Assignment 1 **Due: Thursday 01/25/2024 24:00**.

1. Super Halting (30)

Background

We have seen that a number of versions of the Halting problem are undecidable, but semidecidable. Here is stronger version of Halting: we are interested in machines that halt on all inputs.

$$
TOT = \{ e \in \mathbb{N} \mid \forall x \left(\mathcal{M}_e(x) \downarrow \right) \}
$$

Task

- A. Explain intuitively why TOT is harder than plain Halting.
- B. Prove that TOT is undecidable.
- C. Prove that TOT is not even semidecidable.

Comment For the proofs, use reductions from Halting.

2. Partitioned Turing Machines (30)

Background

It is customary to define Turing machines via a transition function of the form

$$
\delta: Q \times \Gamma \to Q \times \Gamma \times \Delta
$$

Here *Q* is the set of states, *Γ* the tape alphabet including a blank symbol, and $\Delta = \{-1, 0, +1\}$ indicates movement of the head. An instruction $\delta(p, a) = (q, b, d)$ indicates that the machine, when in state p and reading symbol a on the tape, will write symbol *b*, move the head by *d* and go into state *q*.

Instead of using these fairly complex instructions we can simplify matters a bit by distinguishing several types of states.

- Read: for a read state p the machine scans the current tape symbol a and makes a transition into state $s(p, a)$.
- Write: for a write state p the machine writes $w(p)$ into the current tape cell and makes a transition into state p' .
- Move: for a left move state *p* the machine moves the head one cell to the left and makes a transition into state *p* ′ . Likewise for right move states.

We call such a machine a partitioned Turing machine (PTM). So the state set in a PTM is partitioned into four blocks

$$
Q=Q_R\cup Q_W\cup Q_l\cup Q_r
$$

Task

- 1. Give a precise definition of what it means for a partitioned Turing machine to compute a function.
- 2. Show that every ordinary Turing machine can be simulated by a partitioned Turing machine.
- 3. How do the machines compare in size?

Comment

This is just the tip of an iceberg. In the case where $\Gamma = \{0, 1\}$ one can even insist that 1's are never overwritten by 0's (a so-called non-erasing TM), but the proof is rather complicated.

3. Graphs of Computable Functions (40)

Background

A set is decidable if its characteristic function is computable. Similarly, a set is semidecidable if its semi-characteristic function (returns 0 on elements, is undefined everywhere else) is computable. One can also go in the opposite direction.

Define the graph of a partial function $f: \Sigma^* \to \Sigma^*$ to be the set

$$
Gr(f) = \{ (x, y) | f(x) \simeq y \} \subseteq \Sigma^* \times \Sigma^*
$$

Let I_x be the initial segment $\{z \mid z < x\} \subseteq \Sigma^*$ where \lt is the standard length-lex order on words. For $A \subseteq \Sigma^*$, the principal function (aka Hauptfunktion) of *A* is the unique order-preserving bijection between some initial segment *I* and *A*. So *I* has the same cardinality as *A*.

For example, assuming an alphabet $\Sigma = \{a, b\}$, the function $f = \{(\varepsilon, aaa), (a, aab), (b, baa), (aa, aaaa)\}$ is the principal function of $A = \{aaa, aab, baa, aaaa\}$; the corresponding initial segment is I_{ab} .

Task

- A. Show that a partial function $f: \Sigma^* \to \Sigma^*$ is computable iff its graph is semidecidable.
- B. What can you say about the graph of a total computable function?
- C. Show that for any semidecidable set *W* and any partial computable function *f* the image $f(W) = \{f(x) \mid$ $f(x) \downarrow \land x \in W$ } of *W* under *f* is again semidecidable.
- D. Show that a set is decidable iff its principal function is computable.
- E. Show that for any partial computable function *f* there is a partial computable function *g* such that for all *x* in the domain of $f: f(g(f(x))) = f(x)$. If f were injective we could let $g = f^{-1}$, but the claim is that this works in general.

Comment We are using strings rather than natural numbers since that is the standard in complexity theory; arguably, this particular problem would be more natural when phrased in terms of N rather than *Σ[⋆]* .