
UCT

Circuits

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Parallelism and Non-Uniformity

2 Small Circuits

3 NC and AC

4 Branching Programs

Recall: Finite Problems 2

Any decision problem with finitely many instances is automatically decidable,
albeit for entirely the wrong reasons.

To wit, we can hardwire the answers. Sort the instances in length-lex order

x1 x2 x3 . . . xn−1 xn
b1 b2 b3 . . . bn−1 bn

Here bi is a bit that encodes the answer.

The problem is that the correct bit-vector b1, b2, . . . , bn exists, basta.

Alas, we may not know what it is. We know a decision algorithm exists, but we
may not be able to produce it.

Algorithms versus Constructivism 3

Think about SAT and all formulae up to a fixed size N , say, N = 1012. The
corresponding table exists in set theory la-la land, but that is almost
meaningless:

The table would be gigantic and utterly impossible to implement.

Even if we could somehow store all this information, we don’t know how
to determine the table entries in the first place.

Question: Is there are way to rule out such lookup tables?

Kolmogorov-Chaitin Complexity 4

One interesting answer is to define the complexity of finite strings in terms of
minimal programs that generate the string.

So we would insist that b = b1, . . . , bn has small Kolmogorov-Chaitin
complexity in order be acceptable as a lookup table.

Kolmogorov-Chaitin complexity has lots of interesting properties and has
attracted an enormous amount of attention in the last half-century. But it has
one annoying feature: everything is highly uncomputable. There seems to be
no conceivable link to practical computation.

Here is a different approach that is better aligned with actual computation.

Fixed Input Size 5

The idea that one should consider an “algorithm” that applies only to fixed size
inputs is antithetical to our standard Turing machine approach, or equivalent
attempts based on programs. In fact, it is always a central requirement that
these devices work on all inputs.

But the hardware of all of our
digital computers is based on
working on a fixed number of
bits.

Circuits 6

This naturally leads to the idea of a (digital) circuit: a device with a fixed
number of inputs that generates some output by performing a simple sequence
of elementary (algebraic or logical) operations on the given data.

Thus, there is an evaluation map eval so that eval(C)(x) is the result of
performing these operations on circuit C and input x. Different possible
domains come to mind, but for us the most important case is Boolean: we are
manipulating single bits.

As we will see from the formal definition, eval for Boolean circuits is clearly
linear time and, more importantly, can be handled in parallel.

Circuits, Defined 7

Write Cn for the collection of n-input circuits over D defined formally as
follows: we have an acyclic digraph G such that

G has n nodes of in-degree 0, called sources (also inputs).

G has one node of out-degree 0, called terminal (also output, sink).

The non-source nodes ν of G are called gates, and are labeled by func-
tions Dindeg(ν) → D.

Alternatively, we may allow for multiple outputs.

Note that given values for the inputs, we can propagate them to the output
layer by layer (so the depth of the circuit will be important).

Fan-In/Fan-Out 8

One often speaks about fan-in and fan-out instead of in-degree and out-degree,
and one may refer to the edges as wires.

Unless the depth of the circuit is critical, fan-in 2 is essentially the same as
bounded fan-in: we can build a little log k depth tree of in-degree 2 gates to
simulate a in-degree k.

The same holds for fan-out.

Note that high values of fin-in/out make no sense for realizations in terms of
digital circuitry: there are only so many wires one can attach to some
presumably small gizmo.

Evaluation 9

Again, evaluation is straightforward: we traverse the digraph from the sources
to the terminal, propagating the values upward. Given a reasonable
representation of the circuit, and constant time functions at the gates, the
whole evaluation is easily linear in the size of the circuit.

Hence, every n-input circuit C ∈ Cn over D defines a function

Fc : Dn → D FC(x) = eval(C)(x)

We are mostly interested in Boolean circuits where D = 2 and the fan-in is at
most 2, so we have linear time evaluation.

Measuring Circuits 10

There are two essential parameters describing a circuit:

Size The total number of nodes in the circuit.

