
UCT

Reversible Computation

Klaus Sutner

Carnegie Mellon University
Spring 2024

1 Heat

2 Reversible Turing Machines

3 Reversible Circuits

4 Reversible Cellular Automata

Fugaku 2

442 peta flops, 7630848 cores, cost $1.2 billion, power consumption 29.9 MW.

Why All The Heat? 3

In the 1950’s John von Neumann speculated that the energy cost associated
with manipulating a single bit is at least

k T ln 2.

Here T is the absolute temperature, and k is Boltzmann’s constant:

k ≈ 1.3806503 × 10−23 JK−1

It defines the relation between absolute temperature and the kinetic energy
contained in each molecule of an ideal gas.

Ludwig Boltzmann 4

Statistical mechanics and atomic theory
in the late 19th century. Heat is just the
kinetic energy of moving atoms/molecules
(kinetic molecular theory of heat).

Highly contested at the time.

Erasing Bits 5

Erasing Bits is Expensive 6

Around 1960 Rolf Landauer took a closer look at the problem and found the
following result, a first hard lower bound on the physical cost of computation.

Theorem (Landauer 1961)
Erasing a single bit requires at least k T ln 2 energy.

It is important to understand that this is not a question of technology, it’s a
question of thermodynamics, of fundamental physics.

There is no way around this fundamental cost of erasure – unless our
understanding of physics is all wrong.

Sad State Of The Art 7

Current computers are much, much worse: they dissipate energy even when
nothing is happening (flip-flops) as far as the computation is concerned.

Typically a real PC spends 1012 times as much energy as the thermodynamical
limit.

Biological computing is slightly better, neurons seem to dissipate about
1011k T . Darwin still beats Intel by a factor of 10.

But DNA computing is much superior; it seems to use only about 100 times
the Landauer limit. That’s 10 orders of magnitude better than a PC. Of
course, DNA computing is utterly impractical.

Arrow of Time 8

As everyone knows, time flows in one direction and one direction only: if an
egg has dropped to the floor and is broken, there is no magic switch to flip that
will cause the egg to re-assemble. According to everyday observation, there is a
pronounced asymmetry in time.

Yet, at the basic level the laws of physics seem to be reversible with respect to
time, there is no fundamental reason why some physical process could not run
backwards, the equations that describe the process are perfectly symmetric.

In particular the Second Law of Thermodynamics which describes macroscopic
systems (such as a container filled with bouncing gas molecules) appears to
collide head-on with time-symmetry.

Loschmidt’s Paradox 9

This conundrum is known as Loschmidt’s paradox.

The second law and time symmetry are both well-established principles in
physics, with good observational and theoretical support. And yet they clash.

Boltzmann is supposed to have responded to his archenemy Loschmidt’s
criticism like so:

Go ahead, reverse them!

Logic and Physics 10

Landauer showed the following amazing result that establishes a connection
between logic and physics.

Theorem
The only computer operations that must be thermodynamically irreversible are
the logically irreversible ones.

This is utterly insane. What does computation have to do with physics? How
can a purely logical concept relate to the laws of physics?

Some Questions 11

At any rate, Landauer’s result suggests that could avoid any thermodynamic
penalty as long as we use a reversible computer. We have to pay for erasing
bits, but not necessarily for anything else.

Several questions come to mind.

What exactly is a logically reversible operation?

Can all computations be carried out in a reversible manner?

Is there any chance to build a reversible computer?

Computing Reversibly 12

What exactly is this supposed to mean?

In any model of computation, we have some space of configurations C and a
next-step relation �, together with special initial configurations C init

x and final
configurations Chalt

y . Think of C = ⟨C, �⟩ as a directed graph.

We are only interested in deterministic models, so all nodes have out-degree at
most 1. For reversibility we also need in-degree at most 1:

C0 � C, C1 � C implies C0 = C1

So we can follow computations backwards from Chalt
y to C init

x .

This is highly unusual, just about any model of computation you can think of is
naturally non-reversible.

Compute Space 13

C

C C ′

Σ∗ Σ∗

Disjoint Computations 14

Consider the computation on input x, a path in C:

C init
x = C0, C1, C2, . . . , Ct−1, Ct = Chalt

y

For reversibility, none of these computations can have any nodes in common,
the whole computation graph is just a disjoint union of such overlap-free paths.

