
UCT

Interactive Proofs

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Interactive Proofs

2 IP ⊆ PSPACE

3 Warmup Exercise

4 ∗ PSPACE ⊆ IP

Where Are We? 2

We have a number of examples of randomized algorithms, including critically
important ones such as primality testing.

There are fairly natural probabilistic complexity classes that capture these
algorithms.

The probabilistic classes fit nicely into that the standard complexity landscape.

Are there are other interesting randomized classes?

Recall: Guess & Verify 3

One popular model of NP is to break up the computation into two phases. On
input x:

Guess the required witness w, then

Verify that w works for x.

Of course, we are really dealing with projections and nondeterministic Turing
machines. Still, for intuition the guess & verify model is perfect.

Wild Idea: How about trying to understand the witnesses in
greater detail? Just saying “it exists” is a bit feeble.

Witnesses as Proofs 4

Witnesses may carry a lot of information, it is not much of a stretch to think of
them as a proof of the fact that some instance is a Yes-instance.

For example, a witness of SAT is a satisfying truth assignment α. Given α and
the formula Φ(x), one can simply evaluate the formula in polynomial time and
show that its value is indeed true. The computation constitutes the needed
proof.

More precisely, it might be useful to think of a witness w as the core of a proof
of the assertion “x ∈ L”. The actual proof can then be trivially constructed in
polynomial time; in particular the proof has to have polynomial length.

It is important that we don’t really care how intrinsically complicated the core
of the proof is: it might take a huge effort to find it and the reasoning may be
enormously clever, but checking its correctness must be fairly simple.

Pratt’s Theorem 5

If this sounds too weak, recall Pratt’s result that primality is in NP. The
following two tables literally give a proof of the primality of 733, given some
background results in basic number theory.

n = 733

n− 1 = 22 · 3 · 61, g = 6

6732 ≡ 1 (mod 733)

6366 ≡ −1 (mod 733)

6244 ≡ 425 (mod 733)

612 ≡ 299 (mod 733)

n = 61

n− 1 = 22 · 3 · 5, g = 2

260 ≡ 1 (mod 61)

230 ≡ −1 (mod 61)

620 ≡ 47 (mod 61)

612 ≡ 9 (mod 61)

Lonely Verifier 6

In the usual math scenario, someone spends a lot of effort to build a proof,
submits it, it’s peer-reviewed, published, and then anyone interested can read
the proof and verify without too much effort that it is correct†.

In principle, the verification should not take much more then linear time: if we
insist that the proof is presented is a strict Hilbert-style system, checking
correctness comes down to so much wordprocessing.

OK, but in the RealWorldTM proofs are not formal (though a few have indeed
been formalized, a horribly labor-intensive process). Instead, the reader has to
work a bit harder, find typos, resolve ambiguities, fill in gaps, and so on.

For this process of understanding and verification it is immeasurably useful for
the reader to be able to pose questions, to the author or some other authority.

†If only. A lot of published material is quite poorly presented. And, some of it is plain wrong.

So? 7

Burning Question: Can we get more mileage out of the idea of
some kind of protocol between a “prover” and a “verifier”?

The idea is that the verifier can ask a sequence of questions, and the prover
provides the requested answers.

In the end, if the verifier is convinced of the correctness of the claim, they
accept; otherwise they reject.

The verifier is limited in compute power, say, to polynomial time. The prover,
however, can use arbitrarily much compute power.

Prover and Verifier 8

So, we have two entities communicating with each other:

Prover answers requests for evidence by the verifier;

Verifier checks the information provided by the prover, and can request
more input.

After multiple question/answer rounds, the verifier announces a decision.

If the given instance is a Yes-instance, the prover should have a way to
convince the verifier by sending back the right answers.

On the other hand, if we have a No-instance, then nothing the prover does
should fool the verifier into acceptance.

More Formally . . . 9

Suppose we have two functions f, g : 2⋆ → 2⋆ and k ≥ 0. Define the k-round
interaction btw f and g on input x ∈ 2⋆ as a sequence of strings ai ∈ 2⋆:

V : a1 = f(x)
P : a2 = g(x, a1)
V : a3 = f(x, a1, a2)

...
V : a2i+1 = f(x, a1, a2, . . . , a2i)
P : a2i+2 = g(x, a1, a2, . . . , a2i+1)

...
V : ak = f(x, a1, a2, . . . , ak−1)

We call (a1, a2, . . . , ak) ∈ (2⋆)k the transcript of the interaction.

Output and Step 1 10

The output is res(V,P)(x) = ak, which we assume to be a single bit (so k
must be odd), the yes-or-no answer.

