
UCT

Descriptive Complexity

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Descriptive Complexity

2 Words as Structures

3 Existential SOL

Immerman’s Zoo 2

abstract computation

civilized computation

feasible computation

Where Are We? 3

We have covered all the major classes in Immerman’s little chart, from the
arithmetical hierarchy at the top all the way down to L and circuits.

What’s missing:

The descriptive classes in blue on the bottom left, and red further up.

The blue labels refer to first-order logic, and the red ones to second-order logic.

The Mess 4

There are lots and lots of plausible models of computation:

λ-calculus, Gödel-Herbrand equations, primitive recursive func-
tions, Turing machines (one-tape, k-tape, separate input/out-
put tape, oblivious, deterministic, nondeterministic, probabilis-
tic, alternating), finite state machines, pushdown automata, lin-
ear bounded automata, counter machines, random access ma-
chines, Kolmogorov-Uspenskii machines, pointer machines, cir-
cuits, straight line programs, branching programs, . . .

At the very least, this is all a bit confusing. More importantly, is there any real
substance to the results obtained by invoking all these models? Or are they all
more or less accidental?

Logic to the Rescue 5

One way to separate oneself from vexing definitional details of machine models
is to recast everything in terms of logic.

Big Idea:
Measure the complexity of a problem by the complexity of the
logic that is necessary to express it. In other words, write down a
careful description of your problem in a as weak a formal system
as you can manage, and declare the complexity of the problem
to be the complexity of that system.

This is in stark contrast to the standard approach where everything is coded up
in Dedekind-Peano arithmetic or Zermelo-Fraenkel set theory (typically using
first-order logic): these are both sledge hammers, very convenient and
powerful, but not subtle. Appropriate for recursion theory, real analysis,
differential equations and the like, but not so much for complexity theory.

What’s Logic? 6

A logic or logical system has the following parts:

a formal language (syntax)

a class of structures (semantics)

a formal notion of proof

effectiveness requirements

The effectiveness requirements depend a bit on the system in question,
minimally we would want that it is decidable whether a string is a formula.
Also, it should be decidable whether an object is a valid proof (this says
nothing about proof search).

At any rate, we are here not at all interested in proof theory.

Typical Examples 7

propositional logic

equational logic

first-order logic

second-order logic

These are all hugely important. Note, though, that higher-order logic tends to
drift off into set theory land: quantifying over sets and functions is a radical
step that provides a huge boost in power, but also introduces a host of
difficulties. Some would say that SOL is really set theory.

Nowadays, first-order logic is the general workhorse in math and TCS.

Gottlob Frege (1848-1925) 8

Both first- and higher-order logic were
introduced more or less by Frege in
1879.

Aside: Begriffsschrift 9

In 1879 Frege published his Begriffsschrift, which translates roughly as
“concept script.” Frege’s system essentially invented modern quantified logic
and he used it to try to formalize mathematics in his Grundgesetze (the
“fundamental laws”).

Unfortunately, Frege developed a two-dimensional notation system.

B

A

A ⇒ B

A ¬A

a A ∀ aA

This may seem harmless, but if one constructs larger formulae from these
primitives, things start to look quite ominous.

Horror Syntax 10

Q(y)
P (x, y)

Q(x)
b a Q(a)

P (b, a)
Q(b)

Q(y)
P (x, y)

a Q(a)
P (x, a)

His notation system helped greatly to sink his whole enterprise.
As did the fact that his system was found to be inconsistent by Russell (whose
response was to develop type theory).

Better Syntax: Propositional Logic 11

⊥, ⊤ constants false, true
p, q, r, . . . propositional variables
¬ not
∧ and, conjunction
∨ or, disjunction
⇒ conditional (implies)

Negation is unary, all the others a binary.

A “structure” here is just an assignment of truth values to variables, an
assignment or valuation

σ : Var → 2

Recall: Cook-Levin 12

We have seen that an accepting computation of a polynomial time Turing
machine M can be translated into a question of whether a certain Boolean
formula ΦM has a satisfying truth assignment.

