15-455: UCT K. Sutner

Assignment 7 Due: March 29, 2024, 24:00.

1. Σ_2^p (20)

Background

Recall that a Σ_2 Boolean formula looks like

$$\exists x \forall y \ \varphi(x,y)$$

where |x| = k, $|y| = \ell$ and φ is a formula in propositional logic (no quantifiers) without any free variables. We will refer to the problem of testing such a formula for validity Σ_2 -SAT. Clearly, this problem is at least as hard as SAT and TAUT. Intuitively, it should be harder than both.

Task

- A. Show that the Maximum Independent Set problem from class is reducible to Σ_2 -SAT.
- B. Show that Σ_2 -SAT lies at level Σ_2^p of the polynomial hierarchy for both the projection definition and the oracle definition
- C. Show that Σ_2 -SAT is hard for level Σ_2^p of the polynomial hierarchy.

Comment You can use polynomial time reductions (though your arguments will probably automatically wind up in log-space). Don't get bogged down with technical details, just give a compelling proof sketch.

2. Uninspired Sets (30)

Background

Let K(x|y) be the conditional Kolmogorov-Chaitin complexity of $x \in \mathbf{2}^*$, given y. For any set $A \subseteq \mathbb{N}$ write $A_n = A \cap \{0, 1, \dots, n-1\}$ for the initial segment of A of length n. Think of A_n as bitvector of length n.

As we have seen, incompressibility with respect to Kolmogorov-Chaitin complexity is akin to randomness: there are no particular patterns one could exploit to obtain a shorter definition. How about the opposite notion? Call $A \subseteq \mathbb{N}$ uninspired if there is a constant c such that

$$K(A_n \mid n) \le \log n + c$$
.

So only some $\log n$ bits are needed to describe the corresponding bitvector of length n.

Task

- A. Show that any decidable set A is uninspired.
- B. How about the Halting Set H? State whether H is uninspired and explain your reasoning.
- C. How about the complement of the Halting Set? Again, state whether this set is uninspired and explain your reasoning.

3. Kolmogorov versus Palindromes (30)

Background

Suppose M is a one-tape Turing machine recognizing palindromes over $\{0,1\}$. We say that M crosses tape cell number i if either

- the head moves right from i to i + 1, or
- the head moves left from i + 1 to i.

We can construct of a crossing sequence $((p_1, s_1), (p_2, s_2), \ldots)$ of all crossings of position i keeping track of the state p_i and the read symbol s_i at the moment of crossing (before the move). Note that right/left crossings must alternate.

Write T(x) for the running time of M on input x, and assume that the machine always halts with the head on the right end of the string (it starts on the left). To streamline the argument a bit, it's best to consider input of the form $x = z \, 0^n z^{op}$ of length 3n. The region $[n+1, n+2, \ldots, 2n]$ is called the desert. Note that every position in the desert has at least one crossing.

Task

- A. Give an intuitive explanation of why Kolmogorov complexity can help for this lower bound argument.
- B. Show that some position in the desert must have a crossing sequence of length $m \leq T(x)/n$.
- C. Show that a crossing sequence uniquely determines the string z.
- D. Exploit this to conclude that we cannot have $T(x) = o(n^2)$.

UCT HW 7