
CDM
Other Models

Klaus Sutner
Carnegie Mellon University



Alternatives 1

History shows that there are several suprisingly different ways to define
computability:

J. Herbrand, K. Gödel: systems of equations.

A. Church: λ-calculus.

A. Turing: Turing machines.

Minsky, Shepherdson, Sturgis: register machines.

S. C. Kleene: µ-recursive functions.

E. Post: production systems.

A. A. Markov: Markov algorithms (string rewriting).

Z. Manna: while programs.



Why Not Just Turing Machines? 2

Turing machines naturally compute partial functions on words:

f : Σ? 9 Σ?

That is very convenient for complexity theory, but slightly less so for
arithmetic functions

f : Nk 9 N

For this to work we need to code natural numbers as strings (e.g. by
writing them in binary).

We can avoid coding entirely by using a machine model that manipulates
numbers directly: in that sense, register machines are preferable.



The Misery of TMs 3

Constructing an actual Turing machine for any particular purpose is quite
tedious. Try, for example, to construct a TM that performs multiplication
when the arguments are given in binary.

Plus, there are endless technical issues: read/write tapes, read-only
tapes, write-only tapes, one-way infinite tapes, multiple tracks, . . . None
of this is hugely complicated, but it requires careful attention to details.
Many arguments in complexity theory depend on these gory details.



The Glory of TMs 4

One of the reason’s Turing’s 1936 paper is so fundamentally important is
that he makes a huge effort to convince the reader that “effective
calculability” in the intuitives sense corresponds exactly to the power of
his machines.

See Turing 36.

Turing’s argument is utterly compelling (and, as far as Gödel was
concerned, ended the discussion as to how computability should be
defined).

http://www.cs.cmu.edu/~cdm/papers/Turing36.pdf


1 Herbrand-Gödel Computability

2 µ-Recursive Functions

3 The λ-Calculus

4 Church-Turing Thesis



Equations and Computability 6

Here is a way to tackle the computability question that stays close to
standard mathematical practice: write down equations and solve them to
obtain arithmetic functions.

We will allow the use of constant 0 and the successor function
x 7→ x+ 1. Recall that we often write x+ rather than x+ 1.

Consider the following equation E :

f(x) = x++

Intuitively, E defines the operation “plus two.” For example

f(2) = 2++ = 3+ = 4

This may seem utterly braindead, but hold on.



Numerals 7

The last chain of equations assumes basic arithmetic, but this is really
backwards: we want our equations to define arithmetic, not the other
way around.

To fix this problem, we will use numerals denoting natural numbers:

0 1 = 0+ 2 = 1+ 3 = 2+ . . .

In general, we have precisely one numeral n for every natural number n.

Writing 2 instead of 0++ is just syntactic sugar, nothing new is
happening here.

The previous example really should be written

f(2) = f(0++) = 0++++ = 1+++ = 2++ = 3+ = 4



WTF? 8

This is arithmetic; very simple arithmetic, but still:

f(2) = 2++ = 3+ = 4

This is just string rewriting, glorified word processing:

f(2) = f(0++) = 0++++ = 1+++ = 2++ = 3+ = 4

Needless to say, computers are very good at string rewriting.



Example: Addition 9

Time for a slightly more ambitious example. As Dedekind pointed out in
the late 19th century, we can define addition by the following system of
equations E :

f(x, 0) = x

f(x, y+) = f(x, y)+

We can check that E really defines addition:

f(3, 2) = f(3, 1+) = f(3, 1)+ = f(3, 0+)+ = f(3, 0)++ = 3++ = 4+ = 5



Equational Reasoning 10

If we wanted to be strictly formal about this, we would need to spell out
a few rules on how to manipulate our equations.

You already know these rules from high school:

Substitution:
We can replace a free variable everywhere in an equation by a nu-
meral.

Replacement:
A term f(a1, . . . , ak) can be replaced by a numeral b if we have
already proven f(a1, . . . , ak) = b.



3 + 2 = 5 11

(1) f(3, 0) = 3 subst of E1

(2) f(3, 1) = f(3, 0)+ subst. E2

(3) f(3, 2) = f(3, 1)+ subst. E2

(4) f(3, 1) = 3+ = 4 repl. (1), (2)

(5) f(3, 2) = 4+ = 5 repl. (4), (3)

Tedious and blindingly boring for a human, but completely mechanical
and easy to implement in any language with good support for pattern
matching.



