
MIP∗ = RE

Klaus Sutner

Carnegie Mellon University
Spring 2024



The Paper 1

Alas, the thing is 165 pages, some highly technical.

Plus, this is really outside of my wheelhouse. Take everything I am going to say
in section 3 with pounds of salt.
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Prover and Verifier 3

Recall the interactive version of NP, hard-to-solve but easy-to-verify problems.
Suppose x ∈ 2⋆ is some instance.

Prover provides evidence (a “proof”) that x is a yes-instance to the

Verifier checks the information provided by the prover, and announces
a decision.

The prover will be allowed to have arbitrary computational resources, but the
verifier must be polynomial time.

Completeness requires that for any yes-instance the prover can convince the
verifier.

Soundness requires that for no-instances cheating on the provers’ side will not
help to convince the verifier.



What is a Proof? 4

Merriam-Webster
(1) The cogency of evidence that compels acceptance by the mind of a
truth or a fact.
(2) The process or an instance of establishing the validity of a statement
especially by derivation from other statements in accordance with prin-
ciples of reasoning.

Hopelessly vague, though the second part points in the right direction.

Fortunately, in math we can do a whole lot better.



Proofs 5

In the classical logic setting, and following Gödel, a proof is a sequence of
formulae in some formal language (say, first-order logic) that uses only axioms,
given assumptions and rules of inference:

φ1, φ2, φ3, . . . , φn φn target assertion

A typical rule of inference is the cut rule:

φ ⇒ ψ ψ ⇒ χ

ϕ ⇒ χ

Note that this is a tricky rule: the middle formula ψ vanishes without a trace.
It is difficult to reverse engineer a proof using cuts; in general, we have no idea
what ψ might be.



Proof Theory 6

One of Hilbert’s brilliant ideas was to think of proofs as just another kind of
mathematical object that can be studied the same way as, say, vector spaces.

Classical proof theory has unearthed a wealth of information about the
properties of various formal systems built around this notion of proof. Many of
the arguments are quite technical, and seem to attract a certain type of
temperament (just like the study of degrees of unsolvability).

Theorem (Gentzen’s Hauptsatz, 1936)
In the sequent calculus, the cut rule can be eliminated.

The proof is requires induction on ordinals, not just the naturals.

One application of the theorem is to check a system for consistency.



And Computation? 7

In 1971 Stephen Cook studied the question whether an efficiently checkable
proof of an assertion always leads to an efficient way of finding such a proof.
On the face of it, checking seems far easier than finding.

Stephen Cook
The Complexity of Theorem Proving Procedures
Proc. STACS 1971

This seminal paper is the beginning of the P = NP saga.

At least if we disregard Gödel’s letter to von Neumann the 1950s.



Gödel 8

Here is a truly amazing fact: Kurt Gödel more or less introduced the P versus
NP problem in a 1956 letter to von Neumann, who was dying of cancer at the
time. Sadly, Gödel never got an answer (or it is lost)†.

And, Gödel being Gödel, naturally never bothered to communicate his insights
to anyone else.

See Gödel letter and Lipton Blog.

†The letter was discovered in 1989, almost 20 years after Cook’s paper.

http://www.cs.cmu.edu/~cdm/resources/GoedelvonNeumann.pdf
http://rjlipton.wordpress.com/the-gdel-letter/


Quoi? 9

For any first-order formula F and n ∈ N, it is decidable if there is a proof
of F of length at most n.

Let Ψ(F, n) be the time complexity of a corresponding Turing acceptor.

Let φ(n) = maxF Ψ(F, n). This exists because F is also bounded by n.

So φ(n) is the running time of a universal theorem prover looking for proofs of
length n. How large could φ(n) be?

Clearly, there are exponentially many potential proofs of length n. At first
glance, the only obvious solution would be to search through all of them, so
something like 2O(n) seems quite reasonable.



Lower Bounds 10

Amazing Fact:
It is quite difficult to prove an apparently trivial result like φ(n) ≥ k · n.

Gödel suggested that it just might be the case that φ(n) is linear, or maybe
some very low degree polynomial. He felt that “trial and error” (or, in modern
parlance, nondeterminism) might be replaced by a more systematic approach.

Linear time would be truly amazing: given F , we could pick n large enough so
it covers the size of some very complex proofs currently known. Say, n could be
a billion or a trillion. In a sense, we would have a solution to a truncated but
still highly interesting version of the Entscheidungsproblem.