Objection:

The prover has unlimited power, so it can easily compute a1 = f(x). So would
it not make more sense to start with the prover computing a2?

Yes, but later we will add randomness to the mix, and then the prover cannot
determine a1, it needs the verifier to speak first.

Completeness and Soundness 11

A language L has a k-round deterministic interactive proof system (dIP) if
there is a polynomial time Turing machine V that runs on inputs
x, a1, . . . , ai ∈ (2⋆)i+1 and has a k-round, k polynomially bounded by |x|,
interaction with a similar prover function P such that

Completeness x ∈ L implies res(V,P)(x) = 1

Soundness x /∈ L implies res(V, P̃)(x) = 0 for any P̃

Note the universal quantifier in soundness: the verifier cannot be fooled by any
malicious prover P̃, no matter how powerful or devious.

Comment: It would also work to have a good prover for every Yes-instance,
rather than one universal good prover for all Yes-instances (though the uniform
prover seems a lot more natural).

Proof Systems 12

Again, this is really very similar to the problem of trying to construct proofs in
some nice formal systems (Hilbert’s doomed dream).

Given some assertion Φ,

if Φ is true, then there should be a proof of Φ in our system;

if Φ is false, then any attempt to cobble together a proof will fail.

In our setting, the proof for a true statement cannot be too complicated or
long, it must be easy to check for correctness by a polynomial verifier.

The attempt to prove a false statement may be enormously complicated (ask
any quack about squaring the circle), but in the end it will always be flawed. In
principle, it is easy to check a proof for correctness (true for formal proofs,
quite wrong for the usual informal arguments).

Arbitrary Compute Power? 13

One might feel somewhat uneasy about the idea that the prover can have
arbitrary power, can be omniscient. For examples, the prover might be able to
use the Halting set as an oracle.

True, but recall that the verifier has to work in polynomial time. As a
consequence, there is no way to

read exponentially long messages from the prover, and

it becomes easily impossible to verify alleged claims by the prover.

Still worried? In the end it turns out that only provers in PSPACE are
relevant. A polynomially stupid verifier ruins even the Halting oracle†.

†Against stupidity the gods themselves contend in vain.
F. von Schiller, The Maid of Orleans, 1801. Nothing has changed in 200 years.

Oracle Prover 14

Suppose the prover has access to the Halting Set, and we would like to exploit
this to define an interaction to answer hugely difficult questions about the Busy
Beaver function.

What is the parity of BB(n)?

Here goes: on input n, the protocol could look like so:

V: says hello
P: computes α = BB(n), sends a = α mod 2
V: asks for the corresponding busy beaver
P: sends back M
V: why is this the busy beaver?
P: you’ll never understand . . .

Total Failure 15

The verifier has life span O(logc n), so it cannot even read the transition table
for M.

Even if they could, there is no way to actually run the machine to completion.

Even if that worked, there is no way to ensure that M really is the busy beaver
for n.

The prover can cheat to his heart’s content.

Exercise
Convince yourself that there is no easy fix to this problem.
Then show that the closely related Halting problem is indeed not in dIP.

Lipstick an a Pig 16

Claim: k-round deterministic interactive proof systems produce exactly NP.

It is clear that NP can be expressed in terms of a dIP: all the verifier needs
from the prover is a witness.

V: a1 = f(x) = “howarya”
P: a2 = g(x, a1) where a2 is a witness for instance x, 0 otherwise.
V: Checks if a2 really is a witness, accepts/rejects accordingly.

Three rounds are plenty.

Opposite Direction 17

For the opposite direction, assume we have a dIP.

Case 1: x ∈ L.
Let (a1, . . . , ak) be the transcript of the interaction with the good prover P, as
per completeness. We think of the transcript as a witness that we can guess,
and we can verify in polynomial time that V(x, a1, . . . , a2i) = a2i+1.

Case 2: x /∈ L.
We can define a prover arbitrarily by P̃(x, a1, . . . , a2i+1) = a2i+2 where a2i+2
is some polynomial length string, say, “Imastablegenius”. By soundness, the
verifier must reject.

Probabilistic Verifiers 18

To get real mileage out of the idea of interaction, we need another ingredient:
randomness. We allow the prover and verifier to be probabilistic with
performance guarantees.

Completeness x ∈ L implies Pr[res(V,P)(x) = 1] ≥ 2/3

Soundness x /∈ L implies Pr[res(V, P̃)(x) = 1] ≤ 1/3 for all P̃

This class is called IP[k], k-round interactive proofs.
Set

IP =
⋃

IP[nc],

polynomial interactive proofs. So we allow the number of interactions to
depend on the size of the input.