Computations and Proofs 12

Note that the last table can be viewed either as

a detailed description of the computation that shows that f(3, 2) =
5, or as

a detailed proof of the assertion that indeed f(3, 2) = 5.

This is true in general: one can think of computations as proofs and,
conversely, of proofs as computations. Both a built according to the
same principles.



Willard Van Orman Quine 13

The utterly pure theory of mathematical proof and the ut-
terly technological theory of machine computation are at
bottom one, and the basic insights of each are insights of
the other.

W.V.O. Quine, On The Application of Modern Logic



Equational Derivations 14

This idea extends naturally to arbitrary systems of equations E : we can
manipulate the equations to derive assertions about concrete numerals.
With a little more effort we could define a notion of derivability (or
provability), usually written

E ` f(a1, . . . , ak) = b

Thus a derivation is a sequence E1, . . . , En of equations where either
Ek ∈ E or Ek is obtained by substitution or replacement from an earlier
equation in the sequence.
This is entirely similar to Gödel style proofs in first-order logic.



Herbrand-Gödel Computability 15

Definition
A partial function f : Nk 9 N is Herbrand-Gödel computable if there is a
finite system of equations E that has an k-ary function symbol f such
that

E ` f(a1, . . . , ak) = b ⇐⇒ f(a1, . . . , ak) ' b

for all ai, b ∈ N.

Note the hidden existential quantifier: f(a) ' b iff there exists a
corresponding derivation in E Computing the value of f is thus a search
problem.



Comments 16

Note that we assume f only to be a partial function: for some inputs a it
may not be possible to derive f(a) = b for any b. This is a bit of a
nuisance, but remember the comment at the end of the section on
evaluation: divergence is your friend.

Other, traditional names in the literature:

partial recursive functions or
general recursive functions.

This is rather misleading, since recursion (or inductive definition) is not
really the basic design principle here.



Wisdom 17

Science advances one funeral at a time.

Max Planck



Warning: Identity 18

Also note the mysterious notation, sometimes referred to as Kleene
equality:

α ' β

This means that either

both α and β are defined (the computations involved all terminate)
and have the same value, or
both α and β are undefined (some computation diverges).

By contrast, we write α = β if convergence is not an issue. For example,
for primitive recursive functions there is no problem.

In computability theory, identity is more complicated than you might
think.



Good News 19

We have not given a careful and detailed description of what we mean by
a “system of equations,” but it should be rather clear that any primitive
recursive function can be defined by such a system.

The basic functions successor, zero and projection are all defined in
terms of equations.

Composition and primitive recursion are also defined in terms of
equations (rename and combine).

Exercise
Verify the last two claims by writing down the appropriate systems of
equations.



More Good News 20

Recall our definition of the Ackermann function:

A(0, y) = y+

A(x+, 0) = A(x, 1)

A(x+, y+) = A(x,A(x+, y))

It follows immediately that A is Herbrand-Gödel computable: remember
our list-style approach to computing A.

Alas, it is far from clear that the evaluation function from above is
similarly Herbrand-Gödel computable (it is, but it is a pain to prove this
directly, we’ll take a different route).



Bad News 21

Not every system of equations defines a function. Here are two
counterexamples (we’ll drop the underscores in numerals from now on).

f(0, 0) = 0
f(x+, y) = f(x, y+)

g(x, 0) = x+

g(x, y+) = g(x+, y)
g(x+, y+) = g(x, g(x, y))

Exercise
Figure out what’s wrong with these systems of equations.



Closing the Gap 22

Systems of equations are naturally very appealing to any math person,
but less so from a computer science perspective: we need to filter out the
“right” systems of equations.

Unfortunately, as it turns out, there is no algorithm to do this: we can
not tell whether a system of equations defines an arithmetic function.

It is therefore rather tempting to try to expand primitive recursive
functions in a different way, by adding some other construction method
that closes the gap to full computability.



But beware . . . 23

One needs the constraints imposed by the Herbrand-Gödel approach:
otherwise one can use systems of equations to define much more
complicated functions.

The problem is that sometimes there is no finite way to deduce the value
of a function. For example, consider

f(x) = 2 · f(x+)

Clearly, the only solution is f(x) = 0, but we cannot tell in finitely many
steps: if we only consider arguments z ≤ k, then

f(z) = 2k−z

also works.



1 Herbrand-Gödel Computability

2 µ-Recursive Functions

3 The λ-Calculus

4 Church-Turing Thesis



(General) Recursive Functions 25

Definition
The clone of µ-recursive functions is defined like the primitive recursive
functions, but with one additional operation: unbounded search.

f(x) = min
(
z | g(z,x) = 0

)
Here g is required to be total.

