
CDM
Primitive Recursion

Klaus Sutner
Carnegie Mellon University
Fall 2023

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

4 Comparing Models

Defining Computability 2

We need a rigorous definition of computability that is easy to understand
and apply, and that matches our intuitive, pre-theoretic notion of
computability.

Roughly speaking, there are two types of definitions that can be used:

Machine Models
Abstract, mathematical machines that capture the notion of a “com-
puter” in a more or less physical sense.

Programms
A sequence of primitive instructions that can be executed in a sim-
ple, mechanical manner.

Easy! 3

Anyone who has ever written and executed a program will probably
suggest a quick-and-dirty definition along the lines of

Computable means: can be done, in principle, by a standard
digital computer. One writes a program in some language
and compiles/executes it on suitable hardware.

Sadly, there are lots of problems with this approach.

First, the hedge “in principle” means you really have to abstract away
from a concrete physical device (time, space, mass, energy, . . .).

Then there is the question which operating system, which programming
language, which compiler? These typically have no clear semantics, so
what exactly are we defining?

How About Algorithms? 4

Computable means: there is an algorithm for it.

Well, then what is an algorithm?

Sadly, there currenly is no good definition of an algorithm, even though
the notion seems entirely obvious to any CS person. The usual attempts
at an explanation come down to: an algorithm implements a computable
function. Hopelessly circular and useless.

Here is a slightly more useful attempt, in the opposite direction:

An algorithm is a computable function, taking into account
implementation issues and resource bounds.

CS vs Math 5

It is noteworthy that, traditionally, implementation details are usually of
little interest in mathematics, it only matters whether a function is
computable or not. Computability is a central foundational issue, but
does not require detailed analysis. Consider any classical decidability
proof (say, Tarski’s proof of the decidability of the first-order theory of
the reals) and you will see it is a lightyear away from an algorithm.

If you want to get a first impression of how one might go about
developing a real and useful theory of algorithms, take a look at

Moschovakis 02

It’s quite tricky to come up with something compelling.

http://www.cs.cmu.edu/~cdm/resources/Moschovakis02.pdf

Why Bother? 6

Why would we even need a rigorous definition of a concept that is so
utterly intuitive? Isn’t this all plain obvious?

Yes and No, but mostly: No.

Here is a heuristic argument: in the 1930s there was some tension
between Church and Gödel about the proper notion of computability, the
issue was finally resolved only with Turing’s seminal paper.

If things were not “obvious” to these giants, they are indeed not obvious.

Computability 7

An informal approach is often good enough for positive results:
such-and-such a thing is computable, just do this, then that, . . . , voila,
the result. For example, the age-old Euclidean algorithm clearly describes
a computable function, no theory needed. The same is true for arithmetic
in general.

But things get treacherous when it comes to computation in classical
math, in particular over the reals: a calculation might require to evaluate
an integral in some infinite-dimensional space (very popular in physics).
It is far from clear what exactly is going on from the perspective of
computability—there currently is no compelling theory of computation in
the continuous setting.

Non-Computability 8

Negative results absolutely depend on real foundations: in order to show
that a particular problem (say, solving Diophantine equations) fails to be
computable, we need to have an airtight definition of computability.

Things get much worse when we try to show that solving a particular
computable problem (say, satisfiability testing for Boolen formulae)
requires such and such resources, the key concern in complexity theory.

As we now understand, the latter type of question appears to be
breathtakingly more difficult than a simple distinction between
computable and non-computable.

Models of Computation 9

K. Gödel: primitive recursive

A. Church: λ-calculus

J. Herbrand, K. Gödel: general recursiveness

A. Turing: Turing machines

S. C. Kleene: µ-recursive functions

E. Post: production systems

H. Wang: Wang machines

A. A. Markov: Markov algorithms

M. Minsky; J. C. Shepherdson, H. E. Sturgis: register machines

Z. Manna: while programs

Comments 10

The models are listed roughly in historical order. Except for primitive
recursive functions, these models are all equivalent in a strict technical
sense.

