
A Note on Culik-Yu Classes

Klaus Sutner
Stevens Institute of Technology

Hoboken, NJ 07030

Abstract

Culik and Yu suggested a classification of cellular automata into
four classes based on Wolfram’s earlier heuristic classification. The
purpose of this note is to determine the position of these classes within
the arithmetical hierarchy. We will show that Class One and Class
Two are Π0

2-complete whereas Class Three is Σ0
3-complete. Class

Four is trivial.

1 Introduction

In [6] Wolfram gave a heuristic classification of cellular automata into four
types. His classification is based on the evolution of configurations and uses
easily observable characteristics of the behavior of the cellular automaton.
In a recent paper by Culik and Yu [1] the authors formalize Wolfram’s clas-
sification. Again, four types of cellular automata are considered. The corre-
sponding classes will be denoted Class One, Class Two, Class Three
and Class Four. Informally, they are defined as follows. Let ρ be the
transition rule of a cellular automaton.

1. Rule ρ is in Class One iff every finite configuration evolves to a stable
configuration in finitely many steps under rule ρ.

1



2. Rule ρ is in Class Two iff every finite configuration evolves to a
periodic configuration in finitely many steps under rule ρ.

3. Rule ρ is in Class Three iff it is decidable whether a configuration
occurs in the orbit of another.

4. Class Four comprises all local rules.

Note that the classes form a hierarchy. It is shown in [1] that it is undecidable
to which class a given cellular automaton belongs. More precisely, their
arguments show that:

(a) Class One and Class Two are Π0
1-hard.

(b) Class Three is Σ0
1-hard.

By counting quantifiers, one can see from the definitions that Class One
and Class Two lie at level Π0

2 and Class Three at level Σ0
3 in the arith-

metical hierarchy. Thus there is a significant gap between the lower bounds
established by Culik and Yu and the obvious upper bounds. We will close
this gap and show that in fact:

(a′) Class One and Class Two are Π0
2-complete.

(b′) Class Three is Σ0
3-complete.

Thus Class One and Class Two are equidecidable with the problem of
deciding whether a recursively enumerable set is infinite. Similarly Class
Three is equidecidable with the problem of deciding whether a recursively
enumerable set is recursive.

Our arguments are based on a technical lemma which shows that the Gödel
numbers of Turing machines that halt on all configurations is Π0

2-complete.
This lemma also provides a proof for corollary 2 in [1] that does not use
cellular automata.

To keep this note reasonably short we refrain from repeating the basic defini-
tions of recursion theory. In particular we will not introduce the arithmetical
hierarchy and refer the reader to [2] or [3] for definitions of the classes Π0

2, Σ0
3

and so forth. The necessary definitions for cellular automata as well as for
Turing machines are presented briefly in the next section. Section 3 contains
proofs for the completeness results.

2



2 Definitions

We will consider exclusively one-dimensional cellular automata. Every cell
can assume a finite number of possible states; the collection Σ of possible
states is called the alphabet of the automaton. A map X : Z → Σ from the
set of all cells to the alphabet is a configuration of the cellular automaton.
C denotes the space of all configurations. A local rule is a map ρ : ΣN → Σ
where N ⊂ Z is a finite set, called the basic neighborhood of the rule. The
rule ρ is extended to a global rule (also denoted by ρ) ρ : C → C as follows.
Given a configuration X define for any cell c the local configuration at c,
Xc : N → Σ, by Xc(z) := X(c+ z). Then ρ(X)(c) := ρ(Xc).

For a state s in Σ let Zs be the local configuration defined by Zs(c) = s for
all c in N . Similarly Xs is the global configuration defined by Xs(c) = s for
all c in Z. State s in Σ is stable iff ρ(Zs) = s. Suppose s is stable. The
s-support of a configuration X is the collection of cells {c | X(c) 6= s}. The
configuration X is s-finite iff its s-support is finite. A configuration X is
periodic iff for some t < 0: ρt(X) = X. The orbit of X is the collection of all
configurations ρt(X), t ≥ 0.

