
C o : r e p u t a b i l i t y ~:f R e c u r s i v e F u n c t i o n s *

g. C. SHEt'HERDSON

Univer.sity of Bristol, EnglandI

AND

H. E. STURGIS

University of California, Berkeley, USA

l. Introduction

As a result of the work of Turing, Post, Kleene and Church [1, 2, 3, 9, 10, l l
12, 17, 18] it is now widely accepted ~ that the concept of "computable" as ap-
plied to a function ~ of natural numbers is correctly identified with the concept
of "partial recursive." One half of this equivalence, that all functions computable
by any finite, discrete, deterministic device supplied with unlimited storage are
partial recursive, is relatively straightforward 3 once the elements of recursive
function theory have been established. All tha t is necessary is to number the
configurations of machine-plus-storage medium, show that the changes of con-
figuration number caused by each "move" are given by partial recursive func-
tions, and then use closure properties of the class of partial recursive functions
to deduce that the function computed by the complete sequence of moves is
partial recursive. Until recently all proofs [4, 6, 12, 13, 19, 20] of the converse
half of the equivalence, namely, that all partial recursive functions are computa-
ble, have consisted of proofs tha t all partial recursive functions can be computed
by Turing machines, ~ which are certainly machines in the above sense. Although

* Received December, 1961.
Visitor at the University of California, Berkeley, 1958-1959, when most of this work

was done.
There are some finitists or intuitionists who might deny that all general recursive func-

tions are computable, or even assert that the class of general recursive functions is not
well-defined. However, by speaking of partial recursive functions we avoid this difference
of opinion. For there is surely no doubt that the routines given here and elsewhere will
actually compute the value of a given reeursive function for a given argument at which
the function is defined, and will go on computing forever if the function is not defined at
that argument. Of course, there may now be a difference of opinion as to whether a given .
partial recursive function is general recursive, i.e. defined for all arguments; in fact, the
question of whether such a function is defined for one particular argument can be as difficult
as the Fermat conjecture. But disagreement on this or on the equivalent question of whether
the corresponding computational routine terminates or not does not affect the completely
finitist proof that for arguments for which the function is defined the routine will compute
its value.

2 Not necessarily defined for all arguments.
a Although the belief that all "computations" can be carried out by such a device must

be taken as an act of faith or a definition of computation.
4 Or Markov algorithms, which are similarly restrictive.

217

2t.8 J , C. S H E P I : I E R D S O N AND l[. E. S T U R (i I S

not difficult, these proofs are complicated and tedious to follow for two reasons:
(1) A Turing machine has only one head so that one is obliged to break down
the computation into very small steps of operations on a single digit. (2) It has
only one tape so that one has to go to some trouble tlo find the number o~e wishes
to work on and keep it separate from other numbers. The object of this paper is
first to obtain, by relaxing these restrictions, a form of idealized computer which
is sufficiently flexible for one to be able to convert an intuitive computational
procedure with littte change i~lto a program for such a machine. Since this sort
of computer plus a given fiaite program clearly tan be regarded as a finite,
discrete, deterministic device (plus unlimited storage), a very simple proof can
be given to show that all partial reeursive functions are computable. We then
gradually reintroduce restrictions (1) and (2), passing through a sequence of
definitions of intermediate forms of machine and ending with a form from which
we can not only obtain directly the computability of all partial recursive fune.

• 5 tions by a Taring machine with only two tape symbols ("mark" and k lank)
but by a very slight change, also the strong result of Wang [20] that erasing is

dispensable and that "shift left one square", "shift right one square", "mark a
blank square", "conditional transfer" (jump if square under scan is marked) are
adequate. In fact, by malting a~mther slight change we can deeide affirmatively ~
the question raised by Wang [20, p. 84] whether the "conditional transfer" can
be replaced by the "dual conditional transfer" (jump ff square under scan is
blank). The intermediate forms of machine or computational procedure are, we
think, of some interest in their own right. For example, in Section 8 we note that
a general-purpose computer could be built using one binatT tape and two heads,
the right-hand one being a ~Titing head which can move only to the right and
can print only when moving, the left-hand one a reading head which can als0
move only to the fight and can read only when moving (and may destroy what-
ever it reads in the process of reading it). In other words, the simple "push-
button" or "push-down" store, 7 in which "cards" with 0 or 1 printed on them
are added only at the top and taken off to be read only at the bottom, is a uni-
versal computing machine. In Section t0 we show that theorems (including
Minsky's resnlts [21]) on the computation of partial reeursive functions by ma-
chines with one and two tapes can be obtained rather easily from one of our
intermediate foiTns. So we might sum up by saying that we have tried to carry
a step further the "rapprochement" between the practical and theoretical
aspects of computation suggested and started by Wang [20]. However, we do
not. discuss questions of economy in programming; our aim is to show as simply
as possible that certain operations can be carried out. In the interests of reada-

A fact which is important at least to metamathematic ians , since it is the basis of
many undecidabil i~y proofs•

This has Mso been established recently (by a different method) by C. ¥ . Lee [24].
7 We are grateful to A. L. Tritter for pointing out that our use of these expressions is

nonstandard; apparently a "push-down" store is an ~,Iso (last-in, first-out) store, ~-hereas
we describe an FIFO (first-in, first-out) store•

COMPUTABILITI(OF I{ECURSIVE FUNCTIONS 219

bi l i ty we have r e l ega t ed to an a p p e n d i x cer ta in c o m p u t a t i o n a l de ta i l s a n d
S~ippl~:':~e ntars~ r emarks .

Note. There have recently appeared papers by Ershov [5], Kaphengst [8] and Peter
[15] which :~lso provide simple proofs of the computabili ty of all partial recursive functions
by vari()us kinds of idealized machines or computational procedures. These are all similar
to each other and to the methods of this paper but have interesting differences in approach.
Ersl~ov starts from a very wide and elegant definition of algorithm, which is particularly
suitable for dealing with the theory of programming of digital computers; Peter starts
from a general form of block diagram, and Kaphengst from an idealization of a digital
computer. We comment later (Appendix A) in more detail on the differences between the
operations used in these approaches and those used here; although all the sets of operations
are eq~ivalent, the present method appears to be best adapted to our purpose of start ing
from operations in terms of which all part ial recursive functions are easily computable,
progressively breaking these down into simpler operations, and ending with the very few
basic operations of a non-erasing Turing machine.

Kaphengst 's approach is interesting in that it gives a direct proof of the universality of
present-day digital computers, at least when idealized to the extent of admitting an in-
finity of storage registers each capable of storing arbi trar i ly long words. The only ari th-
metic operations needed are the successor operation and the testing of two numbers for
equality (other operations of the usual kind for transferring numbers from other addresses
to and from the mill and the order register are also needed, of course). The proof of this
universality which has been taci t ly assumed by all concerned with electronic computers
since their inception seems to have been first written down by Hermes, who showed in
[7] how an idealized computer could be programmed to duplicate the behavior of any Turing
machine.

2. Un l im i t ed Register M a c h i n e (U R M)

This , our first a n d mos t f lexible mach ine , consis ts of a d e n u m e r a b l e sequence
of' reg is te rs n u m b e r e d 1, 2, 3, - - . , each of which can s tore a n y n a t u r a l n u m b e r
9, 1, '2, . • • . E a c h p a r t i c u l a r p r o g r a m , however , involves on ly a firfite n u m b e r of
these regis ters , t he o the r s r e m a i n i n g e m p t y (i.e. con ta in ing 0) t h r o u g h o u t t h e
c o m p u t a t i o n . T h e bas ic in,~tructions (orders , c o m m a n d s) a re as follows (he re

(n}, (n'} deno te r e s p e c t i v e l y the con t en t of reg is te r n before a n d a f t e r c a r ry ing

out the i n s t r u c t i o n) :

a. P(n) : add 1 to the number in register n, i.e. {n'} -- (n}-t-1.
b. D(n): subtract 1 from the number in register n, i.e. (n'} = (n } - l . ((n) ~- 0).
c. O(n): "clear" register n, i.e. place 0 inn it, i.e. (n') = O.
d. C(m, n): copy from register m into register n, i.e. (n'} = (m}.
e. J[E1]: jump to exit 1.
f. J(m)[E1]: jump to exit 1 i f register m is empty.

Note.%
(1) This set of instructions is chosen for ease of programming the computation of part ial

recursive functions rather than economy; it is shown in Section 4 that this set is equivalent
to a smaller set;.