So What? 19

We know NP ⊆ IP, but it is not so clear where in the complexity landscape IP
lives. For example, what is the relationship between IP and the polynomial
hierarchy?

In fact, one might be slightly pessimistic about this whole project:

If indeed P = BPP, then randomness does not help much.

Allowing for, say, quadratically many rounds may sound impressive, but
it’s not so clear how to exploit this ability. Many natural protocols have a
finite number of rounds.

As we will see, things work out just fine, but that was a bit of a surprise in the
1990s.

Amplifying Truth 20

As usual, the constants 2/3 and 1/3 in the definition of IP matter little, one
can apply the same boosting techniques used in BPP (Chernoff bounds).

One can even get the completeness bound 2/3 up to 1, but that is hard. By
contrast, lowering the soundness bound 1/3 to 0 pushes us into NP.

Exercise
Show how to replace the constants by 1 − 2−nd

and 2−nd

, respectively.

IP and Graph-Non-Isomorphism 21

Recall the old chestnut: given two ugraphs, determine whether they are
isomorphic. Here we want to use the negation.

Problem: Graph Non-Isomorphism (GNI)
Instance: Two ugraphs G1 and G2.
Question: Are G1 and G2 non-isomorphic?

The Graph Isomorphism problem is clearly in NP, and currently neither known
to be in P nor known to be NP-complete. On the other hand, GNI is in co-NP.

Lemma
Graph Non-Isomorphism is in IP.

Proof 22

Here is the protocol, presented informally:

V: Pick i ∈ {1, 2} uniformly at random.
Randomly vertex-permute Gi to produce H; send H to P.

P: Check which of G1 or G2 produced H, say, Gj ; send j to V.

V: Accept if i = j, reject otherwise.

This works as advertised: if the graphs are non-isomorphic, the honest prover
can search through all permutations and always produce the correct answer.
But if they are isomorphic, even the most powerful prover can only flip a coin.

Note that it is critical here that the prover does not know the random bit i.

Also note the shortness of the “proof”: P just sends a single bit.

IP and Quadratic Non-Residues 23

Recall from our discussion of Solovay-Strassen:

Z⋆m is the multiplicative subgroup of Zm. A modular number a ∈ Z⋆m is a
quadratic residue (mod m) if a = x2 (mod m) for some x, and a quadratic
non-residue otherwise.

In particular when m = p is an odd prime, there is an easy characterization of
the quadratic residues. Let g be a generator of Z⋆m = {1, 2, . . . ,m− 1}. Then
the residues are all the even powers of g (which is why we can compute the
Legendre symbol nicely by exponentiation):

g2, g4, . . . , gm−3, gm−1

For example, for m = 11 and g = 2 we get quadratic residues 4, 5, 9, 3, 1 with
“square roots” 2, 4, 3, 5, 1.

Protocol 24

To check whether a ∈ Z⋆p fails to be a quadratic residue, do the following:

V: Pick b ∈ 2 and r ∈ {1, 2, . . . , p− 1} uniformly at random.
If b = 0, send r2 (mod p), else send ar2 (mod p).

P: Try to determine b, send b′ accordingly.

V: Accept if b = b′, reject otherwise.

Correctness 25

Soundness Whenever a is a quadratic residue, both r2 (mod m) and ar2

(mod m) vary uniformly over all quadratic residues, so the prover
has no way of distinguishing between the two cases; essentially, it
can do no better than to flip a coin—huge compute power is of
no use.

Completeness On the other hand, if a is a non-residue, then r2 (mod m) and
ar2 (mod m) are two disjoint distributions and it is trivial for the
obvious honest prover to determine the actual b.

1 Interactive Proofs

2 IP ⊆ PSPACE

3 Warmup Exercise

4 ∗ PSPACE ⊆ IP

Connections 27

It is clear that IP contains NP and BPP.

Graph Non-Isomorphism provides an example of a problem in IP not known to
be in NP or BPP.

So the question still is: where in the classical complexity landscape does IP fit,
if at all? The surprising answer is this:

Theorem (Shamir, Lund-Fortnow-Karloff-Nisan 1990)
IP = PSPACE.

As it turns out, both directions require effort, and the second one is a bit of a
nightmare.

Handling Random Bits 28

There is a technical subtlety wrto the random bits used in the protocol. In our
model, the random bits of the verifier must be kept secret at all costs (the
random bits of the prover are less important).