Digression: Reachability 15

Our definition is slightly off in that the only interesting subgraph of C = ⟨C, �⟩
is the part that is reachable from the initial configurations C init

x .

The remainder of the graph cannot appear in any computation, it does not
matter what the degrees there look like.

Exercise
Show that in the Turing machine case it is undecidable whether a configuration
is in the reachable part.

Reversibly Computable Functions 16

The no-overlap condition causes a major problem: suppose we wish to compute
a function

f : 2⋆ → 2⋆

reversibly. Then f must be injective, otherwise the paths of f(x) = f(x′)
where x ̸= x′ would overlap, at at least in the last configuration.

To accommodate other functions (just think about addition or multiplication of
natural numbers), we consider the inflated version

f̂(x) = (x, f(x))

Actually, we don’t necessarily need all of x, just enough to be able to recover
the missing pieces.

Sandboxes 17

Several models of computation can be used to compute reversibly.

Turing Machines
The “next configuration” has a unique predecessor.

Boolean Circuits
Circuits that can be turned “upside down.”

Cellular Automata
Discrete dynamical systems that generalize Turing machines.

In all three cases, it takes some effort to make sure that a configuration cannot
have multiple predecessors.

1 Heat

2 Reversible Turing Machines

3 Reversible Circuits

4 Reversible Cellular Automata

Bennett’s Theorem 19

Theorem (Bennett 1973)
Any Turing machine can be simulated by a reversible Turing machine.
Hence, for any computable partial function f , the inflated function f̂ is
reversibly computable.

Needless to say, a standard Turing machine is hopelessly irreversible. To
organize a reversible simulation, we proceed as follows:

First, we introduce a modified type of Turing machine that is naturally
locally reversible.
Then we build a globally reversible simulator using one of these machines
that has a history log.

Partitioned Turing Machines 20

The standard definition of a Turing machine transition function is naturally
asymmetric, something like δ : Q × Γ → Q × Γ × ∆ where Q is the state set,
Γ the tape alphabet and ∆ = {−1, 0, 1} the allowed displacements.

With a view towards reversibility, consider a Turing machine variant where

The state set Q is partitioned into two parts Qwrite and Qmove of write
states and move states.
The transitions are of the form

δ ⊆ Q × Γ∗ → Γ∆ × Q

where Γ∗ is Γ augmented by a special “don’t read” symbol ∗ and Γ∆ =
Γ ∪ ∆.

Splitting Transitions 21

Corresponding to the two kinds of states, there are write and move transitions,
written

pa � bq p∗ � dq

We can express a standard transition by two split transitions as follows:

pa � qbd pa � bp′ p′∗ � dq

where p′ is a new move state (that is not used anywhere else).

The symmetric nature of our split transitions makes it easy to find mutually
inverse transitions in the sense that they will revert to the previous
configuration from the next one:

pa � bq qb � ap

p∗ � dq q∗ � −dp

Updating Configurations 22

pa � qb1 s1 s2 p a s4 s5 ⇝ s1 s2 b q s4 s5

pc � bp′ s1 s2 p a s4 s5 ⇝ s1 s2 p′ b s4 s5

p′∗ � 1q s1 s2 p′ b s4 s5 ⇝ s1 s2 b q s4 s5

Multitape Machines 23

This the one-tape situation, but it is easy to generalize to k-tape machines;
just consider transitions p σ � τ q where σ and τ are suitable k-vectors.

For example,
p (a, b, c) � (a, d, c) q

would change the b on the second tape to d, without changing the other tapes.
Similarly,

p (∗, ∗, ∗) � (0, 1, 0) q

would move the tape head on the second tape to the right.

Global Reversibility 24

Time to tackle the real problem: we need to enforce our reversibility condition
on the configuration graph from above. Bennett’s construction uses a 3-tape
machine.

Given an ordinary Turing machine M that computes some function f . We can
construct an equivalent, reversible, 3-tape, partitioned machine M′ that works
in three phases:

Run the computation of M on input x on the work tape and keep a log
on the history tape.

Upon completion, copy the result f(x) from the work tape to the output
tape.

Run the computation backwards, unraveling the history and work tapes,
until only x is left on the work tape and the history tape is empty.