Depth The depth of the associated digraph (longest path).

So we are interested in circuits in some subclass Cn(s(n), d(n)).

In particular, we would like to understand small, shallow circuits: say,
polynomial size and logarithmic depth: Cn(poly, log).

Parallelism 11

One central reason for the importance of circuits is that they can be evaluated
in parallel: we traverse the circuit layer by layer, starting at the sources going
up to the root. Each gate is associated with it’s own processor and can
evaluate independently of all the others.

For example, a circuit in Cn(poly, log) would admit a logarithmic time
evaluation if we can assign enough processors to the gates.

Of course, we need sufficiently man processors to do this. More precisely, we
need the number of gates at each level to be reasonably small (really a red
herring, there are only logarithmically many levels).

Things also get tricky with large fan-outs (inter-processor communication is the
bane of parallel computation).

Squaring Circuit 12

∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧

x1,1 x1,2 x2,1 x2,2

This 4-terminal circuit in C4 computes the square of a Boolean matrix
(x11 x12
x21 x22) ∈ 2 × 2.

Check 13

Boolean matrix A =
(

x11 x12
x21 x22

)
produces

A ·A =
(

x11 + x12x21 x11x12 + x12x22
x11x21 + x21x22 x12x21 + x22

)

In the circuit, the leftmost terminal corresponds to x11 + x12x21.

Transitive Closure Circuit 14

∨ I I ∨

∧

x1,1 x1,2 x2,1 x2,2

Similarly, this one computes the transitive closure.

Exercise
Figure out what a transitive closure circuit would look like for an n× n matrix.
For simplicity assume n = 2k.

And Boolean Formulae? 15

Is there any difference between a Boolean formula and a Boolean circuit?

It depends on the degrees:

Standard Boolean operations like conjunction and disjunction have two
arguments (though they naturally generalize), so that corresponds to fan-
in at most 2.

For fan-out higher than 1 we need to duplicate subexpressions in order to
translate a circuit into a formula.

So circuits are a strict generalization.

Circuit SAT 16

Correspondingly, we should expect circuit SAT (CSAT), the decision problem
analogous to SAT, to be NP-complete:

Problem: Circuit SAT (CSAT)
Instance: A Boolean circuit C.
Question: Is C satisfiable?

Theorem
CSAT is NP-complete.

For hardness, we transform a Boolean formula from SAT into a corresponding
circuit. Note that the circuit could actually be a bit smaller thanks to
subexpression sharing.

Circuit Size 17

Since there are 22n

Boolean functions of n arguments, one should not expect
corresponding circuits to be small, at least not most of the time.

Theorem (Shannon 1949)
Most Boolean functions of n arguments require circuits of size (1 − ε) 2n/n for
all positive ε.

Similarly, for Boolean formulae, we get a size of (1 − ε) 2n/ logn.

Of course, interesting functions like parity, majority, counting and so on may
well have much smaller circuits.

Circuits and Languages 18

In order to use circuits to recognize a language L over 2 we need one circuit
Cn with n inputs for each n ∈ N:

∀n∃Cn ∈ Cn
(
Cn recognizes L ∩ 2n

)
We can then define the language of this family of circuits as the set of words
x ∈ 2⋆ such that C|x| on input x evaluates to true.

Theorem (Quadratic Circuits)
Let t be reasonable, t(n) ≥ n.
Then L ∈ TIME(t) has a circuit family of size O(t2) and depth O(t).

Proof Sketch 19

The key idea here is not new: we can represent a computation of a Turing
machine running in time N = t(n) by a tableau, a grid of size N ×N (this
approach was used e.g. in the old tiling problem). As usual, row i represents
the configuration at time i ≤ N , in the standard Σ⋆QΣ⋆ format.

Acceptance can be expressed in terms of having reached the appropriate state
at time N and we may safely assume that the head has returned to its original
position (configuration qyw).

Moving towards Boolean circuits, let k = max(log|Q|, log|Σ|). We represent
each symbol by a block of k + 1 bits, say, 0a for tape symbols and 1s for
states. So there will be exactly one block in each row where the indicator bit is
1, the state block.