One often indicates this by writing the verifier function with an additional
argument r representing a vector of random bits. The prover does not have
access to these bits:

V : a2i+1 = f(x, r, a1, a2, . . . , a2i)

This is referred to as the private coin model. There is also a public coin model
where the random bits are shared.

The Problem 29

We are supposed to show that IP ⊆ PSPACE.

Since the number of bits involved in the protocol is polynomially bounded, a
PSPACE machine can perform an explicit search over all possibilities, and
certainly check the verifier’s work.

But there is a glitch (a potentially fatal one): the prover may well be far
outside of PSPACE, just think about a universal Turing machine. Any direct
simulation is bound to fail.

A Workaround 30

Instead of attempting a direct simulation, we compute the maximum
probability with which a prover can persuade the verifier to accept.

Think of a tree that describes all possible sequences of messages ai sent during
execution of the protocol (partial transcripts). The tree has polynomial depth
and branching factor of at most 2O(nc).

We label the nodes in the tree by the appropriate probabilities, starting at the
leaves and working backwards to the root. If the value at the root is at least
2/3, we accept and reject otherwise.

While the tree itself cannot be built in PSPACE, the labeling algorithm can be
implemented in PSPACE.

Details 31

We need to take a closer look partial transcripts (a1, a2, . . . , ak) ∈ (2⋆)k.

To this end, let t = (a1, a2, . . . , aj). We are interested in extensions to a full
transcript such that for all i, 0 ≤ i < k:

ai+1 = f(x, r, a1, . . . , ai) i even

ai+1 = g(x, a1, . . . , ai) i odd

ak = Yes

Let’s say that a partial transcript t is extensible if there exists a full extension
t′ = t ⊕ (aj+1, . . . , ak) with these properties. Here ⊕ means join the two lists.
Note that t extensible ensures that t conforms to the protocol.

Acceptance Values 32

Next we define a rational number N(t), the acceptance value of t, for any
partial transcript t as follows.

Case |t| = k:
Then N(t) = 1 if t is consistent with some random string r and accepting; 0
otherwise.

Case |t| = i < k:

N(t) =

{
avrg(N(t ⊕ a) | a) if i even,

max
(
N(t ⊕ a) | a

)
if i odd.

The weighted average in the first case is supposed to be∑
a

Pr
r

[f(x, r, t) = a] ·N(t ⊕ a)

Quoi? 33

The purpose of this definition is the following.

First, we can verify that the whole computation of the N(t) is in polynomial
space (though presumably not polynomial time): the strings r and a are
polynomial bounded in length, so in polynomial space we can try them all and
simply count the good outcomes.

Second, the reason we care about N(t) is this: the probability that the verifier
accepts instance x is Pr[V accepts x] = max

(
Pr[(V,P) accepts x] | P

)
.

Proposition
N(nil) = Pr[V accepts x]

Step 34

We use (backwards) induction to show N(t) = Pr[V accepts x extending t].

The case |t| = k is by definition.

Suppose i = |t| < k is even.

In this case, the query a is sent from V to P. Then

N(t) =
∑
a

Pr
r

[f(x, r, t) = a] ·N(t ⊕ a)

=
∑
a

Pr
r

[f(x, r, t) = a] · Pr[V accepts x extending t ⊕ a]

= Pr[V accepts x extending t]

Step 35

If i is odd, the proof a is sent from P to V. Then

N(t) = max
(
N(t ⊕ a) | a

)
= max

(
Pr[V accepts x extending t ⊕ a] | a

)
= Pr[V accepts x extending t]

This proves the proposition. 2

It follows that IP ⊆ PSPACE.

1 Interactive Proofs

2 IP ⊆ PSPACE

3 Warmup Exercise

4 ∗ PSPACE ⊆ IP

The Opposite Direction 37

We still need to show that PSPACE ⊆ IP.

Alas, PSPACE is a rather huge class, we have polynomial space bounds but
the running time can be wildly exponential.

We are supposed to fit any such computation into a polynomial depth protocol,
with a polynomial amount of computation on the verifier’s side. It’s not at all
clear that this is possible. In fact, on the face of it, it sounds plain wrong.

Warmup 38

Rather than tackling PSPACE ⊆ IP directly, here is a little warmup exercise.

Consider #DSAT, the counting version of SAT, dressed up as a decision
problem:

#DSAT = {φ#k | φ has exactly k satisfying assignments }

Clearly, φ#k, φ#ℓ ∈ #DSAT implies k = ℓ, so we are just expressing a
function as a language. Also, φ fails to be satisfiable iff φ#0 ∈ #DSAT, so
this language is hard, at least co-NP-hard.