Then M′ duly computes f̂(x) = (x, f(x)).

The Cost 25

Needless to say, the reversible version of a Turing machine is a bit slower and
requires more memory. Surprisingly, the increased resource requirements are
quite modest.
Suppose the original machine has time complexity t and space complexity s.
For any ε > 0, one can reversibly simulate the machine in

t′ = O(t1+ε) s′ = O(s log t)

A different construction minimizing time produces

t′ = O(t) s′ = O(stε)

This is a bit surprising, reversibility comes relatively cheap. But note that there
are hidden constants that increase when ε gets smaller.

1 Heat

2 Reversible Turing Machines

3 Reversible Circuits

4 Reversible Cellular Automata

Circuits 27

Circuits arguably provide a more intuitive framework for reversible computation.

For example, consider standard addition of two bits:

in out
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

This operation is clearly not reversible: 01 is the result of both inputs 01 and
10, so it is logically impossible to recover the input from the output (regardless
of compute-power available).

Lossless Addition 28

But we can switch to the inflated version, then everything works out fine.

in cp out
0 0 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

This operation is trivially reversible though it admittedly looks somewhat
clumsy.

Note that we could keep just the green input bit: the other can be determined
from the sum. Still, this is not too impressive: we are going from 2 to 3 bits to
ensure reversibility.

n-to-n-Bit Circuits 29

x4

x3

x2

x1

x′
4

x′
3

x′
2

x′
1

At least in principle, such a circuit might be reversible.

Needless to say, most standard logic gates couldn’t be used in such a circuit.
E.g., usual “and” and “or” gates are not reversible for logical reasons, so there
is no going back.

Counting 30

Proposition
There are (22n

)n Boolean functions 2n −→ 2n.
Only (2n)! of these functions are reversible.

Exercise
Prove the last proposition. Come up with some interesting examples.

Small n 31

For n = 1 there is only one interesting reversible n-bit circuit: negation.

For n = 2 there are 24 reversible n-bit circuits. Unfortunately, none of them
are really interesting. The problem is that they are all affine maps (arithmetic
mod 2)

y = A · x + b

where b is any 2-bit vector, and A is one of the following six matrices:

(
1 0
0 1

) (
0 1
1 0

) (
0 1
1 1

) (
1 0
1 1

) (
1 1
0 1

) (
1 1
1 0

)

Reversing the Gates 32

All these matrices are non-singular over Z2, so we can compute

x = A−1 · (y − b)

Hence we can recover x from y.

For example, with A =
(

1 0
1 1

)
and b = 0 we get

x y x′ y′

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

This is the CNOT gate: x is a control bit and y is flipped if x = 1.

Composition 33

We might try to get more interesting maps 2k → 2k by composing several of
these two-input 2 circuits.

A

B

However, affine maps are closed under composition, so using these gates as
components we cannot implement anything other than affine maps in any
dimension.

Three Inputs 34

But n = 3 becomes really interesting. Somehow there are enough degrees of
freedom to do non-trivial reversible computation now.
For example, there is the Toffoli gate or CCNOT gate:

x y z x′ y′ z′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Here x and y are control bits (so x′ = x, y′ = y) and z is flipped provided both
x and y are 1: z′ = z ⊕ (x ∧ y).

Universality 35

The Toffoli gate is universal in the sense that one can construct a NAND and a
copy gate from it. From these, we can build a universal computer.
To construct a NAND gate, clamp z = 1.

x y z x′ y′ z′

0 0 1 0 0 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

For copy, clamp x = 1 and z = 0 so that z′ = y.

x y z x′ y′ z′

1 0 0 1 0 0
1 1 0 1 1 1

Fredkin Gate 36

Here is another reversible n = 3 gate: x is a control bit, and y and z are
swapped provided that x = 1.

x y z x′ y′ z′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

Exercise
Figure out how to implement logic using Fredkin gates.

Fredkin Adder 37

x

y

c

0

1

x

y

c'

s

g

Input bits: p, q, r plus p = 0 and g = 1.
5 rounds of applying a Fredkin gate
Output: p, q, carry-bit, parity-bit, g (a garbage bit)

State of Affairs 38

Building reversible circuits in silicone is clearly technologically the most
attractive way to implement reversible computation. Ideally, one would like to
have the whole CPU work reversibly, but it is of interest to handle just parts of
the whole device reversibly. For example, reversible arithmetic logic units have
been designed.