No Way?!?! 11

Is this simply all wishful thinking?

Well, there are other places in math where an exponential speedup is possible:
instead of spending N steps on exhaustive search, we manage in just logN
steps. Think primality testing. This is a much more limited problem, but Gödel
did hold out some hope that a similar speed-up might happen here.

Of course, this would give us P = NP. So maybe not . . .

It is rather ironic that Gödel, who single-handedly destroyed Hilbert’s dream to
find a universal solution to the Entscheidungsproblem, later came up with this
idea. And that he asked von Neumann for help, since von Neumann spent the
early part of his career working on Hilbert’s program.
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More Proofs 13

The connection between complexity theory and proof theory has lead to the
consideration of various types of proofs that are not traditionally studied in
classical proof theory:

probabilistically checkable proofs

zero-knowledge proofs

interactive proofs

quantum based proofs

And, some of the results of this new-fangled, CS-inspired proof theory are truly
amazing.



Probabilistically Checkable Proofs (PCP) 14

Let’s stay within the IP framework; there is a verifier V and a prover P that
exchange messages. For emphasis, let’s say that P sends a proof π.

We allow the use of random bits and require certain soundness and
completeness conditions of the protocol.

Strange Idea: We allow the verifier to not read the whole proof.

This may sound strange, but since everything is probabilistic, the verifier might
flip a coin to determine which parts of the proof to check.



PCP Protocol 15

Given two functions r and q define the class PCP(r, q) as follows:

V uses O(r(n)) random bits and reads O(q(n)) bits of π.
Completeness is 1.
Soundness is 1/2.

Similarly we write PCP(F1,F2) for function classes.

It is easy to see that PCP(0, poly) = NP.



Results 16

Less obvious is the following.

Theorem
PCP(log, poly) = NP.

Here is the huge surprise, with a rather difficult proof, due to Arora-Safra 1992
and Arora-Lund-Motwani-Sudan-Szegedy 1992.

Theorem (PCP Theorem)
PCP(log, 1) = NP.

Actually, the same constant works for all languages in NP.



MIP 17

One way to strengthen IP-like protocols is to allow multiple provers. They can
coordinate their strategy before the rounds start, but once the session is under
way they cannot directly communicate with each other, only with the verifier.

At first glance, that may seem utterly useless: we do not constrain the
computational power of the prover in an IP protocol, so whatever P2 can do,
P1 can already do on her own.

True, but the verifier can cross-examine the provers and play one off against
the other. This actually can help the verifier.

Theorem (1991)
MIP = NEXP1



Enter Quantum Physics, Stage Left 18

More amazing than anything else we have seen so far, is the fact that to really
get power out of multiple provers we need to borrow an idea from quantum
physics: entanglement.

Entanglement is a particularly bizarre aspect of an already hopelessly bizarre
theory.

In fact, all the experts agree that no one really understands quantum physics.



The Experts 19

Anyone who is not shocked by quantum theory has not under-
stood a single word.
Niels Bohr

It is safe to say that nobody understands quantum mechanics.
Richard Feynman

If you are not completely confused by quantum mechanics, you
do not understand it.
John Wheeler

Quantum mechanics makes absolutely no sense.
Roger Penrose



Quantum Physics 20

The roots of quantum physics lie in the problem of describing black-body
radiation, an enterprise that took up all of the 19th century.

The solution by Max Planck in 1900 introduced an unimaginable new idea:
energy comes in discrete packets, not in some continuous form.



Quantum Physics and Mathematics 21

In the early days of quantum physics, mathematical foundations were a bit
shaky–which was acceptable, since the results were spectacular otherwise.
Together with relativity theory, quantum physics is the central accomplishment
of physics in the 20th century.

And there is a noteworthy comment by Steven Weinberg in his book on
quantum field theory:

. . . there are parts of this book that will bring tears to the eyes of the
mathematically inclined reader.

In other words, as long as the physics works well, ignore all problems with
underlying math. Not my idea of a good time, but perfectly understandable.



Enter von Neumann 22

In 1932 John von Neumann provided a rock-solid foundation for quantum
physics, based essentially on two ideas:

A quantum state can be thought of as a vector in some Hilbert space.

Measurement then comes down to applying a linear operator.

This lead to the study of operator algebras as interesting mathematical entities,
beyond just applications to quantum physics.