This does not mean that they are equally intuitive or compelling. For
example, unless you have the theory-gene, you will find the λ-calculus
pretty daunting.

Bad news: the second most daunting model is Turing machines. They
have a beautiful motivation and are very natural in a way, but when it
comes to technical details they are a nightmare.

Alas, for complexity theory there is no way around Turing machines.
Since you are already familiar with them, we will talk use register
machines to get half-way serious about universality.

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

4 Comparing Models

Computable Arithmetic Functions 12

To simplify matters a bit, initially we consider only one data type: the
natural numbers N. The corresponding functions are called arithmetic
functions or number theoretic functions: Some examples are familiar to
any kindergartener: addition, multiplication, squaring, roots,
exponentiation and so on.

f : Nn → N

We introduce a model of computation that is designed to work
particularly well with these, no input/output coding is required.

For the time being, all our functions will be total.

Primitive Recursion 13

The main idea behind our first model will be very familiar to anyone
familiar with a modern programming language: we will define a function
f : N × Nn → N by

defining f(0, y) explicitly, and

defining f(x + 1, y) in terms of x, f(x, y) and y.

You have all seen the standard examples: addition, multiplication,
exponentiation, factorials and so on. As we will see shortly, it is quite
difficult to come up with an arithmetic function that is intuitively
computable but not primitive recursive.

Later we will see more complicated forms of recursion.

Details 14

If one cares about actual implementations of primitive recursive
functions, there are two basic choices.

Top-Down Implement a recursion stack so that a call to f(n, y) au-
tomaticall produces calls to f(n−1, y), f(n−2, y) . . . and
handles the returns properly.

Bottom-Up Compute f(0, y), f(1, y), f(2, y) . . . by iteration, which
requires only a simple loop.

Again, in math this disctinction does not matter much, in the early days
of CS it produced some acrimonious debates†.

†There were fierce fights about whether Algol 60 should include recursion. I stud-
ied with one of the people on the wrong side of the argument.

Details: Primitive Recursive Functions 15

Interestingly, Gödel encountered the problem of defining computable
functions working on his seminal incompleteness theorem. He introduced
a class of what he called “recursive functions,” that are now called
primitive recursive functions.

The notion of “recursive function” today refers to an arbitrary
computable function. The key difference is that primitive recursive
functions can only use recursion on one variable, whereas full
computability requires recursion on multiple variables as in the
Herbrand-Gödel model of computation.

For primitive recursive functions it will always be crystal clear that they
are intuitively computable.

Composition 16

Given functions gi : Nm → N for i = 1, . . . , n , h : Nn → N , we define a
new function f : Nm → N by composition as follows:

f(x) = h(g1(x), . . . , gn(x))

Notation: We write h ◦ (g1, . . . , gn) inspired by the the well-known
special case m = 1:

(h ◦ g)(x) = h(g(x)).

So this is just ordinary sequential composition of functions. Clearly,
computable functions are closed wrto composition: output can be re-used
as input.

Primitive Recursion 17

We need one more operation beyond composition to get interesting
functions, a form of recursion. Given h : Nn+2 → N and g : Nn → N we
define a new function f : Nn+1 → N by

f(0, y) = g(y)
f(x+1, y) = h(x, f(x, y), y)

Here is our preliminary definition.

Definition
A function is primitive recursive (p.r.) if it can be generated from zero,
successor, composition and primitive recursion.

Arithmetic Functions 18

All the basic functions of arithmetic are primitive recursive.

add(0, y) = y

add(x+1, y) = S(add(x, y))

mult(0, y) = 0
mult(x+1, y) = add(mult(x, y), y)

exp(0, y) = 1
exp(x+1, y) = mult(exp(x, y), y)

Summation 19

Suppose ℓ is a primitive recursive function and we want to sum its values.
No problem:

f(0) = 0
f(x+1) = add(f(x), ℓ(x))

So f(x) =
∑

z<x ℓ(z).

Similarly, if ℓ has an additional parameter, we cad adjust the definition as
follows:

f(0, y) = 0
f(x+1, y) = add(f(x, y), ℓ(x, y))

No problem.