We can now give a precise definition of the Culik-Yu classes.

The Classification

1. ρ is in Class One iff there exists a stable state s in Σ such that every
s-finite configuration evolves to Xs in finitely many steps under rule ρ.

2. ρ is in Class Two iff there exists a stable state s in Σ such that every
s-finite configuration evolves to a periodic configuration in finitely many
steps under rule ρ.

3. ρ is in Class Three iff it is decidable whether a configuration occurs
in the orbit of another.

Coding
We briefly indicate how to code rules, configurations and so forth as non-
negative integers. It is convenient to assume that Σ = {0, 1, . . . , k − 1} for
some k ≥ 2. Let ρ be an arbitrary local rule. To code ρ, we order the local

3



configurations lexicographically as Z1, .., Zkn where n := |N |. Then we code
ρ by

C(ρ) := 〈ρ(Z1), . . . , ρ(Zkn)〉.
Here 〈..〉 is any standard coding function, see e.g. [3]. Let Σ0 be the set
of stable states and s a symbol in Σ0. For a s-finite configuration X let
C(X) denote its code number. Also let Cons,e be the codes of all s-finite
configurations for rule ρe. Cons,e is primitive recursive uniformly in e and
s. It is straightforward to show that there is a primitive recursive predicate
Succ such that for all s-finite configurations X and Y we have

ρt(X) = Y iff Succ(t, C(X), C(Y ), C(ρ)).

Thus a configuration Y occurs in the orbit of another configuration X under
rule ρ iff

∃tSucc(t, C(X), C(Y ), C(ρ)). This shows that orbits are r.e. One can easily
construct rules with non-recursive orbits.

Turing Machines
Our completeness proofs below are all based on simulations of Turing ma-
chines on cellular automata. It will be convenient for our purposes to define
a Turing machine as a quintuple M = 〈Q,Γ, δ, q0, qH〉. Here Q is a finite set
of states, q0 ∈ Q is the initial state and qH ∈ Q is the halting state. Γ is the
tape alphabet of the machine. The partial map δ : Q×Γ→ Q×Γ×{−1,+1}
is the transition function of M. We assume that δ is defined everywhere ex-
cept on arguments (qH , σ), σ ∈ Γ. Thus M halts if and only if state qH is
reached at some point during the computation. We will always require M to
erase its tape before it halts. As is customary an instantaneous description
(ID) of M is a word in Γ∗QΓ∗ (where we assume that Γ and Q are disjoint).
We may assign a Gödel number e to every Turing machine. This provides
a standard enumeration (Me)e≥0 of all Turing machines. Notice that there
are primitive recursive predicates IDe and `σe (uniformly in e and σ) such
that I is in IDe iff I codes an ID of Me and x `σe y iff x, y ∈ IDe and Turing
machine e moves from the ID coded by x to the ID coded by y in σ steps.

For any number x ≥ 0 we write Ix for the initial ID on machine Me cor-
responding to input x. Me(x) ↓ denotes the fact that Me on Ix halts after
finitely many steps:

∃σ(Ix `σe qH).

4



Similarly we write Me(x) ↑ if Me fails to halt on x. For I in IDe we write
Me[I] ↓ (respectively, Me[I] ↑) iff Me started on ID I halts after finitely
many steps (respectively, fails to do so). In the future we will not distinguish
between IDs and their codes and write for example UqV `1

e U
′q′V ′ to indicate

that Turing machine number e moves from UqV to U ′q′V ′ in one step.

As usual let We := {x | Me(x) ↓} be the e-th r.e. set. For our completeness
arguments we will need the set of (Gödel numbers of) all Turing machines
that halt on all inputs and that halt on a decidable set of inputs, respectively.
More precisely define

TOT := {e |We = N}
and

REC := {e |We is recursive }.

It is well known that TOT is Π0
2-complete and REC is Σ0

3-complete, see, e.g.,
[2].