Tableau to Circuit 20

Unless a block is adjacent to or the state block, the bits do not change from
row i to i+ 1. The bits in the state block and the two adjacent blocks are
updated according to the transition function of the Turing machine.

For example, if the transition involves moving the head to the right this may
look locally like

. . . 0a 1s 0b 0c . . .

. . . 0a 0b′ 1s′ 0c . . .

Clearly this can be handled by a Boolean circuit.
2

Exercise
Figure out the details.

Dire Warning 21

Consider an arbitrary language L ⊆ 2⋆. Clearly, for each n, there is a circuit
CLn that recognizes the finite language L ∩ 2n. For example, think of the latter
as a Boolean function, and express it as the standard DNF formula (depth 2
plus negation with unbounded fan-in).

But that means that L is recognized by the potentially exponential size circuit
family (CLn | n ≥ 0).

This works even if L is highly undecidable (say, arithmetic truth).

Also, there are uncountably many circuit families.

This may seem like a bridge too far. As we will see, it is actually a useful
concept.

Killing Monsters 22

How do we pare things back to a more practical notion?

Size: Insist on small circuit size.

Computability: Insist that Cn is computable from n.

Because of the computability constraint there are only countably many such
circuits. And, any such computable family represents an actual decision
algorithm.

Uniform Circuits 23

This is another example of turning an existential quantifier “there is a circuit
Cn such that” into something more constructive: we want the circuit Cn to be
computable from n. For example, for the quadratic size circuit theorem, we can
construct the circuit directly from the Turing machine.

This leads to the critical distinction between uniform versus non-uniform
families of circuits.

Uniform: There is a Turing machine that, on input n, constructs the
corresponding circuit Cn.

Non-Uniform: Each circuit exists (whatever that may mean; e.g., we could
prove existence in ZFC), but we may not know how to con-
struct them.

Simple Circuits 24

One might suspect that uniform circuits generated by simple Turing machines
cannot do much.

A circuit family (Cn) is P-uniform if there is a polynomial time Turing
machine M such that M(0n) = Cn.

A circuit family (Cn) is logspace-uniform if there is an implicitly logspace
computable function f such that f(0n) = Cn.

Implicitly log space computable means that x, i 7→ bit(f(x), i) is log space
computable (just a single bit, not all of f(x)).

Circuit Description 25

For the sake of clarity, here is one possible way to pin down a reasonable
description of a circuit family. We think of Cn as a labeled digraph (labels are
Boolean operations) with vertex set [m], m = s(n) = O(nc). The first n nodes
are input, the last node is output.

For each n, we need to be able to compute

the type of each gate (vertex in the digraph)
the edges of the digraph (some bit in the adjacency matrix)

The number of bits needed to represent a vertex is logm = O(logn).

Nil Novis 26

Theorem
P-uniform circuit families recognize exactly P.

Sketch of proof.
For each instance x, n = |x|, we run the circuit machine M on 0n to get Cn.
Feed x to the circuit and return the result.

For L ∈ P, let M be a polynomial time TM recognizing L. For given n, we can
construct a circuit Cn that simulates M on all inputs of length n.

2

1 Parallelism and Non-Uniformity

2 Small Circuits

3 NC and AC

4 Branching Programs

P/poly 28

Definition
The class P/poly consists of languages decidable by a circuit family of
polynomial size.

This a non-uniform class, we are only interested in the existence of a small
circuit, not how to construct it. So we are getting help from some mysterious
entity that knows everything about circuits.

But note that the smallness requirement rules out some brute-force lookup
table approach for, say, SAT. This is vaguely similar to reining in the power of
an all powerful prover by a computationally limited verifier.

Advice 29

If you prefer, you can think about P/poly as being given a polynomial time
Turing machine M (wrto the first argument) together with a sequence (an) of
advice strings such that for all n

x ∈ L ∩ 2n ⇐⇒ M(x, an) accepts

Our friendly advice strings come from la-la land, they don’t have to be
computed in any particular way, they just exist in the blissful realm of celestial
spheres, also known as Zermelo-Fraenkel set theory with Choice.