A Closer Look 20

For a human reader, this is indeed all perfectly clear.

But there is a minor issue: the two zeros are different.

f(0) = 0
f(0, y) = 0

The first one has arity 0, but the second has arity 1. This is forced by our
definition of primitive recursion.

A little more precision is needed if we wanted to, say, check proofs
involving primitive recursive functions.

Arity 21

It is sometimes convenient to be able to express the arity as part of the
notation used.

We will use a superscript (n) for this purpose:

f (n) a function of arity n

In particular write C(n)
a for the n-ary constant map x 7→ a.

We will call C(0)
a a hard constant: a function that takes no arguments.

Bureaucracy: Projections 22

Another problem is that composition as we defined it is not quite enough.
Suppose we have a binary version add of addition, and want to define a
ternary version. No problem:

add(3)(x, y, z) = add(2)(x, add(2)(y, z))

But, this is not allowed according to our definition of composition: try to
find the right binding for h and the gi.

We need a simple auxiliary tool, so-called projections:

Pn
i : Nn → N Pn

i (x1, . . . , xn) = xi

where 1 ≤ i ≤ n.

Killing Variables 23

Now we can write

add(3) = add(2) ◦ (P3
1, add(2) ◦ (P3

2, P3
3))

Note that no variables are needed in this notation system.

Needless to say, most humans prefer the informal notation by a long shot.
But then again, the last term is very easier to parse and evaluate.

Clones 24

A clone or function algebra is a collection of functions that contains all
projections and is closed under composition, over some carrier set.

More generally, for any set A, define the collection of all finitary
functions over A as

FA =
⋃

n≥0
(An → A)

Definition
A clone (over A) is a subset C ⊆ FA that contains all projections and is
closed under composition.

For example, all projections form a clone, as do all arithmetic functions.

Quoi? 25

Informally and intuitively, a primitive recursive function is obtained from
zero, successor, composition and primitive recursion. Basta.

Projections and composition have nothing to do with the natural
numbers, these concepts are perfectly general and apply to any domain.

On the other hand, 0, successor and primitive recursion are directly
dependent on the naturals.

So it makes sense to separate out these two components of the definition
of a primitive recursive function.

Nullary Functions 26

Note that we allow hard constants, nullary functions in A0 → A where
we think of A0 as a one-point set {∗}.

We will write f() or f(∗) when we evaluate such functions.

In the literature, you will also find clones without nullary functions

C ⊆ F
(+)
A =

⋃
n>0

(An → A)

This is mostly a technical detail, but one should be aware of the issue.

Actually, this is exactly the kind of pesky detail that makes programming
quite so difficult.

Nullary??? 27

Algebraists usually prefer the non-nullary approach. Most operations
there are binary and unary: e.g., (x, y) 7→ x · y and x 7→ x−1 in a group.
Constants are just elements of the algebraic structure and are not
considered to have anything to do with an operation.

But for those working in logic, type theory or category theory, nullary
operations are not an issue at all. And, truth be told, any really solid
implementation of primitive recursive functions also needs to keep track
of all these gory details, otherwise things won’t typecheck.

After all, a computer will not apply any algebraic common sense
whatsoever, it will just follow the rules precisely as stated.

Nullary Composition 28

Recall composition: h(n), g
(m)
i , i ∈ [n], produces

f = h ◦ (g1, . . . , gn) ∈ F
(m)
A where n, m ≥ 0.

It is worthwhile to consider the special case where h or the gi are nullary.

Case: n = 0
Then for m ≥ 1 we have C(m)

h(∗) ∈ C.

Case: m = 0
Then for n ≥ 1 we have C(0)

a ∈ C where a = h(g1(∗), . . . , gn(∗)).

Another Angle 29

We could introduce constants C(k)
a for all a and k. Alas, that contradicts

the basic principle of parsimony in axiomatization: use as few basic
assumptions as possible. For example, if we have the successor function
S, we can define C(k)

a+1 = S ◦ C(k)
a , so we only need C(k)

0 .