(2) There are infinitely many instructions in this list since m, n range over all positive
integers.

(3) In instructions a, b, c, d, the contents of all registers except n are supposed to be
left unchanged; in instructions e, f, the contents of all registers are unchanged.

2.~0 J. C. SHEI'HERDSON ANI) IL E. STURGtS

(4) The P, D of 2, b, stand for PJigINT, DELETE, which is what they amount to when we
pass to the next stage of representing the naturM number x by a sequence of z marks.

(5) Itlstruetion b is used in our programs only when register n is non-erupt, y, so we leave
the definition of the machine incomplete to the extent that we do not specify whae would
happen if it were applied to an empty register (e.g. no effect at, all, or STOI) wit;bout result).

(6) Instruction d is defined only for '/~ ¢ 'n; we make this rest, riction rather than saying
this is an instruction C(n, n) which does nothing at all, since the subroutine we give later
for C @~, n) in terms of the other instructions would go on computing forever if vz = n
(it would continually subtract and add 1 to n).

In s t ruc t ions a, b, c, d, are called single-exit ins t ruct ions and are said to have
only the normal exit or exit O. This means tha t when t h e y occur in a program
there is no choice to be m a d e ; the machine s imply proceeds to the next line of
the program. Ins t ruc t ion f, J (m) [E 1] , however , is t h o u g h t of as a two-exit in-
s t ruc t ion: if register m is non -empty , take the normal exit (i.e. proceed to the
next line of the p rog ram) ; if register m is e m p t y , t ake exit 1. W h e n ~his instruc-
t ion occurs in ~ p rog ra m it will a lways be in the f o r m J (m) [n] , indicat ing that
to take exit I you proceed to line n. I n s t ruc t i on e, J [E1] is s imilarly thought of
as a two-exi t ins t ruc t ion; in this case, however , the " n o r m a l " exit is never taken.

A l though we do no t have here a n y basic ins t ruc t ions wi th more t h a n two exits
it is convenient to give a definit ion of p r o g r a m which would app ly also in such
a case, since for later machines we wish to use subrout ines with more t h a n two
exits. So we define a program, (or rout ine) as a finite sequence of l lines, each line
being of the f o r m I[m~, • . . , m~], where I[E1, • • . , Ek] is an inst ruct ion, k is the
n u m b e r of non -no rma l exits of I , and m~, - - - , mk are integers betweell 1 and
l + 1 (where it is unders tood t h a t if 7~ = 0 the line s imply consists of t alone). In
following such a p rog ra m the machine s tar ts on line 1 and proceeds thus : when
on line i . I [m ~ , . . . , m~] it carries ou t ins t ruc t ion I and proceeds to line i + l ,
m~, - • . , or m~: depending on whe ther the s ta te of the registers is such tha t the
0 th (no rma l) , 1st, - - . , or k th exit of ins t ruc t ion I is to be taken; on arri\,ing at
the non-exis tent line l ÷ 1, it stops. For example, the p rog ram

1. J(n)[4]
2. D(n)
3. J[1]

could be wr i t t en more ful ly:

1. Proceed to line 2 i f register n is non-empty, to line 4 (i.e. stop) i f it ~is empty.
2. Subtract 1 from number in register n.
3. Jump to line 1.

[t is easily seen to have the same effect as O (n) .
Following Wang , we make extensive use of subroutines. A subrout ine S is like
p r o g r a m except t h a t (like a n ins t ruc t ion) it m a y have several exits, e.g. we

~lse subrout ines such as O(n)[E1] , "clear register n and proceed to exit 1":

1. J(n)[El]
2. D(n)
3. J[1]

COMPUTABII~ITY OF RECURSIVE FUNCTIONS 221

To obtain a definition for subroutines of this kind we have only to take the
~tbove definition of a program and allow the m~, • •. , mk to range over E l , • • •, Ek
as well as 1, - •. , l-F 1. t Iere/~ will be the number of non-normM exits of the sub-
routi~e. The basic theorem about subroutines of this kind, which (following
Wang and other writers on eomput ing machines) we take as being sufficiently
obvious not to need a formal proof (which is a little tedious) is tha t if such sub-
routines are used as new single instructions in the formation of other subroutines
and programs and so on, then all the resulting programs could be obtained with
the original set of basic instructions. The formal proof of this is obtained by
showing how to expand these subroutines in re ims of basic instructions whenever
they occur i~ other routines or subroutines. For illustration, consider the case
of ~ routine or subroutine U with 1 lines:

1. U1

j . (]j

L Uz

whose j t h line is of the form Sims, • • ", ink] where ,5[E% . . . , Ek] is a (k + l) - e x i t
subroutine e×pressed in terms of basic instructions by m lines:

I. ~%

~gL ~n

To eliminate ~, simply replace Uj by these m instructions and convert all jump
references so that they go to the correct line in the new program; the resulting

program is

1. U~'
: :

j--1. U ; - i
j . ~|tt

j + , ~ - 1. S~"
jq-rn. U'i+~

lq-n~-l. Ut'

where U,' (i = 1, - . . , j - l , j ÷ l , . . . l) is obtained f rom U~ as follows: if U,
is I[nl , -" -, n,] then U / i s I[n1', . . . , n/], where n ' = n unless j < n ~ lq-1, in
which case n ' = n + m - 1. Similarly, if S, is I[nl , . . ", n,] then S~ pp is I[nd% . . . ,
n, '] , where n" = n + j - 1 if 1 G n ~ mq-1, n" = m i ' i f n = Ei (i = 1,

• -., I~).

3. Computability of Partial Recursive Functions by the URM

A single-valued function (not necessarily defined for all arguments) whose
arguments and values range over the natural numbers is partial recursive if it

222 J . C. SHEPHERI)SON AND H. E, ~,TUJ{GIS

can be o b t a i n e d f rom t h e in i t ia l fm~ctio:t~s of s c h e m a t a I , I I , H I below by means
of a f ini te n u m b e r of a p p l i c a t i o n s of s c h e m a t a s IV, V, \ 7 :

I. S(a:a) = z~+l
II . O'~(x~ , . . . , x~) ~ 0

I I I . U~'~(x~ , . . . , x,,) = x~
IV. [Co~xeos~TlOX] U h, g~ , . . . , g,,~ a re p a r t i a l r e c u r s i v e so i s the j ' u n c l i o ~ f defined

b y f (x ~ , . . . , z , d = h (g ~ (z ~ , . . . , x , d , " " , g , ~ (x ~ , . . . , :c,d).
V, [PRIMITIVE ilECUI{SlON] I f g, h a r e p a r t i a l r e c w r s i v e .so i s l he j '~u~c~ion f defined

b y f (O , x~ , " " , x~,) = g(x~ , " " , x ~) ,

f (z + l , x~ , "'" , a:,~) = h (z , f (z , :v~ , " ' " , x~) , x2 , " ' " , x , J .

VI. [LEAST NUMBER OPEIR~,kTOII] I f g i s p a r K a l r e c u r s i v e s o i s t h e f u n c t i o n f d e f i n e d by

f (x l , " " , x~) = , y [g (x l , - " , z,~ , y) = ()].

N o t e . In schema VI, the " ~ y " , "the least y such tha t" , is to be interpreted thus:
f (x ~ , " . . , x ~) is defined to be y0 when g(x~ , . . . , x , , , yo) = 0 a n d g (x l , . . . , z , , y) is de.

f i n e d but non-zero for y < y0 ; if no such y0 exists, then f is undefined.

