
Arithmetical Hierarchy Notes

Ziv Scully

CMU 15-455

1 What is the Arithmetical Hierarchy?

We are familiar with classifying problems into decidable and undecidable. �e arithmetical hierarchy is a
way of classifying problems into not just decidable and undecidable but, in the la�er case, how far from
decidable a problem is. For example, problems that are semidecidable or cosemidecidable are in some sense
closer to decidable than problems that aren’t.

As a running example, we’ll keep returning to the following problems:

Halts(e,x) = {e}(x) halts,
Total(e) = {e} halts on every input.

Both Halts and Total are undecidable, but intuitively, Total seems like a harder property to show. We will
see later that Halts and Total are classi�ed di�erently by the arithmetical hierarchy.

1.1 Clarification: Languages and Predicates

Before we begin, let’s take a second to clarify what “problems” means. In this document, we’ll talk about
classifying two related but slightly di�erent types of things:

• languages, which are sets of strings (or tuples of strings); and
• predicates, which are logical statements parametrized by a string (or tuple of strings).

It is easy to convert between languages and predicates. For example, given a predicate P , the corresponding
language LP is

LP = {x | P(x)},

and given a language L, the corresponding predicate PL is

PL(x) = x ∈ L.

Finally, because I’m writing this document the day before the midterm and thus have limited time, we’ll
play a li�le fast and loose with the distinction between strings and tuples of strings.

We’ve mostly focused on languages in this course, but for this document it will be easier to think in
terms of predicates. For example, Halts and Total above are predicates.

1.2 Halting on One Input vs. Halting on Every Input

Before formally de�ning the arithmetical hierarchy, let’s try to get a sense of “how undecidable” each of
Halts and Total is.

We start with Halts. Recall that Halts(e,x) is true when {e}(x) halts. While Halts is undecidable, a
closely related predicate is decidable:1

HaltsWithin(e,x ,σ ) = {e}(x) halts within σ steps.
1In class, we’ve expressed HaltsWithin(e,x ,σ ) as x ∈We,σ , whereWe,σ is the set of inputs for which {e} halts within σ steps.

1



Arithmetical Hierarchy Notes Ziv Scully

To measure “how undecidable” Halts is, we see how much we need to add to the decidable HaltsWithin to
express Halts. We can write Halts in terms of HaltsWithin as follows:

Halts(e,x) = ∃σ ,HaltsWithin(e,x ,σ ).

Roughly speaking, Halts is “one ∃ away” from HaltsWithin. �is makes Halts semidecidable: to semidecide
Halts(e,x), we can search for a σ such that HaltsWithin(e,x ,σ ) holds. If we �nd such a σ , we can halt and
say Halts(e,x) is true, but if we never �nd such a σ , we will search forever without halting.

We now turn to Total. Recall that Total(e) is true when {e} halts on every input x . �is means

Total(e) = ∀x ,Halts(e,x) = ∀x ,∃σ ,HaltsWithin(e,x ,σ ).

Roughly speaking, Total is “a ∀ and an ∃ away” from HaltsWithin, which is even further away than Halts.
It turns out that Total is neither semidecidable nor cosemidecidable, so it really is harder than Halts. Here’s
the intuition for why:

• To semidecide Total, we would need to write a program that, given input e , halts if Total(e) is true. For
any one input x , it’s possible to semidecide Halts(e,x). However, we need to try this for all inputs x ,
and for any �nite number of inputs we try, we will always be worried that some future input will
cause our machine not to halt.

• To cosemidecide Total, we would need to write a program that, given input e , halts if Total(e) is false.
It su�ces to search for one input x such that Halts(e,x) is false. Unfortunately, there is no program
that halts whenever Halts(e,x) is false.2

1.3 Defining the Arithmetical Hierarchy

�e arithmetical hierchy is a collection of sets of predicates. �ese sets of predicates come in three �avors:
• Σ0, Σ1, . . .;
• Π0,Π1, . . .; and
• ∆0,∆1, . . ..

�e collection of these three sequences of sets constitutes the arithmetical hierarchy.
�e arithmetical hierarchy is de�ned inductively as follows. We start by de�ning Σ0 and Π0:

Σ0 = Π0 = {predicates P | P is decidable}. (1.1)

�en, for all i ≥ 1, we de�ne Σi and Πi in terms of Σi−1 and Πi−1:

Σi = {predicates P | P(x) is equivalent to ∃y,Q(x ,y) for some Q ∈ Πi−1},

Πi = {predicates P | P(x) is equivalent to ∀y,Q(x ,y) for some Q ∈ Σi−1}.

Finally, for all i ≥ 0, we de�ne ∆i :
∆i = Σi ∩ Πi .