The major technical obstacle in the simulation of a Turing machine on a
cellular automaton is the following: in recursion theory one is only interested
in computations of Turing machines, i.e., sequences of IDs that start with an
initial ID Ix for some x. In the context of cellular automata, however, one has
to contend with the orbits of arbitrary configurations. Due to the fact that
as a set of words IDe is regular, it is not difficult to eliminate configurations
that do not correspond to any ID whatsoever. In fact, given the proper
coding, a cellular automaton can detect non-IDs in one step. A more serious
problem is caused by IDs that do not occur during any computation of Me.
We call such IDs inaccessible. Thus I in IDe is inaccessible iff

¬∃x, σ(Ix `σe I).

The set of inaccessible IDs of machine Me is therefore co-r.e. (or Π0
1 in the

arithmetical hierarchy). In fact, it is not hard to see that this set is in general
Π0

1-complete.

It may well happen that for some index e in TOT the machine Me fails
to converge on some inaccessible ID I. Define ALL to be the set of Gödel
numbers of Turing machines that halt on all IDs. Observe that ALL, unlike
TOT, fails to be an index set. In a lemma below we will show that there is a
primitive recursive function p such that for all e ≥ 0, machines Me and Mp(e)

accept the same inputs and Mp(e) halts on all its inaccessible IDs.

5



Upper Bounds

As is customary with decision problems, Class One may be construed as a
set of natural numbers: rule ρ is in Class One iff C(e) ∈ Class One. It
follows that Class One is Π0

2:

r ∈ Class One iff ∃s ∈ Σ0∀x ∈ Cons,r∃t(Succ(t, x,Xs, r)).

Similarly Class Two is in Π0
2: r ∈ Class Two iff

∃s ∈ Σ0∀x ∈ Cons,r∃0 ≤ t < t′, y ∈ Cons,r
(t < t′ ∧ Succ(t, x, y, r) ∧ Succ(t′, x, y, r)).

For Class Three we have r ∈ Class Three iff

∃e ∈ REC∀x, y ∈ Conr(∃tSucc(t, x, y, r)⇔ (x, y) ∈We).

Since REC is Π0
2, Class Three is Σ0

3.

3 Completeness Results

Throughout this section we will assume that state 0 is stable. The 0-finite
configurations are referred to simply as finite configurations. Our first step is
to show that TOT and ALL are recursively isomorphic. By Myhill’s theorem
we only have to show that TOT is one-one reducible to ALL and vice versa.
The next proposition contains the easy direction ALL ≤1 TOT.

Proposition 3.1 ALL is one-one reducible to TOT.

Proof. There is a primitive recursive function f such that

Mf(e)(x) =

{

0 ∀z ∈ IDe, z < x(Me[z] ↓),
↑ otherwise.

Hence f(e) ∈ TOT iff Me converges on all its configurations iff e ∈ ALL.
One can easily make sure that f is injective. 2

6



Lemma 3.1 There is an injective primitive recursive function p such that
for all e ≥ 0:
(1) We = Wp(e)

(2) Mp(e) halts on all its inaccessible IDs.

Proof. We will show that for any Turing machine Me there exists a modified
machine Me′ such that
- for any x ≥ 0 : Me(x) ↓ ⇐⇒ Me′(x) ↓, and
- for any inaccessible ID I of Me′ : Me′ [I] ↓.
Moreover, it will be clear from the construction that the index e′ can be
computed primitive recursively from e. As pointed out in the introduction,
the class of inaccessible IDs is in general Π0

1-complete. Thus we cannot effec-
tively eliminate these IDs. We consider instead IDs of Me with an additional
tag: the tag contains two numbers x and σ such that - supposedly - the ID in
question occurs after σ steps in the computation of Me on input x. A tagged
ID (x, σ, I) is correct iff indeed Ix `σe I. Unlike accessibility correctness of
tagged IDs is a primitive recursive property and can thus be verified by the
Turing machine Me′ . If the tag is correct, machine Me′ will generate the next
ID of Me. Also, the counter on the tag will be changed changed to σ + 1
to preserve correctness. Otherwise the machine Me′ halts. The process then
starts anew.