At any rate, quantum computing has taken over, at least for the time being.

This year, there is the 15th annual Conference on Reversible Computation.

1 Heat

2 Reversible Turing Machines

3 Reversible Circuits

4 Reversible Cellular Automata

J. A. Wheeler 40

It is my opinion that everything must be based on a simple
idea. And it is my opinion that this idea, once we have finally
discovered it, will be so compelling, so beautiful, that we will
say to one another, yes, how could it have been any different.

John Archibald Wheeler

It from Bit 41

J. A. Wheeler had a radical proposal: all of physics reduces to a bunch of bits
(aka the importance of information theory for physics).

We can only ask 1-bit question from nature.

We reconstruct reality from the answers to moderately large numbers of
such 1-bit questions.

Incidentally, he also coined the terms black hole, quantum foam and wormhole.

Rechnender Raum 42

“Calculating Space”
Konrad Zuse (1969)

Digital Physics 43

Ed Fredkin

Cellular Automata 44

There is a nice model of computation that is physics-friendly and makes
reversibility almost visible to the naked eye: cellular automata.

In the easiest case, a cellular automaton consist of a two-way infinite
one-dimensional grid of cells. At each time t, each cell is in a state in 2.
This represented by a configuration X : Z → 2 .

Here comes the important part: each configuration X leads to a new
configuration F (X) according to a simple, local update rule. We apply the
update rule to all overlapping blocks of 3 consecutive bits in X, in parallel.

Rinse and repeat.

Local To Global 45

Technically, the update rule is given as a local map (local rule), a Boolean
function

f : 23 → 2

It extends to the global map (global rule) via

F (X)(i) = f(X(i − 1), X(i), X(i + 1))

To get the new bit at position i, we collect the current bit at position i, plus its
left and right neighbor, and apply the local rule.

Note that there are only 223
= 256 local rules, so one can easily try them all

out. Each rule is specified by a single byte, so we can think of them as being
numbered 0 to 255.

A Homogeneous Circuit 46

Example: Rule 90 47

Here f(x, y, z) = x ⊕ z.

Pascal Modulo 2 48

Example: Rule 30 49

Example: Rule 110 51

A Miracle 53

Theorem (M. Cook)
Rule 110 is computationally universal.

This requires a highly sophisticated simulation of 2-tag systems.

All current “proofs” are heavy on pictures, it would be a great project to get
this through a theorem prover.

Generic Classes 54

Reversible CA 55

The construction of reversible Turing machines is somewhat involved, but for
1-dimensional cellular automata there are several nice ways to produce
reversibility.
Alas, there are no interesting examples of reversible elementary CA.

Bit-flipping, shifts and identity.

Generalizing 56

There are several ways to generalize our basic model of cellular automata.

Alphabet Each cell carries a symbol from Σ.

Neighborhood Consider all neighbors up to distance r.

Dimension Work on a d-dimensional grid.

So the local map then looks like

Σ[−r,r]d → Σ

Example: Majority 57

Example: Langton’s CAs 58

Fredkin’s Construction 59

Here is a wild way of constructing reversible CAs, based on the idea of second
order systems: the next state Xn+1 depends on both Xn and Xn−1.

Suppose configurations are binary. Given a binary CA F consider the
recurrence

Xn+1 = F (Xn) ⊕ Xn−1

Note that Xn−1 = F (Xn) ⊕ Xn+1 so we can run the recurrence backwards.

A moment’s thought reveals that this recurrence can be handled by a cellular
automaton, albeit over a larger alphabet.

The Fredkin Automaton 60

Let Σ = 2 × 2: each configuration is a pair of binary configurations (think
convolution): the upper track holds Xn−1, the lower Xn of the old CA.
The update rule of the new CA is

G(X, Y) = (Y, X ⊕ F (Y))

Claim
G is reversible (no matter whether F is).

Fredkin 90 61

Fredkin 54 62

Fredkin 73 63

Fredkin 30 64

Fredkin 30 65

Fredkin 110 66

Strange World 67

Stolen from somewhere on the web, with apologies. Ponder deeply . . .

	Heat
	Reversible Turing Machines
	Reversible Circuits
	Reversible Cellular Automata