The trick is to use lots and lots of Boolean variables to code up the whole
computation.

One might wonder whether a more expressive logic would produce other
interesting arguments along these lines: translate a machine into an
“equivalent” formula.

We’ll do this for finite state machines, and then again for Turing machines.

Too Awkward 13

The main problem with propositional logic is that our translation from Turing
machines is quite heavy-handed; in particular it has little to do with the way a
computation of a TM would be defined ordinarily, using intuition.

More promising seems a system like first-order logic which serves as the
standard workhorse in much of math and CS.

To wit, what is generally considered to be a “math proof” is an argument that
could be formalized in FOL given some reasonable background theory
(Dedekind-Peano, Zermelo-Fraenkel, von Neumann-Bernays-Gödel). Note the
hedge: what is published nowadays in a standard math journal is just a proof
sketch. And often just a sketch of a proof sketch. Or a sketch of a sketch of a
proof sketch.

First-Order Logic 14

We add the following ingredients to propositional logic:

quantifiers ∀ and ∃

variables and constants for elements of some domain

function symbols

relation symbols

These all have their intuitive meaning.

FO Structures 15

Definition
A (first-order) structure is a set together with a collection of functions and
relations on that set. The signature of a first-order structure is the list of arities
of its functions and relations.

In order to interpret a formula we need something like

A = ⟨A; f1, f2, . . . , R1, R2, . . .⟩

Here A is the carrier set of the structure. In addition, we have actual functions
fi : Ani → A and relations Ri ⊆ Ami that interpret that symbols in the
language (we’ll fudge notation)†.

A, fi and Ri all live in set theory la-la land, in general we have no
computational access to these objects. In the case when they are all
computable we have a computable FO structure.

†If you want to be really careful, write f for a function symbol, and fA for its interpretation
over the structure A

Example: Arithmetic 16

N = ⟨N; +, ∗, S, 0, <⟩

All of elementary arithmetic takes place in N, as does just about all of 15-151
and 15-251; not calculus, though—it requires substantially bigger guns (see
below on higher-order logic).

This structure is completely natural and everyone has a good, intuitive
understanding of what is going on in N—up to a point, that is.

The first serious attempts to axiomatize the natural numbers date back to the
1880s.
The standard description of N in terms of first-order logic is Dedekind-Peano
arithmetic. This involves in particular some sort of induction axioms,
undoubtedly your favorite pastime in discrete math.

Dedekind-Peano Axioms 17

successor

S(x) ̸= 0 S(x) = S(y) ⇒ x = y

addition

x + 0 = x x + S(y) = S(x + y)

multiplication

x · 0 = 0 x · S(y) = (x · y) + x

order

¬(x < 0) x < S(y) ⇔ x = y ∨ x < y

Addition and multiplication are defined by recursion using successor as a more
primitive concept.

Induction 18

Arithmetic operations alone are not enough, we are missing one essential
feature of the natural numbers: induction. To capture induction we add the
Induction Axiom:

φ(0) ∧ ∀ x
(
φ(x) ⇒ φ(S(x))

)
⇒ ∀ x φ(x)

Strictly speaking, this is not an axiom but an axiom schema: we get one axiom
for each choice of φ.

One might feel that these axioms completely pin down N, but that is far from
true: there are weird models that look different from N, so-called non-standard
models. On the plus side, N is the only computable model.

Truth (over a Structure) 19

As Alfred Tarski realized, one can give a fairly simple definition of what it
means that a formula is true over a structure (using induction on the formula):

A |= φ

We won’t go through the details, it’s all quite natural. For example, a universal
quantifier is handled like so:

A |= ∀ x φ(x) ⇐⇒ for all a ∈ A : A |= φ(a)

So when someone claims that some number theoretic assertion φ is true, that
simply means that

N |= φ

TMs and FOL 20

In his famous 1936 paper, Turing showed that first-order logic is undecidable by
constructing a computable function f such that

f : Turing machines −→ FOL sentences

with the property that

M fails to halt ⇐⇒ f(M) has a model

To this end one can express an infinite chessboard in FOL, and then use the
board to represent computations of the Turing machine much in the way we
saw in the tiling problem.