Oblivious Turing Machines 30

A Turing machine is oblivious if its head position at time t depends only on the
length |x| of the input, not the actual word x ∈ 2⋆.

This may sound bizarre, but it is just the idea of a non-adaptive algorithm
transferred into Turing world.

As a vague analogy, consider sorting: a stan-
dard sorting algorithm like quicksort adapts
its execution pattern to the actual input. But
a sorting network (like Batcher sort) only de-
pends on input length.

Oblivious Simulations 31

Proposition
Every Turing machine can be simulated by an oblivious one, with quadratic
increase in running time (with usual assumptions).

This is quite similar to the simulation of a multi-tape machine on a single tape
machine: keep sweeping the tape head from one end to the other. The
following is much harder to prove.

Theorem
The oblivious simulation can be handled in time O(t log t).

P/poly versus Polynomial Time 32

Theorem
An oblivious time t Turing machine can be simulated by a circuit of size O(t).

Proof. Again we translate a tableau of a computation into a circuit.

By obliviousness, an instantaneous description requires only the state and the
tape inscription, the head position is not needed. This amount of information
can be handled in O(t) bits.

But then a constant size circuit is sufficient to handle the parts of an ID that
change during one single time step in the computation.

By piling up these one-step circuits (and pass-through wires for the parts that
do not change) we get a simulation of the whole computation using a circuit of
size O(t).

2

Randomness 33

Theorem (Adleman)
BPP ⊆ P/poly.

Proof.
We essentially showed this in the lecture on BPP under the label “feeble
derandomization.”
For all n ∈ N there is a special witness un ∈ 2p(n) such that

∀x ∈ 2n
(
x ∈ L ⇐⇒ M(x, un) accepts

)
2

But recall that the argument was probabilistic and utterly non-constructive, we
know the advice string exists, but we have no cheap way to construct it.

More Inclusions? 34

By the oblivious TM theorem, P ⊆ P/poly in a strong sense.

But note, the other direction is blatantly false: every tally language L ⊆ 0⋆, no
matter how undecidable, is in P/poly: just use the language itself for advice.

The following connection between NP and P/poly is known.

Theorem
If NP ⊆ P/poly, then the polynomial hierarchy collapses at level 2.

1 Parallelism and Non-Uniformity

2 Small Circuits

3 NC and AC

4 Branching Programs

Nick’s Class 36

As we have seen, it is really the size of a circuit that makes it interesting. So, it
is natural to define various “small size” circuit classes and study their
computational power.

Definition (NC)
A language L is in NCd if there is a bounded fan-in circuit family (Cn) that
decides L, the size of Cn is polynomial in n and the depth of Cn is O(logd n).
NC is the union of all NCd.

This is interesting, since we can evaluate a circuit in parallel in depth of the
circuit many steps (given enough processors).

For example, it is easy to see that parity testing is in NC1.

NC and Parallelism 37

Claim:
A problem admits an efficient parallel algorithm iff it lies in NC.

The key idea is that, given enough processors, we can evaluate Cn in
O(logd+1 n) steps, assuming that our parallel algorithm can send an output bit
produced at gate to all the recipients in O(logn) steps.

For the opposite direction, we build a circuit that simulates the parallel
algorithm. Its width will be the number of processors and its depth the number
of rounds in the parallel algorithm.

Unbounded Fan-In 38

Definition (AC)
A language L is in ACd if there is an unbounded fan-in circuit family (Cn) that
decides L, the size of Cn is polynomial in n and the depth of Cn is O(logd n).

AC is the union of all ACd.

So AC disregards physical realizability considerations: unbounded fan-in is an
illusion in the world of electronic circuits.

Note that NC0 is not interesting, but AC0 might be: we could check for the
existence of an input-bit 1.

Lemma
ACd ⊆ NCd+1. Hence AC = NC.