Thus, f(x) = 3 means g(3,x) = 0, but g(2,x), g(1,x), g(0,x) > 0.



More Convergence 26

Note f is intuitively computable whenever g is: we just conduct a
potentially unbounded search for the least z such that g(z,x) = 0.

As a result, even though we insist that g is total, f will in general just be
a partial function: for some x there may well be no suitable witness z.

Warning: one cannot allow for g itself to be partial.

Exercise
Figure out why g partial would seem to ruin computability.



Terminology 27

This last clone of intuitively computable functions is due to Kleene.

The notion µ-recursive function comes from the fact that in the older
literature one often finds the more compact and rather cryptic notation

f = µ g

rather than a reference to min.

So now we have primitive recursive functions, register machine
computable functions, Herbrand-Gödel computable (partial recursive)
functions, and µ-recursive functions (and, from 251, Turing machine
computable functions).

How do these relate?



Comparisons 28

First off, primitive recursive is weaker than all the others (e.g.,
Ackermann does not work).

It is a labor of love to show that Turing machines can simulate register
machines, and vice versa.
One important point here is that the simulation is effective in the sense
that there is a primitive recursive function σ so that the Turing machine
with index e is simulated by the register machine with index σ(e), and
similarly for the opposite direction.

Exercise
Figure out the details of these simulations.



The Rest 29

So we are left with the question:

What is the relationship between

register machine computable,

µ-recursive and

Herbrand-Gödel computable?



HG implies Mu 30

Suppose we have a finite system E of equations that defines a (partial)
function f .

To show that f(x) ' y we need to construct a derivation that uses only
the given equations, plus substitution and replacement. With modest
effort one can show that this whole machinery is primitive recursive in the
following sense: there is a p.r. relation D such that

D(t, x, y) ⇐⇒ t is a derivation of f(x) = y from E

But then we can simply perform an unbounded search for the least such t
and extract the corresponding y.



Mu implies HG 31

We need to show how to express the min operator in terms of equations.
Here is a trick due to Kleene (1952).

Assume f(x) = µz(g(z, x) = 0). Introduce three new function symbols
α, β and G with equations

α(x, y+) = x

β(x, 0) = x

G(0, x) = g(0, x)

G(y+, x) = α(g(y+, x), G(y, x))

f(x) = β(z,G(z, x))

Ponder deeply. 2



Example 32

Note that α(x, 0) and β(x, y+) are both undefined.

Suppose
g(0, 5) = 3, g(1, 5) = 7, g(2, 5) = 0

We need to derive f(5) = 2.

Let’s calculate a few values for G:

G(0, 5) = g(0, 5) = 3
G(1, 5) = α(g(1, 5), G(0, 5)) = g(1, 5) = 7
G(2, 5) = α(g(2, 5), G(1, 5)) = g(2, 5) = 0
G(3, 5) = α(g(3, 5), G(2, 5)) = ↑
G(4, 5) = α(g(4, 5), G(3, 5)) = ↑



Example, Contd. 33

Now recall f(5) = β(z,G(z, 5)), which looks bad since there is a free
variable on the RHS.

But substituting z 7→ 0 or z 7→ 1 produces a divergent term on the right.

Substituting z 7→ 2 produces f(5) = β(2, G(2, 5)) = 2.

And substituting z 7→ r for r > 2 also produces a divergent term on the
right.

Done.



RM versus Mu 34

With a bit of effort one can convince oneself that µ-recursive functions
can be computed by a register machine: the unbounded search is no
problem, we can have a loop that increments a register until a witness is
found.

In the opposite direction, each step in a computation of a register
machine is primitive recursive, and by adding one unbounded search we
can express computations of a register machine in terms of a µ-recursive
function.

So, they are all equivalent, and there are simple (primitive recursive)
translations between the different models.



1 Herbrand-Gödel Computability

2 µ-Recursive Functions

3 The λ-Calculus

4 Church-Turing Thesis



Church’s Theory of Function Application 36

A. Church proposed an exceedingly elegant and highly abstract way to
define computable functions: the λ-calculus. In this model, there are only
functions; there are no special argument objects to which the functions
could be applied, so functions have to be applied to other functions.

This is at odds with one’s intuition that a function should somehow be of
higher type than the arguments it is applied to, and takes a bit of getting
used to.