W e now show t h a t al l p a r t i a l r ecurs ive func t ions a re c o m p u t a b l e b y the URM
in the fo l lowing sense: for each p a r t i a l r ecurs ive f u n c t i o n f of n a r g u m e ~ t s and
each set of n a t u r a l n u m b e r s x~, - - -, x,~ ,y, N (y ¢ x ; , for i = 1, •. • , n ; :v~, . . . ,

z ~ , y =< N) t h e r e e x i s t s a r o u t i n e R ~ v (y = f (X l , ' " ",Zn))such t h a t if {:h,% ' " , {z=)
a re the in i t i a l c o n t e n t s of reg is te rs x ~ , • . - , x , ~ , t hen if f ((x~}, • - • , @~)) is un-
def ined the mach ine will no t s top ; if f ((x~) , • • -, (x~)) is def ined the nmchine will
s t op w i th (y), t b e f inal c o n t e n t of reg i s te r y, equa l to f ((xl}, - • . , (z, ,)) , arid with
the final c o n t e n t s of al l reg is te rs 1, 2, •. • , N excep t reg i s te r y the s ame as their
in i t i a l c o n t e n t s ? This is the m o s t conven i en t fo rm to choose for t he i~ltuitive
proof t h a t al l p a r t i a l r ecu r s ive func t ions are c o m p u t a b l e , s ince we wish to pre-

serve the a N u m e n t s for subsequen t ca lcu la t ions ; if, however , a f inal rout ine is
w a n t e d which leaves o n l y the va lue of t he func t ion a n d erases the con ten t s of all
r eg i s te r s less t, h a n or equa l to N excep t y, th i s can o b v i o u s l y be o b t a i ~ c d from
the a b o v e rou t ine b y a d d i n g the in s t ruc t ions 0 (1) , . . . , 0 @ - - 1) , 0 (? / + 1) , . . - ,

O (N) . W h a t we musft Imw give are sub rou t ine s for e o l n p u t i n g o u t r i g h t the
ini t iM func t ions of s c h e m a I, I I , I I I , a n d for s e h e m a t a IV, V, V I subrou t ines for
c o m p u t i n g f f rom g iven sub rou t ines for c o m p u t i n g g, h. W e give these below:

I . S U B ~ O V ~ I N E R ~ (y = S (x))

1. C (x , y)

2. P (y)

II . SUBROUTINE R N (y = On(x1 , "'" , X~))

1. O (y)

I I t . SUBROUTINE R N (y = U i n (X l , " ' " , Xn))

1. C(x~, y)

s I t is convenient in stating these to allow functions of 0 arguments (i.e. constants) so
that the n in schemata I I -VI ranges over the values 0, 1, 2,

Obviously we cannot hope to preserve the contents of a l l registers except, y--we must
have some place to do "rough work"- - i t is important in the induction to have this lower
bound N on the addresses of registers possibly disturbed.

C O M P U T A] H L I T Y O F t i E C U R S I V E F U N C T I O N S 2 2 3

l \ : . SI 'Btt . ()(T [NI ; /~N(Y -- f(..Cl , " ' " , Xn)) USING S U B R O U T I N E S F O R g , h , W H E R E f *S
I) E F I N E I) B Y S C H E M A [~ ' l ' f l [;S :

f(:c~ , . . . , z , ,) = h (¢ ,q (z~ , . . . , x ,~) , . . . , g , ~ (z , , . . . , x ~))

1. h ' N . ~ i (N - } - I = g l (x , , " " , x .))
: : :

'm.. R.~.~,,,()V+',,. = . q , , (x , , - . . , xn))
m - } - l , h ' N , . , (y - - h(N-~--l, . . . ,N-~m))

k : o t e . Registers iV-{ 1 , - - . , N km at'(} used to hold g ~ , . . . , 5',,, since all registers
1, ... , J\" (excepl, y) must, be left unchanged by RN.

V [. S u t ~ I ¢ () I T I N E 1.'O1¢. R N (y = f (x l , ' ' " , X n)) (. S I N G S U B R O U T I N E F O R g W I t E R E f I S

DE~,'~'E~) B ~ V [, ~rHVS: f (x , , " " , X ,d = ~ y [g (x , , ' " , X= , y) = 0]

1. O (y)

2. R~:+,(Nq-1 = g (x , , . . . , x , , y))

3 . J (N + i) [4] , P (y) , J[2i

Here and later we no longer number each line of a subroutine; this means
simply that we are using for our lines certain subroutines. Clearly, the only in-
slructi(ms which need to be numbered are those to which a jump is made. Two
other ~bbreviatory techniques are worth introducing now, via. if I is an instruc-
tion or subroutine, then l ~' stands for the result of performing I n times, i.e. for
(tL~ sut)routil~e 1. I, 12. 1, . . . , n . I . Similarly, if I is a single exit instruction
or subroutine which does not affect register n then I ('~> stands for the result of
p(,rforming [(n} times and reducing (n} (the number in register n) to zero; it,
(am be oI)taincd thus: I . J(n)[2t , [, D(n) , ./[l].

V. ',4~ B a O I T ' r l N E 1 2 N (y = f () ' , , - ' ' , X~)) USING SU BRO I V r I N E S FOR g , h W H E R E f *S

~)~:FINED By SCHEM.~ V , T H U S : f (0 , x ~ , - - - , x,~) = g (x 2 , " " , x,~),

j ' (z q - 1 , x~ , " ' , x ~) = h (z , f (z , x e , " ' " , x ,~), xe " ' " , x.,~):

1. /~N(Y = g (x e , " " , X , ,)) , 0 (N + I)
2. { R N + . ~ (N + 2 = h (N + l , y , x ~ , " " , z , ,)) , C (N - t - 2 , y) , P (N + I) } (~)

3. C (N ~ i , a:~)

This completes the proof that all partial recursivc functions are computable
by the URM. We have simply followed the intuitive argument by which one
convinces oneself th,~t one could in fact compute all values of all functions de-
tinable by] , . . . , V I . We have chosen a set of basic instructions large enough to
make the programming straightforward. Kleene [12, p. 363] proceeds somewhat
similarly: "An intuitive calculation by schemata (I) - (VI) is accomplished by
repetitions of a few simple operations, such as copying a number previously
written (at a determinate earlier position), adding or subtracting one, deciding
whether a given number is 0 or not 0. We shall first construct some [Turing]
machines to perform such operations as these." However, he does not give ex-
[)licit programs in terms of these operations but proceeds immediately to the
one-dimenskmal tape and the construction of particular Turing machines. By
deferring these steps we are able to get his result and the stronger result of Wang
quite simply from the same intermediate form.

~2~4 J, C, SHEPtHER1)SON ANI) Ill. li'. S[FllrI./(4IS

4. t~e&zctfon of Basic I'nstr~zctions

We now try to reduce the instructions to a smaller and simpler set.. The most
obvious candidate for such replacement is tile copy instruction d. The subrouthle
which springs to mind for defining this in terms of the or.her instructions is [0
keep adding one into register n and subtracting one from register m until the
latter is empty. This certainly copies the contents of register m into register n
but utffortunately it destroys the originM. We can avoid this by making two
copies at once and afterwards copying one of them back itlto register 'm. However,
this will not give exactly C(m,n), since the originM contents of the register
(N + 1, say), used to hold the second copy, will have been destroyed. What we
can obtain in this way is a bounded copy subroutine CN(m,n) defined for m,
n ~ N, m ¢ n, thus:

Cw(m,n): Clear register n, copy contents of register m into ie, leaving conlents of all
registers 1 , . . . , n - l , nq-1, . . . N (including m) unchanged.

Before considering this subroutine, note that it can be used iastcad of C(m,n)
in the above routines, since an appropriate bound N can ahvays be determined
for the nuInber of registers whose contents we need to keep unchanged. Indeed,
consider the bounded analogues of all our basic instructions:

a~. Paz(7~) d~. Cv(m,n)
b l . D~(n) e l . J ~ (E 1]
c~ . O~v(n) f t . J~-(m)[El]

(for all m,n,N with m,n =< N), these being defined as having exactly the same
eft'Get as the original unsubseripted instructions, except that whereas the latter
were required to leave the contents of all registers (execpe n) unchanged, the
new weaker operations are only assumed to leave all registers (except n) less
than or equal to N unchanged.

I t is easily seen that these operations, with suitable bounding subscript N,
could replace the original ones in all the routines given so far, since each of these
needs only a bounded number of registers (in subroutines I -VI the number 0f
registers needed is N, N, N, N+m, N+2, N + I , respectively). In f~ct, this is
true of every routine regarded as a function from a given finite set of registers
{1, - . - , No} to a given finite set {1, . . . , N~} of registers. For each routine, R is

• 1 0 finite and is unchanged by its own operatmn so there exists a number N,e stleh
that R neither affects nor is affected by any registers greater than NR ; hence if
we take N = max{N0,N,,N,/ and bound all operations by N the resulting pro-
gram will be equivalent from this point of view. Since this :is the only way we
do regard routines we can say that the bounded set of operations is equivalent ~
to the original set.

~0 Since the URM, unlike p resen t -day electronic computers , has no means of working
on and a l t e r ing i ts program.