The intended model here is the set of squares of the board; they are labeled by
state/head information as usual. A little care is required to make sure no
unintended model can ruin the construction.

1 Descriptive Complexity

2 Words as Structures

3 Existential SOL

Problems and Languages 22

Recall our basic method to express decision problems: we think of the
Yes-instances as a language L ⊆ 2⋆.

This approach has the great advantage that we can directly apply Turing
machines to solving decision problems, so that the time/space/whatever
complexity of the machine can be used to measure the complexity of the
decision problem.

It’s also slightly weird since it produces some junk theorems†: NP is closed
under Kleene star. Who really cares about the Kleene star of a language of
Yes-instances?

At any rate, we want to use logic rather than Turing machines. The question
is: what sort of logic is appropriate to describe a language?

†These are really irrelevant, but very suitable to torturing students.

Words as Structures 23

Wild Idea: Can we think of a single word as a structure?

And then concoct some sort of logic to describe the properties of the word,
viewed as a structure?

This may seem a bit weird, but bear with me. First, we need to fix an
appropriate language for our logic.

As always, we want at least propositional logic: logical connectives “not,”
“and,” “or,” and so forth.

Variables and Atomic Formulae 24

We will have variables x, y, z, . . . that range over positions in a word, integers
in the range 1 through n where n is the length of the word.

We allow the following basic predicates between variables:

x < y x = y

Of course, we can get, say, x ≥ y by Boolean operations.

Most importantly, we write

a(x)

for “there is a letter a in position x.”

First-Order 25

We allow quantification for position variables.

∃ x φ ∀ x φ

For example, the formula

∃ x, y (x < y ∧ a(x) ∧ b(y))

intuitively means “somewhere there is an a and somewhere, to the right of it,
there is a b.”

The formula
∀ x, y (a(x) ∧ b(y) ⇒ x < y)

intuitively means “all the as come before all the bs.”

Semantics 26

We need some notion of truth, “formula φ holds over word w” or “word w is a
model for formula φ”

w |= φ

where w is a word and φ a sentence in MSO[<].

We won’t give a formal definition, but the basic idea is simple: Let |w| = n:

the variables range over [n] = {1, 2, . . . , n},

x < y means: position x is to the left of position y ,

x = y: well . . . ,

for the a(x) predicate we let

a(x) ⇐⇒ wx = a

Examples 27

aaacbbb |= ∀ x
(
a(x) ∨ b(x) ∨ c(x)

)
aaaabbb |= ∃ x, y

(
x < y ∧ a(x) ∧ b(y)

)
bbbaaaa ̸|= ∃ x, y

(
x < y ∧ a(x) ∧ b(y)

)
aaaabbb |= ∃ x, y

(
x < y ∧ ¬∃ z (x < z ∧ z < y) ∧ a(x) ∧ b(y)

)
aaacbbb ̸|= ∃ x, y

(
x < y ∧ ¬∃ z (x < z ∧ z < y) ∧ a(x) ∧ b(y)

)
aaacbbb |= ∃ x

(
c(x) ⇒ ∀ y (x < y ⇒ b(y))

)
aaaaaa |= ∃ x

(
c(x) ⇒ ∀ y (x < y ⇒ b(y))

)

The Language of a Sentence 28

Very good, but recall that we are not really interested in single words, we want
languages, sets of words. No problem, for any sentence φ, we can consider the
collection of all words that satisfy φ:

L(φ) = { w ∈ Σ⋆ | w |= φ }.

