ L, we have

Pr[M′(x) = 1] ≥ (1 − 2−p(n))(1 + 2−p(n)) = 1 − 2−2p(n) > 1/2

On the other hand, if x /∈ L we have

Pr[M′(x) = 1] < Pr[M(x) = 1] ≤ 1/2

Done.
2

Union/intersection is harder.

Random Classes 46

P

ZPP

RP coRP

NP BPP coNP

PP Π2⋂Σ2

PSPACE

Semantic vs Syntactic Classes 47

A syntactic complexity class can be described by purely syntactical means, in
particular by an effective enumeration of a class of machines corresponding to
the class.

Examples: P, NP, co-NP.

By contrast, a semantic complexity class requires some additional definitional
means; in particular filtering out machines according to some undecidable
property.

Examples: NP ∩ co-NP, ZPP, RP, co-RP, BPP.

Syntactic classes tend to have complete problems, semantic ones don’t.

Simple Example 48

Both NP and co-NP are syntactic classes: for example, we can provide an
enumeration Me of the corresponding machines (more precisely, a
nondeterministic Turing machine together with a polynomial time bound).

But for NP ∩ co-NP we would need 2 machines, one for L and one for L.

Alas, it is undecidable whether whether 2 machines have appropriate
acceptance languages.

Derandomization 49

How could one systematically get rid of random bits?

One nice idea is to think about PRNGs that start with a short truly random
string X.

Then they compute in an entirely deterministic manner a sequence of bits bi,
i ∈ [n], that are random enough to fool all probabilistic machines in a certain
class.

Write ℓ(n) for the length of the initial seed X.

If ℓ(n) is small enough, we could simply try out all possible strings of length
ℓ(n) and do a majority count.

Nisan-Wigderson Generators 50

How could we go about squeezing n many well-behaved bits out of ℓ = ℓ(n)
many?

Here is a sketch: suppose we had a function f : 2k → 2 and subsets Si ⊆ [ℓ] of
cardinality k.

The we could use
bi = fi(Xj1 , Xj2 , . . . , Xjk)

where Si = {j1, j2, . . . , jk} (in increasing order).

Since there are potentially exponentially many such sets Si, this could produce
a long output sequence.

Needless to say, f is also critical here. It needs to be difficult enough to
compute.

Fooling? 51

When we replace true random bits by pseudorandom bits we should expect the
error probability to increase.

So what we need is this:

p = error probability with true random bits
q = error probability with generated pseudorandom bits

Then |p − q| needs to be small. The technical details are messy, we won’t go
there.

One can prove that the existence of “nice” Nisan-Wigderson generators implies
P = BPP.

The Power of Randomness 52

So far, we have considered real algorithms augmented by random bits. In terms
of a formal model, this leads to probabilistic Turing machines.

What would happen if we added randomness to just plain old finite state
machines? Ordinary finite state machines (deterministic or nondeterministic)
only recognize regular languages, languages that are linear time and constant
space.

Theorem
A probabilistic finite state machine can recognize { anbn | n ≥ 1 }.

Proof 53

For simplicity, assume we have a two-way machine.

Check that the input is of the form anbm.
Check that n = m (mod 1000).
Flip a fair coin for each a and b.
Event A: all a-coins come up heads. B analogous.
If A ∧ B or ¬A ∧ ¬B do nothing.
If A ∧ ¬B: increment a counter ca.
If ¬A ∧ B: increment a counter cb.
If one counter (say, ca) reaches 100:
check if cb > 0. If so, accept; else reject.

Insane Consequence 54

This result is surprising, but not earth-shattering, the language is just slightly
more complicated than regular. But the next theorem is utterly insane.

Theorem
A probabilistic finite state machine can recognize any semidecidable set.

This can be handled by applying a similar technique to simulate 2-counter
machines (finite state machines that have 2 unbounded counters, but no other
memory), one of the most primitive systems known to be computationally
universal by a famous theorem of Marvin Minsky.

	Randomized Polynomial Time
	ZPP, BPP, RP, PP