*~ If, however, a rout ine is regarded as es taMish ing such a fune t iou for all N(, , N~ or as
a funct ion of the whole infinite to t a l i ty of registers, t hen the bounded opera t ions are weaker.
No single program formed from the bounded opera t ions can be given which always (regard-
less of what par t i cu la r effect the actual Nq:)ounded opera t ions may have o~ the registers

COMPUTABII~ITY Ol! ICECURSIVE FUNCTIONS 2 2 5

We ~ow give ~ series of reduetiorls of ~his set of bounded ins t ruct ions .

J. ~(rI.II[f)U~I?INE FOg dj , C~¢(m,n) IN TF, RMS OF al ~ bl , e l , e i , fl
l. 0x('n), ON~.~(N+I)
2. {PN~(N-bl) , PN.+.~('n)}('d
;'~. [p N ÷ , (,lra) } (N+I)

It, is t.() 1)e unders tood here t ha t the ins t ruc t ions J , J (m) , which are involved

whe~ 1if/ca 2, 3 are expanded (in accordance with the defini t ion of I (m) given in

S(~(::lio~ 3 ~fl:)ove), are also given the appropr ia te b o u n d i n g subscr ip t Nq-1 .

Nulc. It is interesting to compare Wang's way [20, p. 73] of dealing (in slightly different
circumstances, viz. a non-erasing Turing machine) with this difficulty that the original is
destroyed in the process of copying. He arranges for the original to be not completely
destroyed but only "defaced" so that it is possible (by a different routine) later to copy
once more from the defaced originM; in this second copying the original is completely
destroyed. This leads to somewhat more complicated programs than our method; however,
it is only by eliminating the copy operation at this stage, where we can still create space
for "rough work" iust by bringing in another register, that it is possible to see easily that
i~ cam be done this way; the resulting program for making two "simultaneous" copies with
a non-erasir~g Turing machine would involve a large number of operations of pernmting
the contents of the significant part of the tape.

~. SUBROUTINE FOR Cl , ON(n) IN TERMS OF bt , e~, ft
1. J~.(n)[2], D~(n), J~-[1]

We now show how to e l iminate the j umps e~,f~ in terms of the dual fl of f~ :

f~ . J~(m)[E1]: jump to exit 1 i f register m is non-empty

3. SVmZOUT~Nn FOR fl , JN(m) [Et] IN TERMS OF e~ , fl
1.],v (m)[2], Jg [El]

4. SUBROUTINE FOR e~, JN[E1] IN TERMS OF a i , f l

I. PN+~(N~-i), JN+~(N+I)[E1]

~,\f(': flfl.V({ llO~.V St tOWII :

,1.1. f 'or each nah~.ral number No and ectch program. P of the U R M , there exists

(~ program having the same effect as P on registers 1, . . . , No and composed only of

instrz~ctions f rom the fi)lfowing list (N = 1, 2, • • . , n = t , 2, . • •)

at . PN(n): (n'} = (n)+ l
b~. Dr(n) : (n') = (n) - i
f~ . .JN(n)[E1]: jurnp to exit 1 f f (n) ~ O,

greater than N) has ttle same effect for all N on the first N registers (or on all registers)
~s the operation C(m, n). Note, however, that subroutines (1) and (4) given below for de-
fining copy and JuMp, in terms of the other operations disturb the contents of only one
register; so if there is one additional register 0 available for this use (an "arithmetic uni t"
er "mill") then these subroutines do show that tile original set of instructions a , . . . , f is
equivalent to the set a,b,e,f (or a,b,c,f) in the strong sense that for each program P of the
origin~d Ut{M (plus the new register 0) there exists a program th in the reduced set of in-
structions w'hich has the final effect as P on all the registers 1, 2, 3,-. . . The same applies
to the set a,b,f, Mthough here slight changes are necessary in programs (1) and (2) to avoid
register 0 being used simultaneously in conflicting ways. The remaining set mentioned
in Appendix A, a,b,f plus an initiM 0, is adequate only if a second additional register is
aw~ilnble to hold this 0.

~2(~ d. (!. SH14PHE}{1)S{}N AND 11. E. S~]'/Jt{(;lS

~c/~/'c #~e s u b s c r i p t N denotes that the conLc~lt o f r e g i d e r s N q - I , N q - 2 , . . . "may be,

aZtere d b!t the i n s t r u c t i o n . [~ par t ic~&u' , alg part'ia, g rccur,~ivc j:uncl'io~l,~ ~u'c com.pula.

bge ~tsin(i t/~ese i n s t r u c t i o n s o'nIy,

This set of ins t ruc t ions is f~zirly obvious ly m i n i m a l ; f o r a fuller discussion and
compar i son with the operatio~is used by K a p h e n g s t [81t, E r s h o v [5t and Peter
[15], see Appe~,dix A; reduct ions in the m m , b e r of registers used are ('onsidered
in Seeticms 7, 8, 10.

5. P a r t i a l R e c u r s i v c Funct ior~s Over a Gc~cra l A l p h a b e t

W h e n c o m p u t i n g a func t ion f of na tu r a l n u m b e r s and using, say , the decimal
representa t ion , it is some t imes conven ien t to th ink of the cor responding ftmeti0n
f~ f rom decimal expressions to decimal expressions defined by f l (d) equal to the
decimal r ep resen ta t ion of f (' n) , where n is the n u m b e r of which d is the decimal
representa t ion . For example , if we wish to write a p r o g r a m for the computation
of such a funct ion it is in the last analys is the func t ion j'~ which m u s t be con-
sidered. I n this ease, as has been shown in Sect ion 4 for example , it is enough to
show how to ob ta in the dec imal funct ions cor responding to the func t ions S (z) =

x + I , P (: c) = x - l , i.e. how to add and subtract , 1 f rom n u m b e r s expressed in
decimal nota t ion . Howeve r , for some of the more eomplex ways of representing
na tu ra l n u m b e r s which are considered later , it is easier to work t h r o u g h o u t with
funct ions of express ions or " w o r d s " over a general a lphabe t . B y an alphabet a

we m e a n a finite set {al , . • -, a.~} of ob jec t s called letters; a w o r d ove r the alphabet
a is a finite sequence a~, . . - a,:, (r = 0 is a l lowed; this gives the null word A)
of le t ters of (~; t.V((~) denotes the set of words over (~. B y ana logy wi th the usual
defini t ion of par t i a l reeurs ive func t ion of na tu r a l n u m b e r s quo ted in Section ,3,
we m a y define the par t ia l recursive funct ions over ~ (i.e. wi th a r g u m e n t s and
values in IV(e .)) to be the func t ions ob ta ined by app l ica t ion of the following
s c h e m a t a :

L * . (i = t , . . . , . ~) & ~ (x ~) = x ~ a ~

II*. A " (z l , " " , :c,5 = / \
I I I * . U ~ (: e l , . " ,a:,~) = z~

IV*. I f h, g~ , . . . , g,, are partial recursive over (~, so is the func t ion f d4r~ed b!j
f (x , , " ' " , x , ,) = h (g , (x , , " " , x ~) , " ' " , g i n (z , , " ' " , x , .))

V*. I f g, h~ (i = l , . • • , s) are partial recursive over ~ , so is the func t ion f defined by
f (/ \ , ace, --- , z , ,) = g (x e , . . . , x ~) , f (z a ~ , x e , . . . , x ~) =

h ~ (z , f (z , * e , " ' " , x ~) , x 2 , . " , x , ,) , (i = 1 , . . . s) .

VIi*. (i = 1, . . . , s). I f g is partial recursive over Og, .so is the func t ion f defined by
J'(x~ , . . . , x~) = u~y[q(xl , " " , z~ , y) = A], wherez,:y[g(xl , . . . , x, , y) = A]
means " the shortest word y composed entirely of a~ (i.e., of one of the forms
/ \ , a ~ , a ~ a i , a ~ a ¢ a . a ---) such that g (x t , - - . , x ~ , y) = /\, and g (z , , - - . , x , , , yl)
is defined (and ~/',,) for all y, of this form shorter than y.

Noles .

(1) T h e v a r i a b l e s x~ , . . . , x,, , y , z r a n g e o v e r W (C) .

(2) xa,: d e n o t e s t h e c o n c a t e n a t i o n of x a n d a,: , i . e . t h e w o r d o b t a i n e d b y p l a c i n g al on

the right-hand end of the word x.
(3) The partial recursive functions of natural numbers are included if the tmtural mlm-

COMflUTAB~LITY OF RECURSIVE FUNCTIONS 227

bet n is identified with the n-letter word a~ ~', i.e. a~a~ . . . a~ on the single-letter alphabet
6h = {all.