We would like a nice protocol to convince the verifier that a formula φ(x) has
some number k of satisfying assignments.

Arithmetization 39

As usual, identify true and false with {0, 1} ⊆ Z. Here is a way to translate
Boolean formulae into polynomials, thus opening the door to algebraic attack.

Definition
A multivariate polynomial p ∈ Z[x] with integer coefficients is called a Boolean
polynomial if p(2,2, . . . ,2) ⊆ 2.

Thus, p assumes only values 0 and 1 when the arguments are constrained to be
only 0 and 1. Hence p duly represents a Boolean function/formula.

In the literature and in computer algebra systems, a Boolean polynomial is
sometimes defined as a polynomial over Z2 (aka Zhegalkin polynomial). We
will stick with our definition.

Direct Conversion 40

Let x = (x1, . . . , xn). For α ∈ 2n, define the monomial

xα = z1z2 . . . zn zi =
{

xi if αi = 1
1 − xi otherwise.

Then any Boolean function f : 2n → 2 can be written as the Boolean
polynomial

Bf (x) =
∑
α∈2n

f(α) xα

a kind of disjunctive normal form (with mutually exclusive conjuncts).

The monomials are all flat in the sense that no variable has exponent higher
than 1, so the total degree of the polynomial is at most n. Alas, there are
potentially exponentially many terms.

Problem Solved . . . 41

Proposition
The number of satisfying assignments for f is

#{α | f(α) = 1 } = 2nBf (1/2, . . . , 1/2)

Right?

Wrong! Bf has size up O(n 2n) in the uniform model.

Conversion by Induction 42

Is there another way to construct a Boolean polynomial?

Think of f as being given by a Boolean formula φ. We can then exploit
induction on the buildup of the formula φ. This will produce an implicit
polynomial that can be much shorter than the one in direct conversion.

Bx = x

B¬φ = 1 − Bφ

Bφ∧ψ = Bφ · Bψ

Bφ∨ψ = 1 − (1 − Bφ) · (1 − Bψ) = Bφ + Bψ − Bφ · Bψ

We have written x⨿ y for the last “multiplication” operation (this will be
useful later). This operation is potentially dangerous, it roughly doubles the
size of the formula.

Example: Counting 43

Using recursion, the formula “exactly two out of” three variables produces

xy(1 − z) + x(1 − y)z + (1 − x)yz − (1 − x)x(1 − y)yz2−

xy(1 − z)(x(1 − y)z + (1 − x)yz − (1 − x)x(1 − y)yz2)

After expansion this looks like

xy + xz + yz − 3xyz − x2yz − xy2z + 2x2y2z − xyz2 + 2x2yz2 + 2xy2z2−

2x2y2z2 − x3y2z2 − x2y3z2 + x3y3z2 − x2y2z3 + x3y2z3 + x2y3z3 − x3y3z3

Note than, in a Boolean polynomial, we can replace xk, k ≥ 1, by x without
affecting the proper representation of a Boolean function. Smashing exponents
in this way and canceling we get

xy + xz + yz − 3xyz

The “Best” Boolean Polynomial 44

The last form is arguably the canonical one: short and flat.

B′
φ = xy + xz + yz − 3xyz

This polynomial is the same as the one obtained from direct conversion and
simplification. It, too, counts the number of satisfying truth assignments:

23 B′
φ(1/2, 1/2, 1/2) = 8

(
3/4 − 3/8

)
= 3

But the original Bφ does not, it produces the “count” 169/64.

Arithmetizing 3-CNF 45

Suppose we have a formula φ in 3-CNF. Let’s fix n to be the number of
variables and m the number of clauses:

φ = (x11 ∨ x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3)

Each conjunct turns into a degree-3 polynomial

Bx∨y∨z = x+ y + z − xy − xz − yz + xyz

so that, say,
Bx∨¬y∨z = 1 − y + xy + yz − xyz

A Small Polynomial 46

Using recursion, the whole formula turns into a product of m such terms:

Bφ =
∏(

zi1 + zi2 + zi3 − zi1zi2 − zi1zi3 − zi2zi3 + zi1zi2zi3
)

where the zij are of the form x or 1 − x.

This size of this polynomial in unexpanded form is linear in m, at least if we
use a uniform cost function (otherwise we pick up a logn factor).

Again, expanding this polynomial out would generally produce an exponential
size expression.

The reason the polynomial is small is that we only have to apply the dangerous
⨿ operation to formulae of constant size.

Smashing Polynomials 47

As already mentioned, in a Boolean polynomial, we can smash exponents to
obtain a canonical form.