We can use primitive recursion to deal with arity:

f(0, y) = C(k)
0 (y)

f(x+1, y) = f(x, y)

This defines C(k+1)
0 in terms of C(k)

0 .

So all we really need is C(0)
0 .

Generating Clones 30

To get something more interesting, we need to consider clones that are
generated by

certain basic functions F , and/or

closed under additional operations Op.

We write

clone(F ; Op)

for the least clone containing F and closed under Op.

For example, clone(;) consists just of all projections.

Rectypes 31

This is a perfect example of a recursive datatype (rectype), one of the
fundamental concepts in TCS. We have

a collection of atoms (indecomposable items), and

a collection of constructors that can be applied to build more com-
plicated, decomposable objects.

Because of this inductive structure we can perform inductive arguments,
both to establish properties and to define operations.

Basic Arithmetic Functions 32

When dealing with natural numbers, it is natural (duh) to have

Constant zero 0 : N

Successor function S : N → N , S(x) = x + 1

Here constant 0 is meant to be the hard constant C(0)
0 (but recall the

comment on nullary composition from above).

This is a rather spartan set of built-in functions, but as we will see it’s all
we need. Needless to say, these functions are trivially computable.

In fact, it is hard to give a reasonable description of the natural numbers
without them (unless you are a set theorist).

Closure Operations: Primitive Recursion 33

We write Prec[h, g] for primitive recursion: recall h : Nn+2 → N and
g : Nn → N can be used to define f : Nn+1 → N by

f(0, y) = g(y)
f(x + 1, y) = h(x, f(x, y), y)

Definition
A function is primitive recursive (p.r.) if it lies in the clone generated by
zero, successor; and closed under primitive recursion: clone(0, S; Prec).

Two Views 34

bureaucracy basic operator

atom projections zero, successor -

constructors composition - prim. rec.

Example: Factorials 35

The standard definition of the factorial function uses recursion like so:

f(0) = 1
f(x + 1) = (x + 1) · f(x)

To write the factorial function in the form f = Prec[h, g] we need

g : N0 → N, g() = 1
h : N2 → N, h(u, v) = (u + 1) · v

More precisely, g is C(0)
1 and h is multiplication combined with the

successor function:

f = Prec[mult ◦ (S ◦ P2
1, P2

2), C(0)
1]

Unfolding 36

By unfolding the definition of mult we can write a single term in our
language that defines the factorial function.

Prec[Prec[Prec[S ◦ P3
2, P1

1] ◦ (P3
2, P3

3), C(1)
0] ◦ (S ◦ P2

1, P2
2), C(0)

1]

The innermost Prec yields addition, the next multiplication and the last,
factorial.

Again, hard to read for a human, but perfectly suited for a parser. Given
the right environment, it is not hard to build an interpreter for these
terms.

Arithmetic 37

It is a good idea to go through the definitions of all the standard basic
arithmetic functions from the p.r. point of view.

add = Prec[S ◦ P3
2, P1

1]

mult = Prec[add ◦ (P3
2, P3

3), C(1)
0]

pred = Prec[P2
1, C(0)

0]
sub′ = Prec[pred ◦ P3

2, P1
1]

sub = sub′ ◦ (P2
2, P2

1)

Since we are dealing with N rather than Z, sub here is proper
subtraction: x •− y = x − y whenever x ≥ y, and 0 otherwise.

Exercise
Show that all these functions behave as expected.

R. Dedekind 38

These equational, inductive definitions of basic arithmetic functions date
back to Dedekind’s 1888 booklet “What are numbers and what is their
purpose?” It is remarkable that he produced this description about 30
years before anyone started to think carefully about computability.

Evaluation Operator 39

The terms in our little programming language form a rectype. In fact,
this is a free rectype, we have unique decomposition.

Any term τ describes an arithmetic function J+Kτ : Nk → N (the old
intension vs extension story). There is a natural evaluation operator eval
that takes as input any term τ of arity n and input x = x1, . . . , xn ∈ N:

eval(τ, x) = value of J+Kτ on arguments x

As Gödel figured out, we can express the term τ as a natural number (its
Gödel number), so that eval can be construed as an arithmetic function.