(4) It might appear more natural to use in VI* a u-operator giving the first word (no
restriction on its form) in a certMn fixed ordering of W((~) which satisfied the given con-
dition. However, this would commit us to assigning (arbitrarily) this fixed ordering. As
far as geimra]ity goes, the two forms are easily seen to be equivalent provided the ordering
is primitive recursive, i.e. using the above identification of natural numbers with words
in ~, provided ~he function n(x) giving the number of word x in the ordering and the func-
tion W(x) whose value for x = al" is the nth word in the ordering (and whose value for
words ~mt composed entirely of a~ may be assigned arbitrarily) are primitive recursive over
(t, i.e. definable by schemata I*-V* only. (The usual lexicographic ordering certainly satis-
ties this condition.)

(5) It can easily be seen that it would have been enough to have only one of the s sche-
mata VIi*, We include them all for the sake of symmetry.

(6) It is more usual to define partial recursive functions over ~ in terms of a GOdel-
immbering of W(05) by saying that a function is partial recursive over (1 when the cor-
responding function of G6del-numbers is partial recursive. This is easily seen to be equiv-
alent to the definition given provided the GSdel-numbering is primitive recursive (see
note 4 above); the familiar GSdel-numberings certainly are). The present approach seems
to us to be more natural; it is similar to that of Post [17], Marker [13], and Smullyan [22],

6. Co~p~ttability of Part ial Recursive Functions over ~ by the URM((~)

We now give the paral lel for a general a l phabe t to the a r gume n t s of Sections

3, 4. Tile detai ls are so s imi lar to the case a l ready deal t wi th t h a t we shall relegate

them to A p p e n d i x B and mere ly s ta te the final r e s u l t - - t h a t all par t ia l recursive
funct ions over (~ are c o m p u t a b l e on the U R M (a) whose ins t ruc t ions are:

(N = 1 , 2 , . . . ; n = 1 , 2 , . . . ; i = 1 , . . . , s) .

a~. P~i) (n): place a~ on the (righl-hand) end of (n)
b l . DN(n): delete the first (left-most) letter of (n} ((n} ~ A)
flq J~i)(n)[E1]: jump to exit 1 if (n) begins with a~

Notes.
(t) The subscript N, as in Section 4, signifies that, apart from making the operations

described above, the contents of registers 1, -.- , N are unaltered, although the eontents
of N ÷ i , N+2, . . . may be changed.

(2) As before, (n) denotes the content of register n.
(3) Instruction b~ will be used only when (n} is non-null.
(4) The reason for choosing operations of adding at the end and deleting and jumping

from the beginning of a word is that it is the simplest combination to use for building up
the subroutines for copying and primitive recursion. It is clear that one must jump and
delete from the same end in order to be able to do anything useful, but the addition of
letters to a word could take place either at the other end (as here) or at the same end, since
it is easily seem that one could then reverse a word if one wished to add to the other end.
However, this reversal needs a second register; in the later reduction to a single register
only the combination given above (and its opposite) is adequate.

7. Limited Register Machine (L R M)

Observe now t h a t the U R M can be replaced b y a mach ine which has a t a n y

time a finite b u t var iab le n u m b e r N of registers a n d wi th ins t ruc t ions possibly

228 J . C. S I [E P I I E R D S O N ANI) t l , E . S T U R G I S

depending on iV. The Limited Register Machine (L R M) has for the numerical
(single letter a lphabet) case the following inst~ructions:

a l • P R y (n) : add 1 to (n}
bl . D,v(n): subtract 1 froth (n}
71 •],~,(n)[E1]: jump to exit 1 ~f (n} ¢ 0
hi . N ~ N + i : bring in a new register, numbered N + I
ii . N -~ N - l : remove (empty) register N

In the general a lphabet ease we speak of an L R M (a) and replace instructions
a~, b~, ~ above by

al . P}~)(n): place a~ on the end of <n)
bl • D~(n): delete the first letter of <n}
f,'. J~°(n)[E1]: jump to exit 1 i f {n) begins with a~

where (~ = { a~, • • -, a~} and the range of i is 1, - . . , s. [As in Appendix C, b~,h' can
be replaced by a combined SCAN AND DELE~ operat ion s~. Scd~(n) [El, • •. , Es].] ~2

Here the N denotes tha t the instruction has the indicated effect when the total
number of registers is N; we do not care wha t would happen if it were applied
when the number of registers is different f rom N. The range of N is 1, 2, 3 . - . for
all instructions except h~ where it is 0, 1, 2, 3, • • .; the range of n is 1, 2, . . . , N.
I t is supposed tha t the above instructions have exact ly the effect specified, i.e. do
not al ter the contents of other registers.

We first show how to obtain a stronger fo rm N - ~ N - 1 of i~, "remove the not
necessarily empty register N " :

1. P~(N)
2. Daz(N), J.v(N)[2]
3. N - - ~ N - 1

This is for the single-letter alphabet . For the general a lphabet , replace P~.(N)
by P2P (N) and]~.(N)[2] b y J ~) (N) [2] , . . . , J~) (N) [2],

The above instructions, apa r t f rom h~, i~, are exactly analogous to the bounded
forms of the instructions for the U R M . We have

7.1. All partial recursive funct ions are computable by the L R M .
To prove this we need only take each routine R ~ (y = f (x l , . . . , x , ~)) etc.,

previously given for the U R M with bounded instructions, find the maximum
bounding subscript M which occurs, replace all the bounding subscripts by ~//

~2 However, these two sets are not completely equivalent. The subroutine for s~ in terms
of b~,f1' given in Appendix C works with the new meaning but the subroutine for h ' , j~(o (n),
in terms of s~ must be modified by the insertion of N -~ N-~I, Nd-1-4 Nd-2 at the beginning
of the first line, and N+2 --,~ N + I , N + I --~N at the end of the last line (where N o~N-1
is defined by 1. Sed~(N) [1, .-. , 1],N --4 N - l) . Even with this modification the subroutine
is not equivalent to J.~r (o (n), since if the jump is taken it is taken from a position where
there are N+2, not N registers in use. But when it occurs in a complete program with
only the single (i.e. normal) exit, this can be compensated for by replacing the line m,
say, to which the jump is taken, by two lines m. N - 4 N + l , Y d - 1 - ~ N+2, m+l.
N+2 - ~ N ÷ i , N + I -~N, old line m, taking the jump now to line m + l and suitably renum-
bering all other lines and jumps to them.

COMI'UTABH,ITY OF t lECURSIVE FUNCTIONS 229

a~d, if M > N, a d c l i n s t r u c t i o n s N - - ~ N + l , N + ! - - ~ N + 2 , . . - , N + M - 1

--> N + M at the beginning and N + M --~1 N + M - 1 , • • . , N + I --~1 N at the end.
L~ eo~meetior~ with later reductions to Turing Machines we note here two

special cases of subroutines for the computat ion of a partial recursive function
j'(x~, . . . , :cO which are of use. If we take R,+, (n + 1 = f(1, . . . , n)) and precede
it by n --> n + l , we get a routine which when started with the first n registers
contailfing x , , . . . , x,, finishes with n + l registers containing x~, . . . , x ~ ,
f (x , , - . - , x~O. If we add a routine for copying tim contents of register n + l into
register il and deleting all registers except register 1, we get as final form a single
register containing f (x ~ , . • . , x~) , which is the nearest way of displaying the an-
swer, although the former routine which preserved the arguments was useful in
the inductive proof tha t all partial recursive functions were computable.

8./~eduction to a Single-Register Mach ine (S R M)

Instead of speaking of registers of the LRM, we may think of the state of its
storage medium at any time as a sequence (1}, . . - , (N} of numbers, or in the
general case, words over an alphabet (~. This suggests yet another way of looking
at tile matter ; namely, we can think of (1} , - . - , (N} as a single word A on the
alphabet a U {,}. From this point of view, however, the basic instructions of the
LRM (a) are ra ther complicated, involving as they do changes in the middle of
the word A. I t is natural to t ry to follow Post [17] and replace these operations
by simpler ones which affect only the beginning and end of A.~a The obvious set
to t ry is the analogue of the set we have used for the LRM, i.e., to regard A as
the content of a Single-Register Machine (SRM) which has the same instruc-
tions applicable to this register as the L R M does for each of its registers:

a. p (o : add a~ to the end of A
b. D: delete the first letter of A
f'. j(O[E1]: jump to exit 1 i f A begins with a~

Here we suppose that alphabet (~ U {,} is labelled a0(,), a ~ , . . . , a ~ so that i runs
from 0 to s in these instructions. Since there is now only one fixed register, we
have shorn the instructions of all subscripts and other marks which are now
unnecessary.