Some notes about the de�nitions:
• �e arithmetical hierarchy is, well, a nested hierarchy of sets. Speci�cally, for all i ≥ 1,

Σi−1 ⊆ ∆i , Πi−1 ⊆ ∆i , ∆i ⊆ Σi , ∆i ⊆ Πi .

�ere are nice pictures of the hierarchy on the lecture slides.
2�is is because if there were such a program, we could write a decider for Halts, but we know Halts is undecidable.

2



Arithmetical Hierarchy Notes Ziv Scully

• By recursively expanding the de�nitions of Σi and Πi , one can characterize them by the number of
alternating quanti�ers outside of a core decidable predicate:

Σi =

predicates P
�������
P(x) is equivalent to
∃y1,∀y2,∃y3,∀y4, . . . , [∃ or ∀]yn ,Q(x ,y1, . . . ,yn)
for some decidable predicate Q

,
Πi =

predicates P
�������
P(x) is equivalent to
∀y1,∃y2,∀y3,∃y4, . . . , [∃ or ∀]yn ,Q(x ,y1, . . . ,yn)
for some decidable predicate Q

.
For example,

Σ2 = {predicates P | P(x) is equivalent to ∃y1,∀y2,Q(x ,y1,y2) for some decidable predicate Q}.

�is “count the alternating quanti�ers” view is one of themost important ways to view the arithmetical
hierarchy.

• It is possible to squishmultiple quanti�ers of the same type together. For example, ∃y1,∃y2,Q(x ,y1,y2)
is equivalent to ∃(y1,y2),Q(x ,y1,y2), and similar for ∀. �is is why we can work just alternating
quanti�ers, as we can squish repetitions together.

• What about ∆i? How do we view that in terms of quanti�ers? �e way to think about ∆i is that a
predicate P ∈ ∆i can be wri�en using n alternating quanti�ers around a core decidable predicate, but
we can start with either ∃ or ∀.

• As a special case, it turns out ∆1 = Σ0 = Π0, namely ∆1 contains the decidable predicates. Exercise: if
a predicate is in both Σ1 and Π1, why is it decidable?

Let’s see how our running examples �t into the arithmetical hierarchy. We have previously wri�en
Halts as (see Section 1.2)

Halts(e,x) = ∃σ ,HaltsWithin(e,x ,σ ).

�e predicate HaltsWithin is decidable, so we can write Halts as a decidable core predicate surrounded by
a single ∃, so Halts ∈ Σ1.

Similarly, we have previously expressed Total as (see Section 1.2)

Total(e) = ∀x ,∃σ ,HaltsWithin(e,x ,σ ).

�e predicate HaltsWithin is decidable, so we can write Halts as a decidable core predicate surrounded by
two alternating quanti�ers starting with ∀, so Total ∈ Π2.

2 How to Solve Arithmetical Hierarchy Problems

Before covering how to solve arithmetical hierarchy problems, let us �rst discuss what such problems look
like. For the most part, whenever you see an arithmetical hierarchy problem in this class, it will be of the
form “�nd the location of P in the arithmetical hierarchy”, where P is some predicate (or language; see
Section 1.1). �e problem will usually say “focus on the upper bound and don’t worry about the lower
bound”. What this question means is to �nd the smallest set in the arithmetical hierarchy that you can prove
contains predicate P . Speci�cally, recalling (1.1), the nesting of the arithmetical hierarchy is as follows:

• ∆0 = Σ0 = Π0 = ∆1 is the set of decidable predicates. It is a subset of. . .
• . . . both Σ1 and Π1, neither of which is a subset of the other. But both Σ1 and Π1 are subsets of . . .

3



Arithmetical Hierarchy Notes Ziv Scully

• . . .∆2, which is a subset of both . . .
• . . .Σ2 and Π2, which are both subsets of
• ∆3, etc.

So when we ask you to �nd an upper bound for a predicate P , we’re asking you to �nd the Σi , Πi , or ∆i set
containing P that appears as early in the list above as you can manage. �ere will never be a tie, because
if a predicate is in both Σi and Πi , then it is in ∆i = Σi ∩ Πi , which appears earlier in the list. We are not
asking you to prove that you found the tightest possible bound, just to try your best.

As for how to solve the problems: the key is to break the statement down into decidable pieces. I suggest
always expanding out all the quanti�ers you can until your le� with basic logic (and, or, not) and decidable
predicates like HaltsWithin. �en worry about rearranging the formula so that all the predicates are on the
outside. For a good example of this, look at the solutions to Homework 2, �estion 4, or at the Midterm
Practice Problems, �estion 2.

4


	What is the Arithmetical Hierarchy?
	Clarification: Languages and Predicates
	Halting on One Input vs. Halting on Every Input
	Defining the Arithmetical Hierarchy

	How to Solve Arithmetical Hierarchy Problems