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

4 Comparing Models

A Primitive Recursive Zoo 41

We have seen that basic arithmetic functions such as addition,
multiplication and proper subtraction are all primitive recursive.

In fact, it is quite difficult to come up with an arithmetic function that
fails to be primitive recursive, yet is somehow intuitively computable. Go
through any basic book on number theory, everything will be p.r.

To show that lots of functions are primitive recursive we need two tools:

A pool of known p.r. functions, and

strong closure properties.

A Slog 42

The purpose of this section is to show in a fairly rigorous manner that
certain operations on functions do not affect primitive recursiveness.

Once you have gone through the technical details, try to ignore them and
focus on developing intuition that explains why a function is primitive
recursive, rather than just slogging through the standard machinery of
proof.

Admissibility 43

Here is an example of a closure property that is not obvious from the
definitions. Apparently, we lack a mechanism for definition-by-cases:

f(x) =
{

3 if x < 5,
x2 otherwise.

We know that x 7→ 3 and x 7→ x2 are p.r., but is f also p.r.?

We want to show that definition by cases is admissible in the sense that
when applied to primitive recursive functions/relations we obtain another
primitive recursive function. Having a solid collection of admissible
operations around makes it much easier to show that some particular
functions are primitive recursive.

Definition by Cases 44

Definition
Let g, h : Nn → N and R ⊆ Nn. Define f = DC[g, h, R] by

f(x) =
{

g(x) if x ∈ R,
h(x) otherwise.

We need to explain what it means for the relation R to be primitive
recursive, we’ll do that in a minute.

Sign and Inverted Sign 45

The first step towards implementing definition-by-cases is a bit strange,
but we will see that the next function is actually quite useful.
The sign function is defined by

sign(x) = min(1, x)

so that sign(0) = 0 and sign(x) = 1 for all x ≥ 1. Sign is primitive
recursive: Prec[S ◦ 0, 0] in sloppy notation.

Similarly the inverted sign function is primitive recursive:

sign(x) = 1 •− sign(x)

Relations 46

As usual, define the characteristic function of a relation R

charR(x) =
{

1 x ∈ R
0 otherwise.

to translate relations into functions.

Definition
A relation is primitive recursive if its characteristic function is primitive
recursive.

We will use analogous definitions later for all kinds of other types of
computable functions: Turing, polynomial time, polynomial space,
whatever.

Digression: Sets and Functions 47

The idea that one can identify an arithmetic relation R ⊆ Nk with a
function Nk → 2 may seem quaint and totally obvious.

Not so. In 1882 Cantor published his eponymous theorem, but instead of
saying that the powerset has strictly larger cardinality he stated (in
essence):

|S → 2| > |S|

The collection of functions S → 2 is just another way to describe the
powerset of S.

Equality and Order 48

Define E : N2 → N by

E = sign ◦ add ◦ (sub ◦ (P2
1, P2

2), sub ◦ (P2
2, P2

1))

Or, less formally, but more intelligible:

E(x, y) = sign((x •− y) + (y •− x))

Then E(x, y) = 1 iff x = y, and 0 otherwise. Hence equality is primitive
recursive. Even better, all standard order relations such as

̸=, ≤, <, ≥, . . .

are primitive recursive (so we can use them e.g. in definitions by cases).

Closure Properties 49

Proposition
The primitive recursive relations are closed under intersection, union and
complement.

Proof.

charR∩S = mult ◦ (charR, charS)
charR∪S = sign ◦ add ◦ (charR, charS)
charN−R = sub ◦ (1, charR)

2

In other words, primitive recursive relations form a Boolean algebra, and
even an effective one: we can compute the Boolean operations.

Arithmetic and Logic 50

Note what is really going on here: we are using arithmetic to express
logical concepts such as disjunction.