For example we get

Bx∧¬x = x(1 − x) = x− x2 ⇝ 0

Bx∨¬x = 1 − x(1 − x) = 1 − x+ x2 ⇝ 1

More generally, we can “linearize” every monomial to the flat form

xd1
1 xd2

2 . . . xdn
n ⇝ xe1

1 x
e2
2 . . . xen

n

where ei = min(di, 1) ∈ 2.

The degree of these monomials is at most n, the number of variables.

Linearization Operator 48

If you are suspicious about purely syntactic rewrite operations, here is a more
algebraic way of doing the same thing.

Let p be a Boolean polynomial. Set

Rx p(x,y) = x p(1,y) + (1 − x) p(0,y)

So this is the polynomial analogue of the standard Boole-Shannon expansion
for Boolean formulae.

Clearly the x-degree of Rx p is at most 1, so Rx p is linear in x.

Exercise
Explain why this does not produce an efficient tautology testing algorithm.

Counting Assignments 49

Time to get serious. We want to show the following:

Lemma
#DSAT is in IP.

Intuitively, think about all possible truth assignments as branches in the
complete binary tree 2n.

For the leaves it is easy to check whether a branch satisfies φ.

For the internal nodes, we can count the number of satisfying truth assignments
that pass through that node by induction (backwards from the leaves).

The root will wind up with the count of satisfying truth assignments.

Proof 50

Suppose we have a Boolean formula φ(x) in 3-CNF, with n variables and m
clauses.

Write S(a1, . . . , aℓ) for the number of satisfying assignments extending
a1, . . . , aℓ ∈ 2ℓ:

S(a) = #
(

b ∈ 2n−ℓ | φ(a, b) = 1
)

So S : 2≤n → N and 0 ≤ S(a1, . . . , aℓ) ≤ 2n−ℓ.

Computing S 51

Clearly

S(a1, . . . , an) = Bφ(a1, . . . , an)

S(a1, . . . , aℓ) = S(a1, . . . , aℓ, 0) + S(a1, . . . , aℓ, 1)

S(nil) = number of satisfying truth assignments of φ

So S(a1, . . . , an) is easy to compute. On the other hand, S(nil) seems to
require exponential work.

This suggests to work our way backwards inductively from S(a1, . . . , an)
towards S(nil). Then we can simply check whether φ#k is a Yes-instance.

We need to express this backwards induction as a protocol.

Sumcheck Protocol, First Try 52

We have an instance x = φ#k.

1 P sends S(nil).
V checks k = S(nil), rejects otherwise.

2 P sends S(0) and S(1).
V checks S(nil) = S(0) + S(1), rejects otherwise.

3 P sends S(00), S(01), S(10), S(11)
V checks the respective sums.

ℓ P sends S(w) for w ∈ 2ℓ−1.
V checks additions, rejects if no good.

n+ 1 V checks all the S(w), w ∈ 2n, accepts/rejects accordingly.

Of course, the almighty prover has no problem computing the various S(w).

Alas, this scheme fails catastrophically . . .

Correctness 53

First the good news: our sumcheck protocol is correct.

If φ#k is a Yes-instance, then the honest prover that just faithfully carries out
all the calculations will convince the verifier.

So suppose φ#k is a No-instance, and P̃ is some malicious prover that tries to
talk the verifier into accepting.

Since k ̸= S(nil), the prover must lie in the first round and send S̃(nil).

But then the prover must lie again in the next round with S̃(0) and/or S̃(1).
And so on, there will be more and more lies, just like the GOP.
The gig will be up in round n+ 1.

Fiasco 54

This is a very pretty protocol, but it fails miserably: the prover is sending an
exponential amount of information, the verifier cannot even read all this stuff in
polynomial time, much less carry out the necessary test.

And there seems to be no easy fix: the verifier is entirely deterministic, so if we
could somehow make it polynomial time we would wind up in NP, a rather
unlikely proposition.

Time for some outside-of-the-box thinking. We’d like to maintain some sort of
sumcheck protocol, but without exponential blowup.

The Trick 55

Note that the verifier cannot compute the coefficient representation of the
polynomial, only the implicit, unexpanded product form.

When it comes to satisfiability, in our setting we more or less have to argue
about the roots of Boolean polynomials. That suggests to work in a field rather
than just the ring Z.

The sledgehammer approach would be to compute over C, where all our
polynomials factor into linear terms. Alas, this won’t work: C is not
computable, and certainly no polynomial time computable.

The Trick II 56

To make things computable, the fallback position is Q, the field of rational
numbers.