More precisely, the Turing machine Me′ functions as follows. Starting at an
initial ID Ix = q01x, machine Me′ first changes the tape inscription to

#1x##q′01x#

where q′0 is the initial state of Me. This new configuration of Me′ represents
the tagged ID (x, 0, Ix) of Me. Machine Me′ then cycles through the following
three phases.

Tape Verification

During this phase Me′ tests whether its tape contains a tagged ID of Me, i.e.,
an inscription of the form

#1x#1σ#UqV# (1)

where x, σ ≥ 0, U, V ∈ Γ∗ and q ∈ Q. If the verification fails Me′ halts.

7



Accessibility Test

In this phase Me′ will check whether the tagged ID on its tape is correct.
The portion of the tape used during the test are subsequently erased, so the
tape inscription will be back to (1) after successful completion of the test.
Failure will cause Me′ to halt.

Next ID

We may now assume that the tape contains a correctly tagged ID (x, σ, I).
The machine now determines whether I is the halting configuration of Me.
If so, Me′ also halts. Otherwise Me′ computes the next ID and replaces the
old ID on its tape by the new one. Furthermore it increments the counter σ
to σ + 1.

This completes the definition of Me′ .

Since on any input x ≥ 0 machine Me′ simply simulates machine Me, albeit
in a very circuitous fashion, we have that Me′ halts on x iff Me halts on x.
Hence We′ = We and it remains to show that Me′ halts on all its inaccessible
configurations. So suppose Me′ is started on an arbitrary ID and performs an
infinite computation. The crucial observation is that that Me′ can perform
only finitely many moves before it must enter a tape verification phase (recall
that IDs are finitary objects). As Me′ never halts the verification must be
successful, hence the tape inscription must have the form #1x#1σ#I# and
represents a tagged ID (x, σ, I) of Me. Next Me′ tests accessibility of I (for
machine Me). Since no failure occurs we must have Ix `σe I. But then
#1x#1σ#I# is also accessible for Me′ :

Ix = q01x `τe′ #1x#1σ#I#

for some number τ ≥ σ. Hence machine Me′ cannot perform an infinite
computation on an inaccessible ID and we are done. 2

Corollary 3.1 ALL, the set of Gödel numbers of Turing machines that halt
on all configurations, is Π0

2-complete.

Proof. With the preceding definitions we have

e ∈ ALL iff ∀I ∈ IDe(Me[I] ↓) iff ∀I ∈ IDe∃σ(I `σe qH).

8



Hence ALL is Π0
2. By the lemma e ∈ TOT iff p(e) ∈ ALL. Hence TOT ≤1

ALL which shows that ALL is Π0
2-complete. 2

With proposition 3.1 we can conclude that TOT and ALL have the same
one-one degree and are therefore recursively isomorphic. We can now local-
ize Class One, Class Two and Class Three within the arithmetical
hierarchy.

Theorem 3.1 Class One is Π0
2-complete.

Proof. By corollary 3.1 we only have to show that ALL, the set of Gödel
numbers of Turing machines that halt on all configurations, is reducible to
Class One. To this end we will construct a rule ρe for every e such that e is
in ALL iff ρe is in Class One. The construction of rule ρe is rather standard,
we therefore will omit any details and only give a brief description. ρe first
tests whether configuration X corresponds to an ID of Me (more precisely,
whether every isolated non-quiescent part of X corresponds to an ID; there
may several such parts). This is possible in one step if one augments the
tape alphabet of Me by indicator bits that determine the position of the
head relative to the symbol. If the test fails the quiescent configuration is
generated in O(n) steps where n is the number of cells in the support of X.
Otherwise ρe simulates the computation of Me on this ID. If Me ever halts
the quiescent configuration is generated, otherwise no stable configuration
occurs. Again the map e 7→ e′ is clearly primitive recursive and also injective.
Hence ALL ≤1 Class One and we are through. 2

Combining the lemma and the technique of the last theorem we obtain a
lower bound for Class Two and Class Three as follows.

Theorem 3.2 Class Two is Π0
2-complete.