So our key idea is that the “complexity” of L(φ) is just the complexity of the
formula φ.

The hope is that the right logic, and perhaps constraints of the type of formula
used, will produce interesting collections of languages, i.e., complexity classes.

More 29

Example
We can obtain scattered subwords:

φ ≡ ∃ x, y, z
(
x < y ∧ y < z ∧ a(x) ∧ b(y) ∧ c(z)

)
Then w |= φ iff w ∈ Σ⋆aΣ⋆bΣ⋆cΣ⋆.

You might feel that this is a complicated formula for a fairly simple concept,
but note that the analogous formula φu for an arbitrary scattered subword u
has length |u| and is trivial to construct.

The Machine 30

0 1 2 3
a b c

Σ Σ Σ Σ

The natural (nondeterministic) automaton is quite similar to the formula.

Looks Regular 31

If one experiments a bit more, one cannot fail to notice that the languages
L(φ) appear to be regular.

If you are the kind of person that jumps to conclusion you might suspect that
we get exactly the regular languages from our little logic.

Here is the first serious challenge to this conjecture, the double-parity language

Le,e = { x ∈ {a, b}⋆ | #ax, #bx even }

This language has a trivial 4-state DFA, but building a corresponding formula
φ seems rather difficult.

Even/Even 32

4 3

1 2

a

a

a

a

b

b

b

b
φ = ??????

Monadic Second-Order Logic (MSOL) 33

This and other examples lead one to suspect that first-order logic is a bit too
weak to produce all regular languages.
In logic, if FOL does not work, one turns to second-order logic. In our case, it
turns out we need only a weak subsystem where second-order quantification is
restricted to just sets of individuals. By contrast, we cannot quantify over, say,
binary relations or functions.

Notation:

∃ X ∀ X

z ∈ X X(z)

Example: Reachability 34

Lastly, consider a digraph, a single binary edge relation E.
We can express the assertion that there is a path from s to t as follows:

∀ X
(
X(s) ∧ ∀ u, v (X(u) ∧ u � v ⇒ X(v)) ⇒ X(t)

)

Again, FOL is not strong enough to express path existence in general (and thus
other concepts like connectivity).

Example: Well-Order 35

Again assume a total order ≤. We can express the assertion that we have a
well-order in terms of the least-element principle: every non-empty set has a
least element.

∀ X
(
∃ z X(z) ⇒

∃ u (X(u) ∧ ∀ z (X(z) ⇒ u ≤ z)
)

This is the critical property of the natural numbers with the standard order,
and cannot be expressed in FOL.

Example: Least Upper Bounds 36

Let’s ignore words for a moment, and just try to get an idea what kinds of
concepts one can express in MSO.

Assuming a total order ≤, we can express the assertion that every bounded set
has a least upper bound:

∀ X
(
∃ z X(z) ∧ ∃ u ∀ z (X(z) ⇒ z ≤ u) ⇒

∃ u (∀ z (X(z) ⇒ z ≤ u) ∧ ∀ y (∀ z (X(z) ⇒ z ≤ y) ⇒ u ≤ y))
)

This is the critical property of the standard order on the reals, and cannot be
expressed in FOL.

MSO for Words 37

We allow second-order variables X, Y , Z, . . . that range over sets of positions
in a word.

∃ X φ ∀ X φ

Again: sets of positions are all there is; we do not have variables in our
language for, say, binary relations on positions (we do not use full SOL).

This system is called monadic second-order logic (with less-than), written
MSO[<].

Less-Than or Successor 38

Often one would like to talk about the “next position” x+1 in a word.

We have seen how to express this using a FO quantifier:

y = x + 1 ⇐⇒ x < y ∧ ∀ z (x < z ⇒ y ≤ z)

On the other hand, write closed(X) for the formula ∀ z (X(z) ⇒ X(z + 1)).
Then

x < y ⇐⇒ x ̸= y ∧ ∀ X (X(x) ∧ closed(X) ⇒ X(y))

So x+1 and x < y have the exact same expressiveness (though x < y is slightly
more useful than x+1). This is sometimes written as MSO[<] = MSO[+1].