Alas, we also need to argue probabilistically, so using Q won’t work.

Clever Solution:
We work in a sufficiently large finite field F.

Note well: this change of domain will not affect the meaning of the sum, as
long as the finite field has sufficiently large characteristic.

Come Again 57

Since we only need a few integers, we can use algebra over a finite field rather
than the actual integers: the prime field Zp contains the integers
{0, 1, . . . , p− 1} where p is the characteristic of F. Even better: for sufficiently
small such integers, the arithmetic is the same as over Z. For example,
3 + 5 = 8 and 3 · 5 = 15 over F = Z31.

We will use a finite field F of size at least 2|φ| to make sure the arithmetic is
suitable. For simplicity, just think about Zp, p prime and large enough. We
won’t worry about how we can get our hands on such a prime, though you
might want to think about it.

The prover and the verifier agree on p, once and for all. From now on, all
arithmetic is in F = Zp.

Counting, Again 58

Let’s return to our satisfying assignment counting function S from above: for
a ∈ 2⋆ define

S(a) =
∑
b∈2⋆

S(a, b)

where |b| = n− |a| and the arithmetic is over F, and the same as over N for F
large enough.

So S(nil) is what we are after, but only S(a1, . . . , an) = Bφ(a1, . . . , an) is easy
to compute.

We need to exploit the prover to help with the backward induction, but bear in
mind that it can only send a polynomial amount of information, and everything
must be polynomially checkable.

This is where evaluation over F comes in handy.

Cheesy Example 59

Let

φ = x ∧ (y ∨ z)

so that

S(x, y, z) = x · (y ⨿ z)

= x(y + (1−z) − y(1−z))

= x− xz + xyz

By repeated Boole-Shannon expansion we get

S(x, y) = S(x, y, 0) + S(x, y, 1) = x+ xy

S(x) = S(x, 0) + S(x, 1) = 3x

S(nil) = S(0) + S(1) = 3

Sumcheck Protocol 60

On input φ#k, both prover and verifier compute Bφ (but the verifier cannot
expand the polynomial).

The prover computes a prime q > 2n+m and sends it to the verifier, who
checks that the number is indeed prime and large enough.

From now on, all the arithmetic takes place in F = Zq. In particular we use the
map S over F, S : F≤n → F .

The verifier sets v0 = k and the prover needs to establish the correctness of
this value.

Sumcheck Protocol II 61

Suppose in previous rounds the verifier has already chosen ℓ− 1 random
elements r = r1, r2, . . . , rℓ−1 of F.

Here is the key part of round ℓ: P now sends polynomials, rather than values.

P sends a univariate polynomial Pℓ(z) of degree at most m.

The honest prover will send the actual counting polynomial, but we have to
guard against a malicious prover trying to cheat.

Sumcheck Protocol III 62

V checks

vl−1 = Pℓ(0) + Pℓ(1) and
the degree condition.

V rejects if anything fails.

Then V throws out another challenge to the prover:

picks r = rℓ uniformly at random from F,
sends vℓ = Pℓ(r) and r to P.

Last round: V checks

vn = Bφ(r1, . . . , rn); accepts/rejects accordingly.

Correctness 63

If we have a Yes-instance, the honest prover uses the actual counting function.

Pℓ(z) =
∑

b

Bφ(r1, . . . , rℓ−1, z, b)

and the verifier accepts, always (no matter the random ri). This works since q
is large enough not to disturb the arithmetic.

Now consider a No-instance φ#k. A malicious prover could send a fake
polynomial P̃1 to justify the wrong value k. Then another fake polynomial P̃2
to justify P̃1, and so on.

Here is the critical fact: the verifier evaluates at random elements r ∈ F and we
are only dealing with polynomials of degree at most m. It is quite unlikely that
the fake polynomials will match the real one on random inputs.

More Precisely . . . 64

The likelihood that two such polynomials agree on r is at most

Pr[P (r) = P̃(r)] < m−2

for m ≥ 10.

The reason is that we operate over a field, so any degree d, univariate
polynomial has at most d roots, or is already identically zero. We’re good since
m/2m ≤ m−2 for m ≥ 10.

So to cheat in the first round, the malicious prover must probably cheat in all
other rounds: one can show that the prover will get lucky only with probability
at most nm/q, an exponentially small number by our choice of q.

1 Interactive Proofs

2 IP ⊆ PSPACE

3 Warmup Exercise

4 ∗ PSPACE ⊆ IP

Mental Health Warning 66

☠☠☠☠☠☠☠

Don’t worry about all the details in the following argument, just try to get an
idea of what the main strategy is.