Uniform Versions 39

As defined, these classes are non-uniform: the circuits exist without necessarily
being computable. Similarly we can define obvious uniform versions.

Proposition
Addition is in logspace-uniform AC0.

Proof.
Let a, b ∈ 2n be the inputs, written in reverse binary (LSD first). Write ci for
the carry in position i, c1 = 0. Note that the standard kindergarten algorithm
does not work: it is bounded fan-in, but linear depth since we need to scan the
bits from left to right, one at a time, to get the carries right.

Wild Idea: Maybe there is a clever, non-standard method to compute the
carries?

Proof 40

The idea is that ci+1 = 1 if

ai = bi = 1, or
ai = 1 or bi = 1 and ai−1 = bi−1 = 1, or
. . .

In other words, the carries march down the line.

In terms of a Boolean formula we can express this as follows:

ci+1 =
∨
k≤i

(ak ∧ bk) ∧ (ak+1 ∨ bk+1) ∧ . . . ∧ (ai ∨ bi)

This condition can be handled by a constant-depth unbounded fan-in circuit.
2

Parity 41

A much more difficult result shows that Parity is difficult. By Parity we mean
the problem of computing

∑
xi mod 2. Clearly we can handle this function in

logarithmic depth, NC1, just build a tree of binary xor-gates. Could we flatten
out this circuit if we allow for unbounded fan-in?

Theorem (Ajtai 1983; Furst-Saxe-Sipser 1984)
Parity is not in AC0.

In other words, any constant-depth circuit that computes Parity must be
exponentially large.

Transitive Reflexive Closure 42

We can define Boolean matrix multiplication analogously to numerical matrix
multiplication by interpreting plus as disjunction, and times as conjunction.

A ·B = C C(i, j) =
∑
k

A(i, k)B(k, j)

In particular, if A is the adjacency matrix of a graph, then Ak describes paths
of length exactly k. To tackle reachability it suffices to compute

(A+ I)n−1 = I +A+A2 + . . .+An−1.

Using fast exponentiation, this can be handled in O(logn) Boolean matrix
multiplications (BMM).

As written, matrix multiplication is cubic time. Alas, the only obvious lower
bound is Ω(n2). A lot of effort has gone into devising algorithms that multiply
integer matrices in time O(nω) for some ω < 3.

Matrix Multiplication 43

1990: 2.3755 ⇝ 2023: 2.3716

And BMM? 44

One can exploit fast integer MM for BMM: think of a Boolean matrix as an
integer matrix. Then multiply (using only addition and multiplication, but no
subtraction; we are really working over N) and get back to Boolean by applying
the sign function everywhere.

This raises the thorny question of what can be done with “genuine Boolean”
algorithms.

How about circuits? We can compute A⋆ = (A+ I)n−1 by logn many
matrix-squaring operations.

But for unbounded fan-in we can square a Boolean matrix in depth 2. Hence
we can compute A⋆ in uniform AC1 and thus in uniform NC2.

Basics 45

Lemma (Uniform)
NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ P

Proof.
To show NC1 ⊆ L, consider some input x ∈ 2n. Construct the log-depth
circuit Cn, but note that we cannot simply evaluate in the customary fashion:
we need to stay in L. Instead we evaluate the circuit by recursion, essentially
performing DFS from the terminal node in a virtual graph (create new
nodes/gates as needed).

The recursion stack has depth logn, and each stack frame contains only a
constant number of bits since the circuit is in NC1 (rather than AC1). So the
whole computation runs in L.

Full Disclosure 46

Performing DFS in the virtual circuit really requires some attention to the
details of the representation of the uniform NC1 circuit. The customary
assumptions are that we can compute all of the following in logarithmic space:

size(0n) the size of the circuit
gate(0n, i) the type of the gate at vertex i
wire(0n, i, j) checks whether the is a wire from i to j

The log-space machine can perform all these calculations and that is enough to
handle graph exploration.

Proof Continued 47

For NL ⊆ NC2, consider a NL Turing machine M.