The fact that this translation is possible, and requires very little on the
side of arithmetic, is a central reason for the algorithmic difficulty of
many arithmetic problems: logic is hard, by implication arithmetic is also
difficult.

For example, finding solutions of Diophantine equations is hard.

Exercise
Show that every finite set is primitive recursive. Show that the even
numbers are primitive recursive.

DC is Admissible 51

Proposition
If g, h, R are primitive recursive, then f = DC[g, h, R] is also primitive
recursive.

Proof.
f = add ◦ (mult ◦ (charR, g), mult ◦ (charR, h))

Less cryptically

f(x) = charR(x) · g(x) + charR(x) · h(x)

Since either charR(x) = 0 and charR(x) = 1, or the other way around,
we get the desired behavior. 2

Bounded Sum 52

Proposition
Let g : Nn+1 → N be primitive recursive, and define

f(x, y) = Σz<xg(z, y)

Then f : Nn+1 → N is again primitive recursive. The same holds for
products.

Proof.

f = Prec[add ◦ (g ◦ (P n+2
1 , P n+2

3 , . . . , P n+2
n+2), P n+2

2), 0n]

Less formally,

f(0, y) = 0
f(x+, y) = f(x, y) + g(x, y)

Here we have written x+ instead of x + 1. Yes, that helps.

Exercises 53

Exercise
Repeat the proof for products.

Exercise
Show that f(x, y) =

∑(
g(z, y) | z < x ∧ R(z)

)
is primitive recursive

when g and R are primitive recursive.

Exercise
Show that f(x, y) =

∑
z<h(x) g(z, y) is primitive recursive when h is

primitive recursive and strictly monotonic. What if h is not monotonic?

Bounded Search 54

A particularly important algorithmic technique is search over some finite
domain.
For example, in brute-force factoring n we are searching over an interval
[2, n − 1] for a number that divides n. Or in a chess program we search
for the optimal next move over a space of possible next moves.
We can model search in the realm of p.r. functions as follows.

Definition (Bounded Search)
Let g : Nn+1 → N . Then f = BS[g] : Nn+1 → N is the function defined
by

f(x, y) =
{

min
(

z < x | g(z, y) = 0
)

if z exists,
x otherwise.

Keeping Things Simple 55

Note that f(x, y) = x simply means that the search failed. In a more
luxurious environment we might set a flag, throw an exception or some
such.

Here we want everything to be a simple as possible, and in particular
constrained to pure arithmetic. So we code failure as a numerical value,
basta.

BS is Admissible 56

One can show that bounded search is also admissible, it adds nothing to
the class of p.r. functions.

Proposition
If g is primitive recursive, then so is BS[g].

Exercise
Show that bounded search is indeed admissible (“primitive recursive
functions are closed under bounded search”).

Bounded Search II 57

This can be pushed a little further: the search does not have to end at x.
Instead, we can search up to a primitive recursive function of x and y.

f(x, y) =
{

min
(

z < h(x, y) | g(z, y) = 0
)

if z exists,
h(x, y) otherwise.

Dire Warning:
But we have to have a p.r. bound, unbounded search as in

f(y) := min
(

z | g(z, y) = 0
)

is not an admissible operation; not even when there is a suitable witness
z for each y. See Kleene’s µ-recursive functions.

Example: Primality 58

Claim (1)
The divisibility relation div(x, y) is primitive recursive.

Note that
div(x, y) ⇐⇒ ∃ z ≤ y (x ∗ z = y)

so that bounded search intuitively should suffice to obtain divisibility.
Formally, we have already seen that the characteristic function M(z, x, y)
of x ∗ z = y is p.r. But then

sign
(∑

z≤y
M(z, x, y)

)
is the p.r. characteristic function of div.

Primality 59

Claim (2)
The primality relation is primitive recursive.

To see why, note that x is prime iff

1 < x ∧ ∀ z < x (div(z, x) ⇒ z = 1).

The building blocks 1 < x, div and z = 1 are all p.r., and we can
combine things by ∧ and ⇒ . The only potential problem is the
(bounded) universal quantifier.
But this is quite similar to the situation with div from the last slide.
Time for a general solution.

