
15-455: UCT K. Sutner

Assignment 10 Due: April 21, 2024.

1. Boolean Polynomials (30)

Background
It is often helpful to express Boolean logic in terms of arithmetic. To this end, define a Boolean polynomial to be
a multivariate polynomial p(x) ∈ Z[x] such that p(a) ∈ 2 as long as a ∈ 2n. Thus p represents a Boolean function
p̂ : 2n → 2 .

Note that for a Boolean polynomial we can replace xk by x without changing the corresponding Boolean function.
Let’s call the operation of expanding a polynomial and reducing the powers in monomials linearization; the result is
a multilinear polynomial.

As usual, when we refer to a polynomial we all implicit expressions such as p1 · p2; if we need to use the explicit
coefficient list form, we will say so.

Task

A. Determine short Boolean polynomials for n-ary conjunctions and disjunctions.

B. Determine smashed Boolean polynomials for n-ary disjunctions, exclusive disjunctions and the counting formula
“exactly one out of.”

C. Show that for every Boolean function f : 2n → 2 there exists exactly one multilinear Boolean polynomial that
represents it.

D. Devise a fast test to check whether a polynomial in coefficient form is Boolean. Explain the running time of
your test.

E. Let p be a Boolean polynomial. Observe that p̂ is constant 1 iff 2(1 − p) is a Boolean polynomial.
Did we just prove that co-NP = P?

2. Wurzelbrunft SAT (30)

Background
Prof. Dr. Alois Wurzelbrunft is currently fascinated by randomized algorithms. He thinks that checking satisfiability of
a CNF formula is best done by picking values for the variables at random. Say, φ(x1, x2, . . . , xn) is the given formula.
The algorithm is beautifully simple:

Pick a random vector b ∈ 2n and return φ(b).

Wurzelbrunft is vaguely aware that there is a minor problem: the algorithm will produce false negatives: the formula
is satisfiable, but we get No instead. He thinks that can be handled as usual by repeating the test an appropriate
number r of times.

Task

A. Show that the probability of a false negative may be as high as 1 − 2−n.

B. Suppose we repeat the algorithm r times, independently. Estimate the improved probability of false negatives.

C. What professional advice can you give Wurzelbrunft? Explain.

Comment
For part (B), use the fact that for small δ we have (1 − δ)r ≈ e−rδ.

3. ZPP (20)

Background
Ordinarily Turing machines for decision problems are required to return yes or no. Let’s generalize slightly to allow
for an additional output ?, meaning “don’t know.” We’ll call these machines ambiguous, think of them as having three
different halting states. We are interested in probabilistic ambiguous machines M that run in polynomial time and
satisfy

Pr[M(x) ∈ {L(x), ?

}] = 1

Pr[M(x) = ?] ≤ 1/2

So they never give a wrong answer but may return ?. As usual we identify a language L with its characteristic function.

Task

A. Show that ZPP is the set of languages accepted by a ?-machine.

B. Show that ZPP = RP ∩ co-RP.

Comment
You can use part (A) for (B), but a direct proof is also possible.

4. Closure (30)

Background
As usual in the study of complexity classes, one tries to establish closure properties of probabilistic classes with respect
to Boolean operations. For example, we know that BPP is a Boolean algebra. Here are some more exotic closure
properties.

Task

A. Is BPP closed under polynomial time reductions? Explain.

B. Is BPP closed under Kleene star? Explain.

UCT HW 10 2 of 3

5. What If? (30)

Background
The possibility of derandomization suggests that P = BPP is a reasonable conjecture. In this case, case we would expect
NP to be strictly larger. Here is a corresponding “what if” scenario that explores a consequence of the assumption
that NP is actually contained in BPP.

Task

A. Sketch and encoding of Boolean formulae in which the size of a formula does not change when a variable is
replaced by a truth value.

B. Show that NP ⊆ BPP implies that NP = RP.

C. How plausible is this consequence?

Comment Part (A) makes the argument in part (B) a little easier.

6. BPP and PH (30)

Background
In this question we will show that BPP ⊆ Σp

2 ∩ Πp
2 . To this end, we need a few combinatorial facts.

Call S ⊆ 2m yuge if |S| ≥ (1 − 1/(2m)) 2m, and teeny if |S| ≤ 1/(2m) 2m. Given z ∈ 2m, define the shift of S by z:

z ⊕ S = { z ⊕ x | x ∈ S }.

where ⊕ denotes bit-wise xor. Given z = (z1, . . . , zm) ∈ (2m)m, write z ⊕ S =
⋃

i zi ⊕ S for the union of all the
individual shifts. We will see that for yuge S, there exists z such that z ⊕ S is all of 2m.

Task

A. Suppose S is teeny. Show that for all z we have z ⊕ S ̸= 2m.

B. Suppose S is yuge. Show that there exists z such that z ⊕ S = 2m.

C. Show that BPP ⊆ Σp
2 ∩ Πp

2 .

D. Conclude that P = NP implies that P = BPP.

Comment
(A) is just counting, for (B) use a probabilistic existence proof. For (C), use the previous results and translate
membership in L into yugeness (associate each instance x with a suitable set Sx).

UCT HW 10 3 of 3