We now show how to obtain subroutines for the operations of the L R M (a)
in terms of these basic instructions applied to the single word A = A~, • •. , A~
where A t , •. -, A~v s taM for the contents of registers 1, • •. , N of the LRM. The
key to this is a subroutine T for transferring a word on ~ from the beginning of
the string to the end, i.e. for sending A~, A2, . - . , AN into A2, . " , A.v, A1.
We first define the jump J , jump if A ~ /X (i f N > 1 the w o r d A is always
nomnull since it contains a t least a comma, so that in this case] is an uncon-
ditional jump) : J[E1] = J(°)[Et], Jm[E1], - • ", J(~)[E1].

~a The fact that Post was concerned with generating sets of words whereas we are con-
cerned with programs yielding at most one result makes it difficult to use his results directly.
In fact it appears to be easier to proceed in the other direction and obtain his results from
ours. (See footnote 14.)

,--OO J . C. S H E P H E R D S O N A N D t[. E . STURG,IS

We now define T as:

1. p(o)
2. JO)~3], ... , Y(')[s+2], d(°)[s+3]
3. D, t 'C~), ,T[2]
: :

s+2. D, P % 3[2]
s+3. D

We can now obtain the L R M (a) operations in the natural way-- -by bringing
the word we want to operate on to the beginning (for operations b~, ft') or end
(for operat ion a~) by applying T the appropriate number of times, carrying out
the corresponding operation of the SRM and then restoring the word to its
original position by T. In full:

• r ,~ T y - n aq P~)(n) = 1. ~ , p(o,
b1 . Dee(n) = 1. T '~-1, D, T ~v-''+l
h ' . J ~) (n) [E l] = 1. T"-~, J(')[2], T~v-~% ./[a]

2. T ~'-~+*, dIE1]
hl . N ~ N + I = 1. p(o)
il . N ~ N - 1 = 1. T ' w l , D

Here (as
we have

before) T" stands for T, • - . , T (n t imes) . Taking this together with 7.1

8.1. Al l part ial recursive J~nct ions over (~ are computable by a single-register
machine wi th alphabet (~ U {,} and operationa

a. p(o: A .-~ Aa~
b. D: a~A ~ A
f'. J(O[E1]: jump to exit 1 i f A begins with a~

or (see Appendix C)

a . p (. o :

s. Scd[E1, . . . ,E(s+I)] :
A ~ A ~ i

scan the first letter of A; i f A = A , take the normal exit;
i f first letter of A is ai , delete this and take exit i+1
(i = O, . . . , s) .

These results m a y be improved slightly; namely, the operat ions f' ,s need not
be defined when A = A . For we can easily write the above programs so that
f ' ,s are never applied to blank words. One way of doing this is s imply to introduce
an additional register (i.e. comma) in the second line of the p rogram and remove
it in the line before the last.

Here i ranges f rom 0 to s where (~ = {al, • •. , a,} and a0 is the comma. As noted
in Section 7 the program for computing a func t ion f can be wri t ten so tha t applied
to A1, • - -, A,, it yields A~, • •., A~ , f (A t , • • -, A,,) or so tha t it yields simply
f (A1 , • •. , A ~). In fact if f l , • • ", f~ are m part ial reeursive funetions of A L, • • ", A,~
it is clear tha t we can write a program which yields f~(A~ , . . . , A ,O, " " ,

f , ~ (A~ , • • . , A n) . If we take a as the single letter a lphabet {1} and use 0 as a
comma, this shows tha t all partial reeursive functions of natural numbers are
computable by a machine with a single one-way tape, two tape symbols 0, 1 and

c o M P [;T.\ BI LIT Y OF t{ECUB.SIVE FUNCTIONS 231

. i i .

i tape writ ing

[i reading --[-~

I result of
! scan ~
i ~ *"-I control

center
and

k ~_ p rogram
direct ions to s tore

move and
scan

. ~ . _ _]

directions to
move and
pr in t

Fig. 1

head

~wo hea(ls---a reading head at the left-hand end and a writing head at tile right-
l~at~ct end, each capable of moving to the right only and connected by a suitable
control center and program store (Fig. 1). The adequacy of instructions a,s
(see Appe~ldix C) shows that both reading and writing heads need be capable
otfly of reading and writing while moving--so that the tape could be magnetic
tape. The reading head "deletes" simply by moving one square to the right;
since the tape can never be scanned again when it has passed to the left of the
reading head it does not matter if in the process of moving and scanning the
reading head destroys the tape completely) 4

~4 These i n s t r u c t i o n s a,s (in tile weakened fo rm where s is n o t app l ied to a nul l word)
provide a s imple t r a n s i t i o n to P o s t no rma l sy s t ems . I f we have a p r o g r a m of m l ines on an
a lphabe t g = ~ao, . . . , a,} we cons ide r a P o s t no rma l s y s t e m on a l p h a b e t g ' =
{a0 , . . . , a~ , q~ , . . . , q,~,} o b t a i n e d as fol lows: for each l ine of the p r o g r a m of the fo rm
i. , ~ c d ~ t ~ , . - . , i .~+~l i n t roduce " p r o d u c t i o n s " q~ajP --~ Pqi i+ 1 (j = 1, --- s-t- l) , for
eaei~ !iae i. p(i) add p r o d u c t i o n s q~P -~ Paiq~+~ , and finally add the p r o d u c t i o n s a i P -+
f 'a i (j = O, . . . , s) (for g e t t i n g the q back to t h e beg inn ing again) . I t is eas i ly p r o v e d
thaL if W, W~ are w o r d s on (~ then q~W ~ q,~W~ by these p roduc t i ons if a n d on ly if the pro-
gram s t a r t e d on W would end wi th I.V~ . So if we now t ake such a p r o g r a m for t he c o m p u t a -
t ion of a pa r t i a l r eeu r s ive func t i on f (n) which is def ined on a nom'ecur s ive se t and t akes
the value 0 when def ined , we ob t a in a normal s y s t e m such t h a t t h e p rob l em w h e t h e r
qjl" => q.~ is unso lvab le . The reverse s y s t e m is one in which the p rob l em qm ~ q~l~ is un-
solvable , i.e. th i s s y s t e m wi th in i t ia l a sse r t ion q,,, ha s unso lvab le dec is ion problem. An
argumm~t used by P o s t [23, p. 5] shows t h a t the s ame is t rue for the s y s t e m wi th all t h e
p roduc t ions m a d e s y m m e t r i c a l , viz. q~ajP ,-~ Pq~j+~ , etc. Us ing the fac t t h a t for e v e r y
recurs ive ly e n u m e r a b t e se t S of words over ~ the re ex is t s a func t ion f t ak ing t h e value 0
on S and unde f ined ou t s ide we see t h a t for each such se t S the re ex is t s a normal s y s t e m
(symmet r i ca l if des i r ed) on tm a l p h a b e t inc lud ing (t such t h a t , if W is a word on ~ , qlW
is deriw:d)le if and on ly if W belongs to S. To ge t the full resu l t of P o s t [17], or r a t he r a
result which impl ies i t , we m u s t ge t r id of t he q~ here . [['he eas ies t way to do th is is to use
a t r ick of P o s t ' s : s t a r t wi th a l p h a b e t

(U ' = { a 0 , . - ' , a s , a 0 , . . . , d . , , q l , " " , q , , ~ , ~ l , " " , ~ , , ~ }

i as tead of @' aad rep lace the above p r o d u c t i o n s by q~aiP -~ P{e]+l , q~P -+ Paj~x+1.
a P Pc~ (for all c~ (i (F ' , ~ , qi be ing def ined as a~ , q~ respec t ive ly) , P -~ P~/, .