For each length n, consider the digraph CM,n whose nodes represent the
configurations of M but without the actual input x = x1 . . . xn. In other
words, we keep track of

the state,
the contents of the logn worktape,
the position of the read head on the input tape.

Since M is NL, our truncated configurations have logarithmic size and the
whole graph has size N which is polynomial in n. This part depends only on
the length of x, not the actual bits.

Proof Continued 48

Now suppose we are given a concrete input a ∈ 2n. The edges in CM,a, the
computation graph corresponding to a particular input, represent single
transitions of the Turing machine M and will thus in general depend on
particular input bits.

We will construct the N ×N adjacency matrix of CM,a using a constant depth
circuit: each bit is either independent of a, or it depends on just a single bit in
a: we keep track of the position of the read head.

To check acceptance by M, it then suffices to compute the transitive closure of
this graph with edges controlled by a. Using the repeated squaring trick from
above, we can find the transitive closure by a NC2 circuit. Everything is
uniform in M and n, so we get an uniform circuit family.

2

Threshold Functions 49

Counting the number of 1 bits in the input turns out to be very useful.

Definition
A threshold function thrnk , 0 ≤ m ≤ n, is an n-ary Boolean function defined by

thrnm(x) =
{

1 if #(i
∣∣ xi = 1) ≥ k,

0 otherwise.

thrnk is nicely symmetric:

thrnk (x) = thrnk (xπ(1), xπ(2), . . . , xπ(n))

These are the kinds of functions used in neural nets.

Related Functions 50

Lots of useful Boolean functions can be defined in terms of threshold functions.

thrn0 is the constant tt
thrn1 is n-ary disjunction
thrnn is n-ary conjunction
thrnk (x) ∧ ¬thrnk+1(x) is the counting function: “exactly k out of n”

We can express threshold functions in terms of majority, a special case of a
threshold function: maj(x) = thrnn/2.

thrnk (x) =

{
maj

(
x, 1n−2k) if k ≤ n/2

maj
(
x, 0n−2k) otherwise.

More Addition 51

Consider a slightly more complicated problem than plain addition: we are given
n numbers, each n bits, and we want to compute their sum. Let’s call this
multi-addition.

Lemma
Multi-addition is in NC1.

Proof.
We assume for simplicity that the sum is still an n-bit number.

The idea is to reduce the problem of adding 3 n-bit numbers to adding just 2
numbers with n+1 bits each.

Proof Continued 52

Suppose a, b and c are n-bit numbers, MSD first, 0-indexed. We define two
(n+1)-bit numbers d and e as follows:

d = dn−1dn−2 . . . d0 0 e = 0 en1en−2 . . . e0

di = thr3
2(ai−1, bi−1, ci−1) ei = ai ⊕ bi ⊕ ci

We can compute d and e in bounded fan-in and constant depth.

Hence we reduce the problem of adding n-many n-bit numbers to adding
2n/3-many n+1-bit numbers. Repeating this step logn times we wind up with
2 numbers of size n+ logn and the whole maneuver requires only logarithmic
depth.

We already know how to add these two numbers and we get a circuit in NC1,
done.

2

And Multiplication? 53

Intuitively, multiplication of n-bit numbers “reduces” to multi-addition: to
compute

(xn−1xn−2 . . . x1x0) · (yn−1yn−2 . . . y1y0)

we just have to add the numbers 2ix for all yi = 1.

This could be made precise by introducing yet another notion of reducibility
suitable for circuits, but we won’t go there.

Immerman’s Zoo 54

abstract computation

civilized computation

feasible computation

1 Parallelism and Non-Uniformity

2 Small Circuits

3 NC and AC

4 Branching Programs

Straight Line Programs 56

There is very little difference between a circuit and a straight line program, a
sequence of instructions to compute certain values, without any branching (no
Boolean tests, no loops, no nothing).
For example, over N, an arithmetic straight-line program of length n is a
sequence of n assignments of the form

v1 = 1 constant input
v2 = x variable input
vi = vl op vr where 0 ≤ l, r < i ≤ n.