Von Neumann and his coworker Murray identified three types of operator
algebras: type I, II and III. They analyzed type I in great detail.



Entanglement 23

Entanglement (Verschränkung according to Schrödinger who coined the term)
is the bane of actual quantum computers: we would like to maintain lots of
entangled qubits over long periods of time, but that is a huge technological
challenge. Some people feel that it’s simply impossible.

On the other hand, entanglement seems to be very popular in nature, so maybe
there is a way to manage this.

Either way, entangled qubits do not enable faster-than-light communication,
but there still is some sense of establishing an instantaneous connection
between far away places.



Einstein 24

Einstein famously was not too thrilled with quantum physics (and, no, this is
not because he failed to understand it in great detail). In 1935 he co-authored
a famous paper that proposes a Gedankenexperiment that seeks to use “local
hidden-variables” to deal with annoying properties of entangled particles
(spooky action at a distance).

A. Einstein, B. Podolsky, N. Rosen
Can Quantum-Mechanical Description of Physical Reality be
Considered Complete?
Physical Review. 47 (10) 777–780.



Bell Experiments 25

In 1964 John Bell proposed a physically realizable (but rather delicate and
difficult) experiment that could be used to dispel local theories, once and for
all. Unfortunately, these experiments are very difficult to carry out, and it is
even more difficult to make sure that there are no loopholes in the argument.

Still, starting in the 1980s, experimentalists managed to carry out this type of
experiment, in ever increasing sophistication (see the CHSH game below).
Alain Aspect, John Clauser and Anton Zeilinger won the Nobel prize in 2022
for their work. At this point, there is no reasonable doubt about the veracity of
the claims.

The final result is: Einstein made a boo-boo, non-locality is a real thing, as
spooky as it may seem.
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MIP∗ 27

What does quantum physics and entanglement have to do with proofs, or,
more specifically, with multiple provers?

In 2003, a strange multiprover class was introduced: here the provers still must
not communicate, but they are allowed to share entangled qubits.

It was utterly unclear what the computational strength of MIP∗ would be, it
looks like MIP∗ might be weaker than MIP: the provers could use the
entangled bits to cheat more efficiently.

But no . . .

2012 MIP ⊆ MIP∗

2019 NEXP2 ⊆ MIP∗



MIP∗(2, 1) 28

We will only be interested in 2-prover, single-round protocols.

So V sends x and y to Alice and Bob, respectively.

Then Alice and Bob concoct their answers a and b, and send them to V.

Lastly, V ponders x, y, a and b deeply, and makes a judgment. Unlike the
provers, V is required to work in polynomial time.



Warmup: CHSH Game 29

Here is one way of interpreting Bell type experiments as a sort of MIP∗(2, 1)
protocol†:

V sends a random bit x to Alice, and a random bit y to Bob.

They send back bits a and b, respectively.
The goal is to have x ∧ y = a⊕ b.

If Alice and Bob are classical, albeit all powerful, they can do no better than
getting the right answer 75% of the time (assuming a uniform distribution for
the verifier V). Randomness would not help in this situation (either private or
shared)

y
x 0 1
0 0, 0 a, 0
1 0, b a, b

†The Clauser-Horne-Shimony-Holt game, proposed in 1969.



cos2(π/8) 30

But if funky provers can share entangled qubits, they can do better: the
success rate goes up to slightly more than 85% (actually, cos2(π/8), which is
optimal according to Tsirelson using only one pair of entangled qubits).



Non-Local Games 31

The specific kind of problem we want to tackle with a MIP∗ protocol is a
so-called non-local game, modeled after the CHSH game from above.

Definition
A non-local game has the form G = ⟨µ,D⟩ where

µ is a sample distribution over query pairs (x, y) sent by the verifier, and
D is a decision function: the verifier accepts iff D(x, y, a, b) = 1.

So this is really a description of the verifier: V samples query pairs according to
µ, and decides according to D.

For CHSH games we are dealing with single bits, more generally we consider
bitstrings x, y ∈ [n] and a, b ∈ [k].



Optimal Strategy 32

Key Question:
What is the best strategy for Alice and Bob in a non-local game G?