The Calculus 37

We have a rectype of λ terms or combinators that are constructed as
follows:

There is a countable collection of variables x, y, xi, . . .

We use special symbols λ, (, ) and . (period)

All variables are terms, and the constructors are

Application (MN) is a term for terms M and N .

Abstraction (λx.M) is a term for x a variable, M a term.

We can define free and bound variables in the obvious manner.



Abbreviations 38

λx1 . . . xk.M for λx1(λx2(. . . (λxk.M) . . .))

M1M2 . . .Mk for (. . . ((M1M2)M3) . . .Mk)

Thus we implicitely curry: we decompose functions with multiple
arguments into a chain of functions (functionals) with single arguments.

This is different from ordinary use, and can be a little confusing: one
does typically not think of f(x, y) as f(x)(y).

Also, as usual, one omits parens whenever no harm results.



Reduction Rules 39

α-Reduction λx.M
α−→ λy.M [x/y]

Here y must not occur in M .

β-Reduction (λx.M)N β−→M [x/N ]
Here variables free in N must remain free.

The goal is to apply α and β reductions until no further “simplifications”
are possible and we have a term in normal form, an irreducible term.

We can think of the normal form as the “value” of the original term.
Applying reductions means we are computing the value of a term.



β-Equivalence 40

M and N are β-equivalent if M and N can be transformed into the
same term by a sequence of α/β reductions.

Notation: M β=N .

There are other reductions such as η-reduction:

λx.Mx
η−→M

provided that x is not free in M .

This is a kind of extensionality principle, but we will not pursue this here.



What Could Go Wrong? 41

Just about everything.

A term may not have a normal form.
Example: D = λx.xx, then DD β−→ DD.

A term might have multiple normal forms.
Fortunately, Church and Rosser showed that this is not possible.
The proof is hard.

Not all attempts at reduction may lead to the normal form, even if
it exists.
Example: (λxy.y)(DD)z fails if one tackles the λ in D.

Note that all these properties fit well if we are trying to use the
λ-calculus to express computability.



Fixed Points Everywhere 42

Theorem (Kleene, Turing, Curry)
There is a fixed-point operator Y such that, for every term M :
YM β=M(YM).

Proof.

Let D = λx.M(xx) so that Dt β=M(tt) for any term t.

Hence DD β=M(DD) and we have a fixed point.
We can abstract M from this and get

Y = λy.(λx.y(xx))(λx.y(xx))

2



Numerals 43

One might suspect that we need to somehow add natural numbers to the
calculus if we want to represent arithmetic functions.
Fortunately, they are already there, albeit in a somewhat opaque manner:
we can exploit iteration to express naturals:

fn(x) somehow represents n

More precisely, we have (Church) numerals

n = λfx.fn(x)

Note that f is just syntactic sugar, we don’t have special variables for
functions.



Arithmetic 44

Successor λnfx.f(nfx)

Addition λmnfx.mf(nfx)

Multiplication λmnf.m(nf)

Exponentiation λbe.eb

Predecessor λnfx.n(λgh.h(gf))(λu.x)(λu.u)

Some basic arithmetic functions expressed as λ-terms.

Exercise
Verify that these definitions work as advertised.



Logic 45

True λxy.x

False λxy.y

And λpq.pqp

Or λpq.ppq

Not λp.pTrue False

ITE λpqr.pqr

Some basic propositional logic expressed as λ-terms.

Exercise
Verify that these definitions work as advertised.



Combinatorics 46

Pair λxyf.fxy

First λp.pTrue

Second λp.pFalse

Nil λx.True

Foundations for lists as λ-terms.

Exercise
Verify that these definitions work as advertised. Devise a test for a list
being empty.



λ-Definability 47

We can now say that f : Nk 9 N is λ-definable if there is a term M
such that f(a1, . . . , ak) ' b iff Ma1a2 . . . ak reduces to b.

There are other ways to set up numerals, but one can show that they all
lead to the same fundamental theorem.

Theorem (Church, Rosser, Kleene)
An arithmetic function is computable if, and only if, it is λ-definable.



Proofsketch 48

It is a labor of love to express primitive recursive functions as λ-terms.
For example,

λx.0, λzfx.f(zfx), λx1 . . . xk.xi

represent the atomic functions, pairing can be handled via
λyzfgx.yf(zgx), and so forth.

The hard part is to deal with unbounded search as in
f(x) ' min

(
z | g(x, z) = 0

)
. But then f(x) = F (x, 0) where

F (x, z) =
{
z if g(x, z) = 0,
F (x, z + 1) otherwise.