Even/Even 39

Example
Write even(X) to mean that X has even cardinality and consider

φ ≡ ∃ X
(
∀ x (a(x) ⇐⇒ X(x)) ∧ even(X)

)
Then w |= φ iff the number of as in w is even.

We’re cheating, of course; we need to show that the predicate even(X) is
definable in our setting. This is tedious but not really hard:

even(X) ⇐⇒ ∃ Y, Z (X = Y ∪ Z ∧ ∅ = Y ∩ Z ∧ alt(Y, Z))

Here alt(Y, Z) is supposed to express that the elements of Y and Z strictly
alternate as in

y1 < z1 < y2 < z2 < . . . < yk < zk

Missing Pieces 40

X = Y ∪ Z ⇐⇒ ∀ u (X(u) ⇔ Y (u) ∨ Z(u))

∅ = Y ∩ Z ⇐⇒ ¬∃ u (Y (u) ∧ Z(u))

alt(Y, Z) ⇐⇒ ∃ y ∈ Y ∀ x < y (¬Z(x)) ∧

∃ z ∈ Z ∀ x > z (¬Y (x)) ∧

∀ y ∈ Y ∃ z ∈ Z (y < z ∧ ∀ x (y < x < z ⇒ ¬Y (x) ∧ ¬Z(x)))

∀ z ∈ Z ∃ y ∈ Y (y < z ∧ ∀ x (y < x < z ⇒ ¬Y (x) ∧ ¬Z(x)))

Exercise
The alt formula does not handle the case where Y and Z are empty; fix this.
Show that one can check if the number of as is a multiple of k, for any fixed k.

The Link 41

Definition
A language L is MSO[<] definable (or simply MSO[<]) if there is some
sentence φ such that

L = L(φ) = { w ∈ Σ⋆ | w |= φ }.

Our examples suggest the following theorem that connects complexity with
definability:

Theorem (Buechi/Elgot/Trakhtenbrot 1960/1961/1961)
A language is regular if, and only if, it is MSO[<] definable.

Proof Sketch 42

Part (2) is by straightforward induction on φ, but there is the usual technical
twist: we need to deal not just with sentences but also with free variables.
Since we don’t have a formal semantics we will not give details of this
construction.

For the other direction, suppose we have a DFA A that recognizes L. Think of
the states Q of A as colors, and use the formula to color the letters of some
input word w ∈ Σ⋆ according to the transition function of the machine. For
example, if w = . . . ab . . . and a is colored p, then b must be colored green.

Colors come down to a partition of [|w|] and can be handled by an existential
second-order formula.

Then A accepts iff there is a coloring starting with the initial color and ending
in a final color.

And First-Order? 43

Inquisitive minds will want to know what happened to plain first-order logic? It
must correspond to some subset of regular, but is there any meaningful
characterization of the languages definable by FO formulae?

A language L ⊆ Σ⋆ is star-free iff it can be generated from ∅ and the
singletons {a}, a ∈ Σ, using only operations union, concatenation and
complement (but not Kleene star).

Note well: a⋆b⋆a⋆ is star-free.

Theorem
A language L ⊆ Σ⋆ is FOL[<] definable if, and only if, L is star-free.

1 Descriptive Complexity

2 Words as Structures

3 Existential SOL

Back to Complexity 45

Regular and star-free languages are nice, but nowhere near where we want to
be in complexity theory. How do we get an alternative description of a
complexity class like NP?

We need a stronger logic to get up there. Our goal is to establish the following
result.

Theorem (Fagin 1974)
The complexity class NP corresponds to existential second-order logic.

Quoi? 46

We will write existential SOL as ∃SO.