Write val⋆(G) for the optimal success probability of Alice and Bob.
Unsurprisingly, a real definition of the optimal value involves quantum physics
(or rather: math that is derived from the physics) and looks like this:

val⋆(G) = sup
p∈Cqs(n,k)

∑
x,y,a,b

µ(x, y)D(x, y, a, b) px,y,a,b

Cqs(n, k) is the “quantum spatial correlation set.” Don’t ask.

At first glance, all we can say about val⋆(G) is that it’s a real number between
0 and 1. And presumably a fairly complicated number, nothing like 1/3 or so.



Approximation? 33

If we want to anything computational, we need to make do with
approximations: given some accuracy ε > 0, find r such that

|val⋆(G) − r| < ε.

Given the formal definition, it is far from obvious how one might do this. In
fact, a crucial parameter here is the dimension d, the number of entangled
qubits Alice and Bob can use: the more, the merrier.

One standard approximation method is to compute a sequence of upper/lower
bounds αd/βd for val⋆(G) that converges to the actual value when d → ∞.



Algorithm 34

More precisely, we can compute

an increasing sequence (αn) such that αn ≤ val⋆(G),

a decreasing sequence (βn) such that βn ≥ val⋆(G).

The lower bounds are not too bad; one can prove that limαn = val⋆(G).

Alas, the β sequence is much harder to define, and it is absolutely unclear that
it converges (in fact, it does not in general).



Alain Connes 35

Recall von Neumann’s operator algebras? In the 1970s, Fields medalist Alain
Connes handled type III and made a comment about type II1.

The comment is now known as the Connes’ Embedding Conjecture (CEC).

Ignoring all details, CEC claims that type II1 yields to descriptions in terms of
finite-dimensional matrices (recall, we are dealing with Hilbert spaces, this is all
functional analysis).

Until recently, CEC was open, but it was known that there are equivalent
conjectures in other areas:

Kirchberg’s conjecture (C∗ algebras)

Tsirelson’s problem (quantum information theory)



CEC to the Rescue 36

Surprisingly, Connes’ embedding conjecture implies that lim βn = val⋆(G).

It follows that CEC implies that there is an approximation algorithm to
compute val⋆(G): for any ε > 0 we can effectively find n such that

βn − αn < 2ε.

So we have
|val⋆(G) − (αn + βn)/2| < ε.

Alas, and rather surprisingly, we’ll see that this just can’t be true.



The Theorem 37

Theorem (12.10)
Given a Turing machine M, one can in polynomial time construct a non-local
game GM such that

M halts implies val⋆(GM) = 1,
M diverges implies val⋆(GM) ≤ 1/2.

The Turing machine M in the theorem is entirely unconstrained, absolutely
anything goes. So it may take an absurd amount of time for the machine to
halt.

The proof is rather complicated and rests on iterating the PCP theorem.
Informally, the verifier checks that a more powerful verifier is correct,
repeatedly. By the way, it also uses Kleene’s recursion theorem.



MIP∗ = RE 38

RE ⊆ MIP∗ follows from the theorem: Halting is complete for RE and the
game GM can be computed from M.

MIP∗ ⊆ RE is essentially the lower bound strategy explained above: for every
instance x, one can in polynomial time compute a good verifier Vz and then
lower-approximate val⋆(Vz). This produces a semidecision procedure.

This is a huge surprise: MIP∗ is tantalizingly close to what one might consider
a physically realizable form of computation. Thus, it is not unreasonable to
expect that it should be too weak to handle undecidability. There is no
counterpart to this in classical physics (though one can pick counter-realistic
subtheories of physics where Halting is doable; Newtonian mechanics, for
example).



Warning 39

This must not be misconstrued as meaning that we could use a quantum
computer to solve the Halting problem by calculating val⋆(G).

Also, there is the pesky question of how many entangled qubits a real quantum
computer can handle. Recall, αd is directly defined as the success probability of
the best strategy using only d entangled qubits. Large numbers of entangled
qubits may well turn out to be a real bottleneck in quantum computation.



And CEC? 40

Amazingly, the theorem also demolishes Connes’ embedding conjecture, a claim
in functional analysis that seems to have nothing to do with Turing machines,
computability or complexity.

For if CEC were true, this would mean that we can solve the Halting Problem:
we then have an approximation algorithm for val⋆(GM). Just run that
algorithm for a sufficiently small ε, say, ε = 1/8.

Again, this is utterly amazing, no one expected Connes’ conjecture to be
resolved via an excursion into complexity theory and computability.
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