But then we can exploit the fixed-point theorem to show that F is
λ-definable.



Opposite Direction 49

To show that λ-definable implies computable, first note that the
predicate “t codes a β-reduction from M to N” is primitive recursive: we
can arithmetize everything to translate all objects to natural numbers.

Each step in a β-reduction is clearly primitive recursive, as is the whole
sequence.

But then we need to add just one unbounded search to find the
appropriate t.



1 Herbrand-Gödel Computability

2 µ-Recursive Functions

3 The λ-Calculus

4 Church-Turing Thesis



The Key Ideas 51

We can specify a model M of computation by defining

a space C of possible configurations (snapshots),

a “one-step” relation,

an input and output convention,

a coding convention (if needed).

The details vary greatly, but we always have the same pattern.

Major Warning: Minute details about input/output/coding conventions
become really important in low complexity classes; higher up they are
mostly interchangeable.



Whole Computation 52

Given a one-step relation C M

1
C ′, multiple steps and whole

computations are defined in the obvious way:

C M

0
C ′ :⇔ C = C ′

C M

t
C ′ :⇔ ∃C ′′ C M

t−1
C ′′ ∧ C ′′ M

1
C ′

C M C ′ :⇔ ∃ t C M

t
C ′

A computation (or a run) of M is a sequence of configurations C0, C1,
C2, . . . where Ci M Ci+1.



Input/Output 53

One needs a way to provide input from some set X, a map

inp : X → C

as well as an output map to some set Y :

outp : C 9 Y

Both maps are very typically very simple, essentially just a bit of
re-formatting (they do not contribute to the complexity of the
computation).

A minor technical issue: the output map may only be defined on some of
the configurations (the “halting” configurations).



Models of Computation 54

C

Nk
N

C C ′

The number-theoretic scenario: input and output are natural numbers.



Models of Computation, II 55

C

C C ′

Σ∗ Σ∗

The string scenario: input and output are words over some alphabet.



Empirical Observation 56

For all the models mentioned so far, one can simulate model M in any
other model M′ (excluding, of course, the primitive recursive ones).

In fact, the cross-model simulation maps are all very simple (say,
primitive recursive).

Of course, the length of a computation may differ a bit in different
models, a major issue in complexity theory.



Church’s Proposals 57

Church’s Thesis I (1934):
Effectively calculable iff λ-definable.

Church’s Thesis II (1935):
Effectively calculable iff general recursive.

Gödel rejected these early proposals by Church.



Gödel’s Position 58

But then in 1936, A. Turing introduced his theory of computability based
on Turing machines. Gödel responded most enthusiastically to Turing’s
work:

This concept, . . . is equivalent to the concept of a “computable
function of integers” . . . The most satisfactory way, in my opin-
ion, is that of reducing the concept of finite procedure to that
of a machine with a finite number of parts, as has been done by
the British mathematician Turing.



Gödel Later 59

But I was completely convinced only by Turing’s paper.

See A. Turing [1936] and the almost simultaneous paper by
E.L. Post [1936]. As for previous equivalent definitions of com-
putability, which, however, are much less suitable for our purpose,
see A. Church [1936].

Gödel explains his position in 1968.

He always gave full credit to Turing, never to Church or himself.



Church’s Response to Turing 60

The first has the advantage of making the identification with
effectiveness in the ordinary (not explicitly defined) sense evident
immediately, i.e., without the necessity of proving preliminary
theorems.

Church, in his 1937 review of Turing [1936].



Church-Turing Thesis 61

Church was the first to become convinced that

All (reasonable) models of computation are equivalent, and
correspond exactly to our intuitive notion of computability.

So far (Fall 2018), there are no interesting objections to this idea. So
from now on we will often simply talk about “computable” functions and
reference specific models only when necessary.



The Cult of Hypercomputation 62

A lot of people would agree that the Church-Turing thesis also has a
physical interpretation:

All (reasonable) models of computation correspond exactly
to physically realizable computability.

This is much more problematic, since our actual universe appears to be
finite in many ways–we would need to ignore these constraints.

Alas, we have nothing resembling an axiomatization of physics, so there
is the logical possibility that some currently unknown physical
phenomenon would allow one “to break through the Turing limit.”

Possible, but not very likely. Forcryingoutloud, we can’t even factor
numbers.


	Herbrand-Gödel Computability
	-Recursive Functions
	The -Calculus
	Church-Turing Thesis