Yet More Logic 60

Arguments like the ones for basic number theory suggest another type of
closure properties, with a more logical flavor.

Definition (Bounded Quantifiers)
P∀(x, y) ⇔ ∀ z < x P (z, x, y) and P∃(x, y) ⇔ ∃ z < x P (z, x, y).

Note that P∀(0, y) = true and P∃(0, y) = false.

Informally, and using the dreaded ellipsis,

P∀(x, y) ⇐⇒ P (0, x, y) ∧ P (1, x, y) ∧ . . . ∧ P (x − 1, x, y)

and likewise for P∃.

Bounded Quantification 61

Bounded quantification is really just a special case of bounded search: for
P∃(x, y) we search for a witness z < x such that P (z, x, y) holds.
Generalizes to ∃ z < h(x, y) P (z, x, y) and ∀ z < h(x, y) P (z, x, y).

Proposition
Primitive recursive relations are closed under bounded quantification.

Proof.

charP∀(x, y) =
∏
z<x

charP (z, x, y)

charP∃(x, y) = sign
(∑

z<x

charP (z, x, y)
)

2

Next Prime 62

Claim (3)
The next prime function f(x) = min

(
z > x | z prime

)
is p.r.

This follows from the fact that we can bound the search for the next
prime by a p.r. function:

f(x) ≤ 2x for x ≥ 1.

This bounding argument requires a little number theory. In general, the
theory of gaps between consecutive primes is quite difficult (consider
prime twins), but this result is not too bad.

Enumerating Primes 63

Claim (4)
The function n 7→ pn, where pn is the nth prime, is primitive recursive.

To see this we can iterate the “next prime” function from the last claim:

p(0) = 2
p(n + 1) = f(p(n))

Exercises 64

Exercise
Show in detail that the function n 7→ pn where pn is the nth prime is
primitive recursive. How large is the p.r. expression defining the function?

Exercise
Find some other closure properties of primitive recursive functions.

Primitive Recursive Bijections 65

As an example of a non-closure result we mention the following.

Theorem (Kuznecov 1950)
The collection of bijective primitive recursive functions is not closed
under inverse.

Sketch of proof. Define the Ackermann-like function

B0(x) = 2x

Bn+(x) = Bx
n(1)

B(x) = Bx(x)

It follows from monotonicity that the predicate “Bn(x) = y” is primitive
recursive, uniformly in n, x, y.

Contd. 66

Let R be the range of B : N → N , so R is infinite, co-infinite and
primitive recursive. Note that R is very sparse.

Let HX be the principal function† of X ⊆ N and define f : N → N

f(x) =

2 H−1
R (x) if x ∈ R,

2 H−1
R

(x) + 1 otherwise.

Then f is an primitive recursive bijection. Since B fails to be primitive
recursive, f−1 is not.

2

†The function that enumerates the elements of X in order.

1 Computability

2 Primitive Recursive Functions

3 Basic Properties

4 Comparing Models

TM versus PR 68

Burning Question: How does the computational strength of Turing
machines compare to primitive recursive functions?

Certainly, if Turing is right, TMs should be at least as powerful as p.r.
functions.

It is a labor of love to check that indeed any p.r. function can be
computed by a Turing machine. This comes down to building a TM
compiler/interpreter for p.r. functions. Since we can use structural
induction on the terms of our programming language this is quite
straightforward given an environment that supports pattern matching
(e.g., ML or Mathematica work well). On a Turing machine it is too
tedious for consideration, but not hard in principle.

But how about the opposite direction?

In a Nutshell 69

Using the coding machinery described above it is not hard to see that the
assertion “Turing machine M moves from ID C to ID C ′ in t steps” is
primitive recursive (i.e., corresponds to a primitive recursive relation).
This is not hard to show, just tedious.

But when we try to deal with “Turing machine M moves from ID C to
ID C ′ in some number of steps” things fall apart: there is no obvious way
to find a primitive recursive bound on the number of steps.