~ J . c . SHEPI IERDSON AND H. E. STU[{GIS

Another physical realization of the SRM(Ct) is that of a stack of et~rds, each
printed with a symbol from (~, which can be added to only at the top a~d read
and removed only at the bottom. If instructions a, s are used we need to examine
the bot tom card only when it is removed so we see tha t a binary "push-down"
(push-button) store with instructions

(1) add card at top printed 0
(2) add card at top pointed 1
(3) remove bottom card; i f printed 0 j u m p to instruct ion m~

i f printed 1 j u m p to instruct ion m2

is a universal computer; i.e. supplied with a suitable program of instructions of
this type it can compute any partial recursive function in the sense that if tile
stack of cards is initially 1 ~ 0 1 ~2 0 . . . 1 ~" (where I q stands for a stack of z~
cards marked 1) thett it will finally be 1 s(~~'' ~). As shown in Appet~dix C,
instruction (3) can be weakened to

(3 ~) remove bottom card; "(f printed 0 proceed to next instruct ion
i f printed 1 j u m p to instruct ion m..

I t is of some interest to notice that the above instructions can be still further
weakened by placing the comma, used only for punctuat ion purposes, i~ ~t less
privileged position than the other le t ters--namely, by omitt ing the jump opera-
tions on the comma- -and having to know the number of commas in a word
before operating on it. The weaker set we wish to consider (which will be used in
Section 9 to obtMn the universality of weak forms of Tur ing machine) is:

al . P~)'. . add a~ to the end of A (i = 0, - . . , s)
b~ . D,v : delete the first letter of A
f~'. J ~) [E 1] : j u m p to exit 1 i f A begins with a~ (i = 1, . . . , s)

Here N (which takes values 1, 2 ,. • •) is one more than the number of commas
in A; i.e. it. is the number of words on (~ which A represents; these instructions
are to be used only on words containing the correct number of commas. The
result we want is

8.2. Theorem 8.1 holds for the weaker set of instruction.s {al , b l , f[}.

Since we no longer have j(0) the jump-on-comma, the previous subroutine
for transferring a word front beginning to end no longer works. However, if S
is any subroutine which jumps when finished (i.e. never takes the normal exit 0)
we can obtain (for N > 1) a subroutine Ts.(S) which, started on a word A~,
As, • • . , A~v, transfers the first word onto the end of the last one and then performs
subroutine S, i.e. goes to As ,. •., AsA~ and then performs S. 14~ T~v(S) is equal
t o :

1. 0) J .v [2], . . . , J ~) [s + l] , D~¢, S

: :

s + l . DN , P ~) , {1}

i,~ T h e {1} h e r e i s s i m p l y a n a b b r e v i a t i o n f o r t h e i n s t r u c t i o n of Line 1.

C O M P L T A B I L i T Y O F R E C U R S I V E F U N C T I O N S 233

We ~ow de:fine b y i nduc t i on on r a sub rou t ine R~v(r)[E1] which, s t a r t e d on
A t , ." ", A~ ,ai A,+~ , . . . , AN sends th is in to a~ A~+~ , . . . , A N , A~ , . . . , A , and
j u m p s to exi t 1:

(1) r = 0. RN(0)[E1] = 1. d~)fE1]
(2) r > 0. R~(r+l)[Li'll = 1. P~), i_"~+~(R~.(r)[E1])

Now a s u b r o u t i n e which s t a r t e d on A1 , " ", A~v sends this i n to a~A,, . . . , AN
and j u m p s to exi t 1:

/~(0)) 1 .~dt) / o " - dN*[fs'l] = 1. --N , t ~V+i , ls-+IUGv(N-1)[E1])

F ina l ly , T ~ , wh ich s t a r t e d on A1, - - . , AN sends this in to A~ , . . . , Ant, At :

T~V = J.. - - N , T ~ , ' + I (f l N * [2 D

2 . D~v

NOW as a b o v e we def ine for N > 1:
//)(g) a l . , ~ (n) = 1. ~/'~, *~-,TN'<O , ,N- -°

).,,~ 1 T ~ - n + l b~ . DN(n) = 1. ,¢ , D.v ,

h~. i V - + ; V ÷ I = 1. P~)

T N - I i l . N - - > N - - 1 = 1. >- , Da,"

h ' . J~)(n)[m] = 1. ~N , [m+l], ,VN---+I a N

with, in f , ' , t he c o m p e n s a t i o n ~aa2 of rep lac ing l ine m by

n - !
-7 ,v , old line m .

For N = 1, h, is def ined as above , i, is undef ined, and a~, b , , f~' a re defined b y :

a~. P i ° (l) = P~)
b~. D~(1) = D,
f~'. ,I~ ° (1)[/,'1] = ,/~O[Et].

9. Reductions To Turing Machines (T M)

No~e first t h a t t h e passage f rom a p r o g r a m to a t ab l e of i n t e r n a l s t a t e t r ans i -

t ions is i m m e d i a t e - - s i m p l y ass ign an in te rna l s t a t e for each l ine of the p r o g r a m

(when w r i t t e n o u t in fu l l) .
So we have on ly to concern ourse lves wi th ge t t i ng the ins t ruc t ions in to t h e

T M form, i.e. m o t i o n (one squa re left a n d r igh t) p r in t i ng a n d scanning b y a

single head. F o r m u l a t e d in t e r m s of ins t ruc t ions , a T M is a p r o g r a m of ins t ruc-
t ions for a m a c h i n e which has a single r e ad ing -w r i t i ng head mov ing on a l inear

~5 In this case the use of "compensated" subroutines is inevitable; for the given instruc-
tions a~ ,b~ ,fl' provide no means of jumping from a word A~ , . . . , AN when A 1 i s n u l l , s o

if n -~ 1 and A~, begins with a~ but A1 is null then J~)(n), which calls for a jump, cannot
be obtained by fm ordimwy subroutine on a~ ,b~ ,f~q

2~{4 J, C, StlEI 'H]!;I{1)SON A N D H. t:;, STt I{GiIS

t ape ~ hich is m a r k e d off in to squa re s and is infi~ite i,~ b o t h *~ d i rec t ions . At any

g iven t ime, t he head " c o v e r s " j u s t one squa re ; i t is capab le of r ead ing f rom aM
p r i n t i n g on th i s squa re on ly . T h e s y m b o l s i t can pr i r l t a re 0 (b l a n k , a0) and the
s y m b o l s f rom some non-nu l l a l p h a b e t ~ = {a~, . - . , a,}. T h e bas ic instructions

(i = O, . . . , s)

L move the head one square left
t~ move the head one square r ight
p (o p r i n t a~ ~7 (i.e. erase the s ymbo l opt the sq~x~re under" the he~d a~d re.

place i t by aO
Sc scan lhe square u n d e r the head; i f lhe symbol p r i x t e d on i t is a~ lake

exi t i + 1 (i = O, . . . , s)

F o r t h e sake of eas ier compa r i son w i t h ou r ea r l i e r f o r m u l a t i o n and wi th the
resu l t s of W a n g [20] we sha l l single o u t p(O), p r i n t 0, and d e n o t e i t by ./;' (erase),

a n d rep lace S c b y the e q u i v a l e n t se t of i n s t r u c t i o n s

(i = O, . . " , s) J (~ : j u m p to e z i t l 'if the s canned symboI is a~

So the set we cons ide r is

L, R , p<O (i = 1, . . . , s) , E (i . e . pC0>), , /<o (i = 0, . . . , s) .

W e sha l l see l a t e r that , E a n d jco> a r e d i spensab le .

W e now propose to use tl~e 0 as a c o m m a a n d r e p r e s e n t a word A i , - ' . , A,v of

the 8 R M (a U {,}) b y

............ OLA 10A ~0A~ . . ' 0A ,~-0 ~

where .~. ind ica tes t i le s t a n d a r d pos i t i on of t he r e a d i n g head *s on t h e ~" * h i s s square

to t he r i gh t of t he a r r o w a n d the h o r i z o n t a l l ine on the lef t i nd i ea fe s t h a t we do
no t ca re w h a t is p r i n t e d on the t a p e there . T h i s l eaves a c e r t a i n a m b i g u i t y - - t h e

s ame t a p e also r ep r e sen t s t h e sequences A , , • • • , A .~- , / ' \ ; Ax , • • • , A~. , /~\ , A;
etc. Th i s is of no eoncerrx since in c o m p u t i n g p a r t i a l r ecu r s ive func t ions over

we dea l a l w a y s w i t h a k n o w n n u m b e r N of w o r d s ove r cg.
T o t ie up wi th our p r e v i o u s resul ts , we m u s t g ive s u b r o u t i n e s for ca r ry ing out

the bas ic i n s t ruc t i ons of t h e S t { M (t ~ U {,}). As w e a k e n e d in 8.2, we clearly

~ Here we follow Post [16], Kleene [12] and Wang [20] rather than Turing [18], who used
a one-way infinite tape. However, as Wang remarks, the two-way tape machine as used here
(with the head never moving to the left of its initial position) is weaker than the machine
with a one-way tape and a specially marked initial square, since i t is deprived of the use
of this as a fixed point.

