15-455: UCT

Due: February 22, 2024, 24:00.

1. Spanning Trees (30)

Background

Recall that a spanning tree of a ugraph $G = \langle V, E \rangle$ is a subgraph $T = \langle V, E_0 \rangle$ such that T is a tree (connected, acyclic). Consider the following instances: the graph G together with either a bound $k, 1 \le k \le n = |V|$ (for parts A, B, C), or a vertex set $L \subseteq V$ (for D, E). The questions are as follows:

Is there a spanning tree T of G such that

- A. T has k leaves.
- B. T has at most k leaves.
- C. The nodes of T have degree at most k.
- D. The set of leaves of T is L.
- E. There are no leaves of T outside L.

Task

- A. Show that the five spanning tree problems from above are \mathbb{NP} -complete.
- B. Show that problem (C) is hard for any fixed $k \ge 2$.

Comment

The problems are clearly very similar, try to exploit that to avoid endless repetitions.

2. Disjoint Unions (30)

Background

Assume that $\{0,1\} \subseteq \Sigma$ and define the disjoint union two languages $A, B \subseteq \Sigma^*$ to be the language

 $A\oplus B=0A\cup 1B$

In the following, \preceq means polynomial time many-one reducible. Argue in terms of projections, do not use nondeterministic Turing machines.

Task

- A. Show that $A, B \leq A \oplus B$.
- B. Show that $A, B \leq C$ implies $A \oplus B \leq C$.
- C. Show that \mathbb{P} , \mathbb{NP} and co- \mathbb{NP} are all closed under \oplus .
- D. Let $A \in \mathbb{NP}$ and $B \in \text{co-NP}$. Where in polynomial hierarchy should we expect to find $A \oplus B$?
- E. Assume all the mixed languages in part (D) are reducible to SAT. What conclusions can you draw?

3. Cook-Levin, Again (40)

Background

The proof of Cook-Levin given in class is based on the characterization of \mathbb{NP} in terms of projections. One can modify the argument to use nondeterministic Turing machines instead: we need a formula

M accepts $x \iff \Psi_x$ is satisfiable

Task

- A. What is the essential difference between the two approaches? Is there any reason why one might be better than the other?
- B. Explain how to modify the construction of Φ_x from class to produce the right Ψ_x .
- C. Show that your formula can be constructed in polynomial time and that it works as advertised.