∃SO means we are considering formulae of the kind

∃ X1, X2, . . . , Xk Φ

where Φ is first-order: there are no second-order quantifiers other than the
existential ones up front.

But now the Xi need not be monadic, in particular we will be allowed to
quantify over k-ary relations: ∃ X ⊆ Ak . . . for any k ≥ 1.

We really should write something like X(k), but we won’t bother.

∃SO over Arbitrary Structures 47

So far, we have focused on word structures, we now need to handle more
general structures. It is enough to deal with relational structures where there
are no function symbols:

A = ⟨A; R1, R2, . . .⟩

This works since we can express functions as relations.

F (x, y) ⇐⇒ f(x) = y

and actually makes things easier from a conceptual perspective: f(g(x)) = y
translates into the more transparent ∃ z

(
G(x, z) ∧ F (z, y)

)
.

At any rate, validity for relational structures has the same complexity as for
general ones with function symbols.

Example: 3-Colorability 48

To model digraphs, we just need one binary predicate E for edges. We can
then express 3-Colorability as a ∃SO formula as follows:

∃ X, Y, Z
(
∀ u (X(u) ∨ Y (u) ∨ Z(u)) ∧ ∀ u, v (E(u, v) ⇒

¬(X(u) ∧ X(v)) ∧ ¬(Y (u) ∧ Y (v)) ∧ ¬(Z(u) ∧ Z(v)))
)

So this is really just the standard definition of 3-colorability, spelled out in
formal notation.

With minor effort, we can concoct similar descriptions for all our NP problems.

Hence it is NP-hard to determine the validity of a ∃SO formula.

And Backwards? 49

Theorem
Validity of an existential second-order formula is in NP.

Suppose we have a formula

Ψ = ∃ X1, X2, . . . , Xk Φ
(
X1, . . . , Xk

)
where Φ is first-order, but may very well contain first-order quantifiers. So we
should first worry about first-order formulae that have relational constants
(which come from instantiating the existential quantifiers in Ψ).

First-Order Validity 50

Lemma
Validity of a first-order sentence can be determined in logarithmic space.

Proof.
Let us write

Φ = ∃ x1 ∀ x2 . . . Qℓ xℓ ϕ(x)

Set n = |A|, so elements of the carrier set can be represented in log n bits.

If ℓ = 0 we only have to deal with atomic formulae and logical connectives in
ϕ. This can clearly be handled by a log-space machine by repeated table
lookup of the relations involved.

By induction, we may assume we can handle ℓ − 1 quantifiers. Assume the next
quantifier is existential (it really makes no difference). Then we can add a loop
that tries to find a suitable witness for x1, using the machine that handles the
remainder of the formula. This produces another log-space machine.

2

Proof Theorem 51

Let’s return to the second-order formula Ψ . For the sake of simplicity, let us
only consider one second-order variable X of arity 2, X ⊆ A × A. We can
represent X by a bitvector B of length n2.

A nondeterministic TM can guess these bits in polynomial time. Once we have
B ∈ 2n×n, we need to verify that Φ(B) actually holds.

As we have just seen, this can be handled in deterministic logarithmic space.
Done.

2

So testing a ∃SO formula for validity over some structure is in NP.

NP-Hardness of ∃SO 52

This already follows from 3-Colorability mentioned above. However, it is
instructive to concoct a direct proof. Suppose M is some deterministic
polynomial time verifier. We want to express the computation of M on some
instance x, given a witness w.

For simplicity assume that the running time of M on an input of size n is
N = nk − 1: this allows us to think of both time and space as being written in
k-digit base n numbers.

We can write a configuration in a computation as a word in

Γ ⋆ (Q × Γ) Γ ⋆

of length N where Γ is the tape alphabet of M and Q the state set. So the
whole computation of M is a N × N table of letters in Γ , augmented in one
place per row by a state (remember tiling?).

The Computation 53

In an accepting computation, the first and the last row look like
q0 w1 . . . wm # x1 . . . xn . . .

qY . . .