The only allowed operations are op = +,−,×. The output of the program is
the value of vn.

SLP and Polynomials 57

It is clear that any SLP computes a polynomial function: just substitute
vl op vr for vi everywhere, and the resulting expression is a polynomial in x.
Also, any polynomial can be computed by a SLP.

v1 = 1 1
v2 = x x

v3 = v1 + v1 2
v4 = v2 ∗ v2 x2

v5 = v4 ∗ v3 2x2

v6 = v5 − v1 2x2 − 1
v7 = v6 ∗ v2 2x3 − x

v8 = v7 + v1 2x3 − x+ 1

Short Programs 58

Sometimes a very short program can compute long polynomials (if they have a
lot of structure that can be exploited).

1 + 8x+ 28x2 + 56x3 + 70x4 + 56x5 + 28x6 + 8x7 + x8

v1 = 1 1
v2 = x x

v3 = v2 + v1 1 + x

v4 = v3 ∗ v3 (1 + x)2

v5 = v4 ∗ v4 (1 + x)4

v6 = v5 ∗ v5 (1 + x)8

Addition Chains 59

Remember addition chains from 15-251?

v1 = 1 1
v2 = v1 + v1 2
v3 = v2 + v2 4
v4 = v3 + v3 8
v5 = v4 + v4 16
v6 = v5 + v4 24
v7 = v6 + v3 28
v8 = v7 + v2 30

This is the obvious SLP based on the binary representation of n.
Is this really the shortest program for 30?

No 60

v1 = 1 1
v2 = v1 + v1 2
v3 = v2 + v2 4
v4 = v3 + v3 8
v5 = v4 + v2 10
v6 = v5 + v5 20
v7 = v6 + v5 30

Length 7 is enough. Is that it? Is this SLP unique?

Yes 61

v1 = 1 1
v2 = v1 + v1 2
v3 = v1 + v2 3
v4 = v2 + v3 5
v5 = v4 + v4 10
v6 = v4 + v5 15
v7 = v6 + v6 30

It is true that 7 is best possible, but it takes a bit of effort to prove this.
Also note that the solution is not unique.

Onward 62

Straight-line programs are already surprisingly complicated, in particular when
one starts to ask questions about the minimal SLP to accomplish some
particular task (a much reduced version of Kolmogorov-Chaitin complexity).

Wild Idea: What if we make the programs a little more compli-
cated by allowing a rather feeble if-then-else construct?

Instead of just blindly running through a sequence of simple steps, we ask
whether some condition holds and then apply one operation or another. On the
other hand, we will only handle Boolean functions to keep things from spinning
out of control.

Boxes 63

We want to compute a Boolean function 2n → 2, so the input is a sequence of
bits x = x1, x2, . . . , xn.

Our devices are composed of several boxes:

x is the input bit, s and s′ are signals being sent from one box to the next. We
will describe the set S of signals in a moment. A box can compute arbitrary
Boolean functions, no questions asked. However, it has access only to s and bit
x, rather than the whole input.

Box Chains 64

A chain of boxes: the signals propagate from the left to the right; the output
appears all the way on the right. The input signal to the leftmost box is fixed.
The input bits are provided at the bottom of the boxes.

The number ℓ of boxes is the length of the device.

We want to understand what sort of Boolean function can be computed by
these box chains.

No Good 65

Recall that we allow the boxes to be all powerful, they can compute any
Boolean function of their inputs.

Without restrictions, this model is useless: box 1 sends x1 to box 2, which
sends x1x2 to box 3, . . . Then box n+ 1 has all of x and can compute
anything at all.

Constraint I: The signal set must be finite.

In other words, each box can send only a bounded number of bits to the next.

Chain Length 66

If ℓ = n, this renders the model essentially useless: we really wind a up with a
finite state machine on a binary alphabet. We could compute parity this way,
but cannot even handle majority.

The trick is to allow ℓ > n: the same bit may be read repeatedly in multiple
boxes. This is very similar to a Boolean variable appearing multiple times in a
formula.