☠☠☠☠☠☠☠

Are We Done? 67

Sadly, no: we have only handled satisfiability so far. To grab all of PSPACE
we need more.

It is tempting to extend the finite field trick from #DSAT to
QBF, the problem of testing validity of quantified Boolean for-
mulae (which is enough to capture all of PSPACE).

Alas, the construction is quite a bit more challenging.

Towards PSPACE ⊆ IP 68

After all, ∀ is just a glorified ∧, and similarly for ∃ and ∨.

More precisely, consider a QBF in prenex normal form, say

φ = ∃x1 ∀x2 . . .∃xm−1 ∀xm ψ(x)

Let S(x) = Bψ(x) be the arithmetization of the matrix (aka the quantifier-free
part) ψ of the formula, so for a ∈ 2m we have

S(a) =
{

1 if ψ(a) is true,
0 otherwise.

Recursion 69

Write Qi for a quantifier ∃ or ∀.

Let a = a1, . . . , ai, i ≤ m. We want a map S : F≤m → F such that

S(a) =
{

1 if Qi+1xi+1 . . . Qmxm ψ(a, xi+1, . . . , xm) is valid,
0 otherwise.

so that S(nil) determines validity of φ.

The prover needs to convince the verifier that S(nil) = 1, where all the
arithmetic takes place over F.

First Try 70

To get from S(a, b) to S(a) let Q be the corresponding quantifier and do this:

Q = ∀ S(a) = S(a, 0) · S(a, 1)

Q = ∃ S(a) = S(a, 0) ⨿ S(a, 1)

So this is just the usual translation into conjunctions and disjunctions.

Clearly, this backward recursion produces the right function S.

Trouble: Alas, when we are writing the right-hand-sides as polynomials, the
degrees increase (recall that last time we only had to deal with addition). In
fact, they might double at each step, leading to exponential degrees.

A Trick 71

We will get the degree of the polynomials under control by applying the
linearization reduction xk ⇝ x mentioned above. First, we insert copious
degree reduction/linearization operations everywhere.

Here Ri means: clean up all the variables x1, . . . , xi (by sequentially applying
linearization operators Rz).

∏x1
R1

∏
x2
R2 ∏x3

R3 . . .
∏

xm

Rm S(x)

Slight Rewrite 72

Note that the semantics for Rz is really a no-op for Boolean polynomials,
unlike the semantics of a quantifier, but that’s OK.

So now we can write the whole Boolean polynomial as

Q1y1 Q2y2 . . .Qℓyℓ S(x)

where ℓ = (m2 + 3m)/2 and Qi ∈ { ∏,∏, R} is one of our operators.

Protocol Outline 73

The protocol is based on the prover convincing the verifier that

vj = Qj+1yj+1 . . .Qℓyℓ Sj(x)

where the arithmetic is over F and Sj is some polynomial (Sm = S).

To this end, the verifier produces vj+1 and the prover has to establish

vj+1 = Qj+2yj+2 . . .Qℓyℓ Sj+1(x)

and so on and so forth.

In the end, the verifier should be convinced that v0 = 1.

The Rounds 74

There are three cases, depending on whether Q = ∏,∏, R. The first two are
entirely similar, we will only discuss Q = ∏.
The prover tries to convince the verifier that

vj = ∏xi

Ri
∏

xi+1
. . .

∏
xm

Rm S(r1, . . . , ri−1, xi, . . . , xm)

To this end, the prover sends a univariate polynomial p(z).
The verifier checks vj = ∏zp(z).
Then the verifier chooses ri at random in F and sets vj+1 = p(ri).

Next, the prover has to convince the verifier that

vj+1 = Ri
∏

xi+1
. . .

∏
xm

Rm S(r1, . . . , ri, xi+1, . . . , xm)

Reduction Rounds 75

This is the place where the prover has to convince the verifier that

vj = Rxi Qy . . .
∏

xm

Rx1 . . . Rxm S(r1, . . . , ri, xi+1, . . . , xm)

To this end, the prover again sends a univariate polynomial p(z).
The verifier checks vj = Rxip(xi)[ri].
Then the verifier chooses a new ri at random in F, sets vj+1 = p(ri) and
challenges the prover to establish

vj+1 = Qy . . .
∏

xm

Rx1 . . . Rxm S(r1, . . . , ri, xi+1, . . . , xm)

Aspirin, Anyone? 76

One can show that this protocol satisfies both the completeness and soundness
conditions.

All the operations are duly polynomial time.

	Interactive Proofs
	IPPSPACE
	Warmup Exercise
	* PSPACEIP