Here x is the actual instance, and w the corresponding witness.

Since we are dealing with existential sentences, the witness part comes for free:
given input x, we can always write something like

∃ W Φ(W, x, . . .)

So we can safely pretend that w is part of the input.

Déjà Vu All Over Again 54

q0 0 1 0 # a b c d

p
0 1 0 # a b c d

0 p
1 0 # a b c d

0 1 p
0 # a b c d

0 1 0 p
a b c d

0 1 0 # q
a b c d

0 1 0 q′

a b c d

A typical initial segment of a computation of M.
Again, this is very similar to the tiling problem.

Coding a Computation 55

Write C for the computation of M, the tableaux we just constructed. Recall
that time will be expressed as a k-tuple t = t0, t1, . . . , tk−1 of elements in the
carrier set {0, 1, . . . , n − 1}; ditto for space.

Let γ = |Q × Γ ∪ Γ | the number of possible symbols in C.

We use 2k-ary predicates Xa, 1 ≤ a ≤ γ, with the intent that

Xa(s, t) ⇐⇒ C(s, t) = a

We have for example

∀ s, t ∃ a Xg(s, t) ∧ ∀ s, t, a, b
(
Xa(s, t) ∧ Xb(s, t) ⇒ a = b

)

Row to Row 56

We need to make sure that the entries in the table change only according to
the rules of the Turing machine: for the most part, row k is copied to row
k + 1, but close to the position of the Γ × Q symbol there may be changes.

In essence, we need express the transition function of M as a formula. For
example, let g = p/a ∈ Q × Γ and suppose δ(p, a) = (q, b, +1). Letting
g′ = q/c we can pin down this transition by the formula

∀ s, t
(
Xg(s, t) ∧ Xc(s+1, t) ⇒ Xb(s, t+1) ∧ Xg′ (s+1, t+1)

)
Here s + 1 is supposed to be the string representing the successor of the value
of s.

Transitions δ(p, a) = (q, b, −1) are analogous.

Whole Formula 57

In the end, the formula will look somewhat like

∃ W, X1, . . . , Xγ ∃ u ∀ v . . . Φ(W, X1, . . . , Xγ , u, v, . . .)

and this formula will be valid iff the verifier M accepts x together with some
suitable witness w.

The formula is messy, but it is easy to construct given M and x in polynomial
time.

Hence we can translate any problem in NP into a corresponding ∃SO formula.
2

Nil Novis 58

Ages ago, in the proof of the Cook-Levin theorem, we showed how to translate
computations of a Turing machine into a formula of propositional logic. The
formula is rather big and somewhat clumsy, simply because our target logic is
very limited.

Here we translate into second-order logic, a much richer and more expressive
language. As a consequence, the translation is much more natural, we are
really just rewriting the definition of a computation in a slightly more formal
way than the customary standard.

Where Are We? 59

The Büchi/Elgot theorem establishes a connection between regular languages
(aka constant space) and MSO[<].

As we have just seen, Fagin’s theorem shows that NP corresponds exactly to
existential SOL.

To establish Fagin’s result, we used existential witnesses:

x ∈ L ⇐⇒ ∃ X M(X, x) ↓

This is very similar to restricting quantified Boolean formulae to just Σ1, which
is just another way of describing satisfiability.

One might suspect that we can push much further . . .

Polynomial Hierarchy 60

By allowing more quantifiers as in

x ∈ L ⇐⇒ ∃ X1 ∀ X2 ∃ X3 . . . M(X, x) ↓

we can naturally climb up the polynomial hierarchy. Recall, though, that we do
not know whether PH is a proper hierarchy, it might collapse at some level
(and, in fact, right at the bottom).

But this much we do know:

PH corresponds to SOL.

PSPACE corresponds to SOL plus a transitive closure operator.

	Descriptive Complexity
	Words as Structures
	Existential SOL