We will call these gizmos bounded width branching programs (BWBPs). Each
box is an if-then-else instruction where the input bit determines which branch is
taken; the whole program is a sort of binary decision tree.

Déjà Vu All Over Again 67

This may all sound rather bizarre, but think about a DFA A over the binary
alphabet 2.

The automaton consists essentially of two transition functions δs : Q → Q
where Q is the state set of A, s ∈ 2.

Letting ℓ = n = |x| of some binary input word, each box receives as input
signal the previous state, and returns as output signal the next state. The
initial signal is the initial state of A, acceptance depends on the last signal
being a final state.

We could easily build a Turing machine that constructs this BWBP from 0n,
everything is nicely uniform.

Length 68

Constraint II: The length must be polynomial.

These devices are called bounded width poly length branching programs
(BWPLBPs).

Why are these constraints particularly interesting?

If we allow exponential length, then a fixed size signal set suffices for all
languages L ⊆ 2⋆.
On the other hand, we can achieve linear length at the cost of exponen-
tially many signals.

The Key Question 69

What should we use as signal set to make a BWPLBPs powerful?

David Barrington come up with an utterly amazing answer: groups, in the
algebraic sense of the word.

It’s utterly unclear why an algebraic structure would help, one might think
more of something combinatorial, some clever code or some such.

More precisely, one uses a non-commutative, simple group G.

Total Recall 70

A simple group is a group that has no nontrivial normal subgroups. Finite
simple groups are hugely important, they form the basic building blocks of all
finite groups.

A commutator in a group is an element [a, b] = aba−1b−1. Note that ab = ba
iff [a, b] = 1; more generally ab = [a, b] ba. The commutators in a group
generate a normal subgroup, the commutator subgroup.

Hence, in a simple group, every element must be a product of commutators.

As a concrete example, think about the alternating group A5, all even
permutations on 5 letters, a group of order 60 and the smallest
non-commutative simple group.

Alternating 71

Computing a Boolean Function 72

Since signals are group elements, lets agree that if the output is the identity
element 1 = 1G we interpret that as the function value true; any other
element g ̸= 1 means false. The initial signal on the leftmost box is 1.

Each box takes as input a group element g and depends on two parameters a
and b, both in G. The box Ba,b returns

if x then g · a else g · b

By choosing the multipliers a and b in the right manner, we can build a BWBP
that uses any specific non-identity element g to represent false. So we can
concoct a (1, g)-representation for any g ̸= 1.

The Idea 73

We are given a Boolean formula Φ(x) and want to construct a box chain that
computes the corresponding Boolean function.

It suffices to handle just the logical connectives ¬ and ∨. The construction is
by structural induction on Φ.

Variables are straightforward: those are just the input bits to our boxes. Note
that a variable appearing multiple times in a formula is not a problem: we can
read the same bit repeatedly.

For negation, suppose we already have a (1, g) representation of φ. We
multiply by g−1, which turns (1, g) into (g−1, 1), a representation of ¬φ.

Disjunctions 74

Disjunctions are a bit more complicated.

Suppose we want a representation of ϕ ∨ ψ via g.

Pick a ̸= b such that [g1, g2] = g. This is a white lie, we really should deal with
a product of commutators, but hey . . .

By induction, we can already represent ϕ and ψ via g1 and g2, respectively.
Say, the BWBPs are Pϕ and Pψ. Now we form a new chain

Pϕ → Pψ → P−1
ϕ → P−1

ψ

If at least one of these BWBPs produces 1, the final output is also 1.
Otherwise, we get g.

The Theorem 75

Theorem (Barrington 1989)
The class of languages recognized by BWPLBP is exactly non-uniform NC1.

Converting a BWPLBP into an NC1 circuit is fairly straightforward.

But the opposite direction is a small miracle: the proof relies heavily on group
theory and linear algebra over finite fields.

	Parallelism and Non-Uniformity
	Small Circuits
	NC and AC
	Branching Programs