It is perfectly reasonable to conjecture that Turing computable is strictly
stronger than primitive recursive, but coming up with a nice example is
rather difficult.

Steps are p.r. 70

Proposition
Let M be a Turing machine. The t-step relation

C M

t
C ′

is primitive recursive, uniformly in M .

Of course, this assumes a proper coding method for configurations and
Turing machines.
For example, an instantaneous description is a triple ⟨T, i, p⟩ where
T : Z → Σ , i ∈ Z and p ∈ Q.
Position i and state p are trivial to code as an integer. For the tape
inscription T note that all but finitely values are blank, so we can simply
list all the non-blank entries.

((i1, a1), (i2, a2), . . . , (in, an))

which list can be coded by a single integer.

t Steps 71

Hence we can encode a whole sequence of IDs

C = C0, C1, . . . , Ct−1, Ct = C ′

again by a single integer and check in a p.r. way that Ci M

1
Ci+1.

A crucial ingredient here is that the size of the Ci is bounded by
something like the size of C plus t, so we can bound the size of the
sequence number coding the whole computation given just the size of C
and t.

Exercise
Figure out exactly what is meant by the last comment.

Whole Computations? 72

Now suppose we want to push this argument further to deal with whole
computations. We would like the transitive closure

C M

∗
C ′

to be primitive recursive.
If we could bound the number of steps in the computation by some
primitive recursive function of C then we could perform a brute-force
search.
However, there is no obvious reason why such a bound should exist: the
number of steps needed to get from C to C ′ could be enormous: recall
the Marxen-Buntrock machine.
Likewise, there could well be no p.r. bound on the size of the required
tape inscriptions, nor the head positions.

Again, there is a huge difference between bounded and unbounded search.

HG versus TM versus PR 73

Central Question: How does the computational strength of Turing
machines compare to primitive recursive functions?

It is a labor of love to check that any p.r. function can indeed be
computed by a TM.

This comes down to building a TM compiler/interpreter for p.r. functions.
Since we can use structural induction this is not hard in principle; we can
use a similar approach as in the construction of the universal TM.

Opposite Direction? 74

The cheap answer is to point out that some TM-computable func-
tions are not total, so they cannot be p.r.

This is technically rue, but utterly boring. Here are the right ques-
tions:

How much of a TM computation is primitive recursive?

Is there a total TM-computable function that is not primitive recur-
sive?

In a Nutshell 75

Using the coding machinery from last time it is not hard to see that the
relation “TM M moves from configuration C to configuration C ′ in t
steps” is primitive recursive.

But when we try to deal with “TM M moves from C to C ′ in some
number of steps” things fall apart: there is no obvious way to find a
primitive recursive bound on the number of steps.

It is perfectly reasonable to conjecture that TM-computable is strictly
stronger than primitive recursive, but coming up with a nice example is
rather difficult.

Steps are p.r. 76

Proposition
Let M be a Turing machine. The t-step relation

C M

t
C ′

is primitive recursive, uniformly in t and M .

Of course, this assumes a proper coding method for configurations and
Turing machines.
This is a straightforward application of the sequence numbers we
discussed last week.

t Steps 77

Likewise we can encode a whole sequence of configurations

C = C0, C1, . . . , Ct−1, Ct = C ′

again by a single integer.

And we can check in a p.r. way that C M

t
C ′.

A crucial ingredient here is that the size of the Ci is bounded by
something like the size of C plus t, so we can bound the size of the
sequence number coding the whole computation given just the size of C
and t.

Exercise
Figure out exactly what is meant by the last comment.

Whole Computations? 78

Now suppose we want to push this argument further to deal with whole
computations. We would like the transitive closure

C M C ′

to be primitive recursive.
If we could bound the number of steps in the computation by some p.r.
function of C then we could perform a brute-force search.
However, there is no reason why such a bound should exist, the number
of steps needed to get from C to C ′ could be enormous.

Again, there is a huge difference between bounded and unbounded search.

	Computability
	Primitive Recursive Functions
	Basic Properties
	Comparing Models