Proof. We claim that e ∈ TOT iff ρp(e) is in Class Two. Here p is the
primitive recursive function of the lemma and ρi is the rule constructed in
theorem 3.1. To see this first suppose e is in TOT. Then Mp(e) halts an all
its IDs, whence every configuration evolves to the stable configuration X0

under rule ρp(e). On the other hand assume e is not in TOT and pick some
x such that Me(x) ↑. Consider the orbit of configuration

X = #x#0#Ix#

9



under rule ρp(e). It clearly contains configurations of the form #x#σ#I#
for all σ ≥ 0. Hence the orbit of X fails to be periodic and rule ρp(e) is not
in Class Three. 2

Theorem 3.3 Class Three is Σ0
3-complete.

Proof. Again let p be the primitive recursive function of the lemma and ρi
the rule constructed in theorem 3.1. Recall that REC is the collection of
indices of recursive r.e. sets. We claim that e ∈ REC iff ρp(e) is in Class
Three.

To see this first suppose We is recursive and let X and Y be two arbitrary
finite configurations of rule ρp(e). Note that it is decidable whether X cor-
responds to an accessible ID of Mp(e). If not, the orbit of X must be finite
and we can test whether Y occurs in the orbit by enumerating it. If X is
accessible, say, from initial ID Ix, we first test whether x is in We. This can
be done effectively since We is recursive. If indeed x lies in We the orbit of X
must again be finite and we can test whether Y occurs in it by enumerating
it. Otherwise the orbit of X is infinite but the configurations that occur in
it are essentially all of the form #1x#1τ#I#. Hence it is easily decidable
whether Y lies in the orbit of X: we have to execute at most τ cycles in the
computation of Mp(e).

For the opposite direction note that

x ∈We iff Me[Ix] ↓ iff Mp(e)[Ix] ↓ iff ∃t(ρtp(e)(q01x) = X0).

Thus x is in We iff the orbit of Ix contains configuration X0. Hence We is
decidable whenever ρp(e) is in Class Three. 2

4 Conclusion

We have shown that the natural hierarchy of cellular automata proposed
by Culik and Yu is computationally highly unfeasible. Not only are the
classes undecidable (i.e., they are not located at level ∆0

1 in the arithmetical
hierarchy), they are in fact recursively isomorphic to the index sets TOT

10



(Class One and Class Two) and REC (Class Three) respectively. TOT
is complete for level Π0

2 and REC is complete for level Σ0
3 of the arithmetical

hierarchy. Hence a powerful ad hoc argument is required to determine the
class of any specific local rule. It is hardly surprising that even for some
totalistic rules of width 3 their classification is not known, see e.g. [5].

It is interesting to note that a classification of finite cellular automata similar
to the Culik-Yu hierarchy meets with certain difficulties at level three. The
problem to determine whether a configuration occurs in the orbit of another
is in general PSPACE-complete even for one-dimensional finite cellular au-
tomata. In analogy to Class Three call a rule predictable iff one can solve
this problem in polynomial time. The existence of a rule that fails to be pre-
dictable is then equivalent to the assertion that P6= PSPACE, one of the
more notorious open problems of complexity theory. Hence one might expect
it to be rather difficult to characterize the class of all predictable rules. See
[4] for a number of results on the complexity of various decision problems
associated with the evolution of configurations on finite cellular automata.

Acknowledgements

It is a pleasure to acknowledge many helpful discussions with my colleague
S.L.Bloom.

References

[1] K. Culik II and Sheng Yu. Undecidability of CA classification schemes.
Complex Systems, 2(2):177–190, 1988.

[2] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw Hill, 1967.

[3] J. R. Shoenfield. Mathematical Logic. Addison Wesley, 1967.

[4] K. Sutner. The complexity of finite cellular automata. Submitted.

[5] S.Wolfram. Computer software in science and mathematics. Scientific
American, 251(3):188–203, 1984.

11



[6] S.Wolfram. Universality and complexity in cellular automata. Physica
10D, pages 1–35, 1984.

12


