
15-455: UCT K. Sutner

Assignment 4 Due: February 15, 2024, 24:00.

1. Minimization Problems (30)

Background
A minimization problem consists of M = ⟨I, sol, cost⟩ where I ⊆ Σ⋆ is a collection of instances, sol : I → Pfin(Σ⋆)
(codomain is all finite subsets of Σ⋆) is a solution function, and cost :

⋃
x∈I sol(x) → N is a cost function. Quite a

few combinatorial problems can be interpreted as minimization problems. As an example, take Vertex Cover: here I
is the set of all undirected graphs sol(x) is the collection of all vertex covers of graph x, and cost(w) is the cardinality
of the vertex cover w. Any reasonable coding convention for I and sol(x) is fine.

We can associate three variants with M: the decision version MD, the “counting” version MC , and the search version
MS . We will ignore the function version here, since it requires some additional ordering on the solutions so we can
talk about the “first solution.”

Problem: MD

Instance: x ∈ I, k ∈ N.
Question: Is there a w ∈ sol(x) such that cost(w) ≤ k?

Problem: MC

Instance: x ∈ I.
Solution: Determine the minimal cost of any w ∈ sol(x).

Problem: MS

Instance: x ∈ I.
Question: Determine a w ∈ sol(x) of minimal cost.

It is understood that an algorithm for MC or MS returns “No” if the solution set of instance x is empty.

Task

A. What does all this mean in the case of Independent Set and Clique?

B. Show that for Independent Set and Clique all three versions are polynomial time Turing equivalent.

C. Come up with one more example of a natural minimization problem.

D. We would like MD, MC and MS to be polynomial time Turing equivalent (as in part (B)).
What conditions on M are needed to make this equivalence work?

Comment
Make sure your answer to part (D) covers standard examples like Vertex Cover, Independent Set and Clique. Try to
be a bit more general, but don’t worry about finding the most general conditions possible, it’s fairly messy.



2. More Satisfiability (30)

Background
Here is a yet another variant of satisfiability: Unequal-3-Satisfiability (UE3SAT) where an instance is a formula in
3-CNF and we are looking for a satisfying truth assignment that makes at least one literal in each clause false. This
may sound a bit strange, but it is often useful in reductions.
Recall from a previous HW that 2SAT is solvable in polynomial time. Here is a variant that is hard: given a 2-CNF
formula and a bound k, determine whether there is a truth assignment that satisfies at least k of the clauses. So the
special case when k is the number of clauses is easy. Let’s refer to this version as Counting 2SAT (CNT2SAT).

Task

A. Show that UE3SAT is NP-complete.

B. Show that CNT2SAT is NP-complete.

Comment
Both parts can be handled by a reduction from 3SAT, but you might be better off starting with UE3SAT for part (B).

UCT HW 4 2 of 3



3. Tilings (40)

Background
Informally, a Tiling Problem consists of a collection of square tiles with colored edges. We want to know whether it
is possible to place the tiles on an infinite chess board in a way that the colors of adjacent edges match, filling up the
whole board in the process. The tiles cannot be rotated or reflected, only translated; we assume an unlimited supply
of tiles of each type. This infinite version of the problem is undecidable; the proof rests on encodings of a computation
of a Turing machine and is quite messy (the original proof used a tile set of cardinality 20,426).

To push things down to NP, we restrict our tilings to a board of size n × n. Technically, we have a finite set C of
colors and a tile set T ⊆ C4. A tiling is now a placement of n2 tiles so that adjacent tiles share the same color. In the
anchored square tiling problem (ASTP) we are given an instance ⟨C, T, 0n, t1, t2⟩: the colors, the tiles, the grid size n
(coded in unary as 0n) and two anchor tiles. Tile t1 must be placed in the North-West corner of the grid, and t2 in
the South-West corner.

Task

A. Show that ASTP is in NP.

B. Show that ASTP is NP-hard by a direct simulation of polynomial time Turing machines.

C. Explain how to get rid of the South-West anchor tile, without affecting hardness.

Comment Here is an example of a 12 × 12 tiling using 16 tiles with colors red, green, blue and yellow.

Comment For the simulation in part (B), think of row k in the tiling as corresponding to the configuration of the
machine at time k. This won’t quite work out, you will need several rows to simulate a single step of the Turing
machine. Also, you may want to make some harmless assumptions about the machine to simplify the construction.

UCT HW 4 3 of 3