~r In some formulations of TMs the requirement is made that one should not order
pr in t a~ when the scanned square already has a,: on it,. I t is easily seen that one can always
write programs so as to avoid this since the scan operation allows one to observe the square
first before deciding whether to print; in fact the s (a+ l) weaker operations, "replace al
by a / ' (i, j = 0, . . . , s; i ~- j) could, for the same reason, replace the s + l operations p(i).

~ Kleene [12] and Wang [20] take the standard position of the reading head at the right-
hand end of the expression; it dea r ly makes litt le differenee which we choose; the left-hand
position saves a few orders in our subroutines.

COMPUTABILYfY OF RECURSIVE FUNCTIONS 235

cmtuot get the original N-independent orders in view of the ambigui ty of our
rep~'{'sentation. ~]°irst we need:

Sin3~OUTIN~; t~o: proceed to next blan]~ fo lhe Tight
l . /~, J (O[1] , . . . , 3 (, / [t]

Similadi% Lo. Now subroutines for operations a~, b~, f / o f the S R M (~ U {,})
&re :

'a~. po:~v = 1. L, l~oN, p (1) L0 N, t~
}u. D,v = i. E, R

i ' / . ,<v L~H = J(~)[E1]

Taking this together with 8.2 we obtain the result:
9.1. Eve<e~ p a r t i G reeursive f u n c t i o n f of n arguments over the alphabet ~ is

eom.p~.~tab!e by a T u r i n g m a c h i n e over the alphabet a U [0} in the fo l lowing sense:

i f the i~'~,itial tape conf igurat ion is

............ O ~x ~Ox~ . . . x,~_1Ox,~O ¢¢

then, i f f (z ~ , " • , x~) is undef ined the mach ine wi l l not stop; i f f (x l , . . . , x~) is

defined i t wi l l s top w i th tape conf igurat ion

............ Ob~Ox2 "" Ox,,Of(x~ , . . . , xn)O<

[As pointed out in Section 5, this could be replaced by OJ, f (x ~ , . . . , x,,)O ~ if
desired.]

8o (Kleene [12]) if the natura l number n is represented by 1 ~, i.e. 1 . . . 1
(n l ' s) , then all par t ia l recursive functions of natural numbers are computable
on a Turing machine with a lphabet [0,1], i.e. "b lank" and "nmrk . " Of course
this is ~m extremely uneconomical way of representing natural numbers; how-
ever, we can easily obtain a corresponding result, e.g. a decimal representat ion
in any scale. Consider, for example, the binary decimM represen ta t ion- - to avoid
corffusion with the use of 0 as blank, suppose tha t the symbols used in this are
1 and 2. Now the binary representat ion of f (x ~ , . . . , x,O is clearly ~° a part ial
recursive function over [1,2} of the words :%, . . . , 2~, which are the binary
representation of x~, • . . , x,~, so tha t 9.1 shows tha t a Tur ing machine over
{0,1,2} could compute f with respect to the binary representation, i.e. when
started with 0,L2~0 • ' ' 2,~0 it would finish with Oj.f(x~, . . • , x ,O0.

Moving toward the results of Wang [20] on the computabi l i ty of all part ial
recursive functions by T M s which have no erase operation, the first step is to
notice tha t with a very slight change in the meaning of the basic instructions

~9 This could be achieved, and the ambiguity avoided, if we did not deal with null words
or if a symbol different from 0 (and distinct from the letters of ~) were used as the comma.
Notice that the weakening which gave rise to the complexity in 8.2, namely, the omission
of "jump on comma" is not needed for the result 9.1 about ordinary TMs but only for ob-
taining the results of Wang for a particular representation using a nonerasing machine.

~ The simplest way of proving this fully is to show that the functions converting from
the "tally" representation 1 ~ of n to the binary representation on {1, 2} and vice versa,
are primitive recursive functions over [1, 2}.

236 J .C . StIEP[IERI)SON AND tI. E. STURGIS

the programs just given are applicable to a more general case. Suppose that
we have a weak T M whose Mphabet 55 contains a U {0} and whose operations
are :

(i = 1, . . . , .~)
(i = 1, . . . , s)

Notes.

L move the head one sqt~are left
R move the head one square right
E replace the symbol on the scanned square by a symbol i~z
p(o print a; on the scanned square provided this is blank
Jo:)[E1] jump to exit 1 i f the scanned symbol is a~

(1) ~ denotes 55 - ~.
(2) In E we do not stipulate whether and in what way the symbol from ~ which re.

places the scanned symbol depends on this or on other factors. All we need to know is that
the new symbol is in ~.

(3) As before a~, --. , a, are supposed to be the elements of ~.
(4) We use instruction P(~) only when scanned square is blank.

Now let us use g to denote an unspecified s~nmbol f rom ~ and agree to rep-
resent the sequence A1, . . - , AAr of words over (% by the t ape configuration
.......... - g ~ A ~ g A ~ . . - ~ANO ~. Then it is easily seen t h a t all the subroutines just
given still funct ion as desired (al though R o , L0 should now be described some-
what differently, viz. proeeed to next 5 to the right, left). So we have

9.2. Eve~v par t ia l recursive]~nc t i on f over O~ is computable by a weatc T M over

any alphabet 55 con ta in ing (~ U {0} i n the f o l l ow ing sense: i f the i n i t i a l tape con.

f igura t ion is d ~ x ~ x 2 . . . dx,~O ~ then the f i na l tape conf igurat ion w h e n

j ' (z ~ , . . . , x~)

is defined is

. a $ x l ~ z 2 . . . a zn@"(x l , . . . , x,~)O ~

[or g j . f (x , , . - . , xn)0 ~ if desired].
The simplest case of this which involves a "non-eras ing" machine is where

a is the one-letter a lphabe t {1}, where ® is {0, 1, 2} and where operat ion E con-
sists of replacing the scanned symbol by 2. This is non-erasing in the following
sense: the sequence of symbols appear ing during the course of computat ion on
any given square has no cycle of length greater than one (as it may, e.g. 0 ~ 1 --
0, for a normal T M) ; once a square has had a 1 printed on it the 0 can never
be restored; all t ha t can be done is to "degenera te" it fur ther by replacing the
1 by 2. Ident i fying the natural number n with 1 "~ gives, in a sense, the simplest
non-erasing T M for the computa t ion of all part ial recursive functions of natural
numbers. Wang ' s result can now be obtained by mapping this a lphabe t {0, 1, 2]
as follows onto a binary a lphabet {b,.} (b -- blank) : 0 --) bb, 1 -- , ,b, 2 -~ **.

On this a lphabet {b,.} the operat ions Wang uses are

~-: move head one square left
- , : move head one square right
* : mark the scanned square (i.e. print *)
C: j u m p to exit 1 i f scanned square is marked.

(~OMPUTABILITY OF t{ECURSIVE t~'UNCTIONS 237

To obt;ain his result 2~ on the computab i l i ty of all part ial reeursive funct ions
with this representa t ion and these basic opera t ions f rom the {0, 1, 2}-case of 9.2
ju,~f, discussed, we have only to show how to obta in the above operat ions L, R, E,
P~), ,1 (~). This we do as follows:

When the "o ld" (i.e. {0, 1, 2}-machine) head is scanning a symbol 0, 1 or 2,
the new head will scan the lef tmost of the corresponding pair of symbols f rom
the ~@]mbet {b,,}. Wi th this convent ion the subrout ines are

p(l) : ,

J(~)[/~'l]: 1. --% C[2], ~--, C[E1], --% 2.

Wang says [20, p. 84] t h a t he does no t know whether C can be replaced by
C': ju;mp to exit 1 i f scanned square is blank. The easiest way of seeing tha t it
can is to change the above convent ion, use the r igh tmos t of the pair of symbols
on {b,,} as the s t anda rd posit ion of the scanning head, and change the last three
subrout ines above to :

,/(~)[E1]: 1 . . - , C'[2], -->, C'[E1], ~--

The reason for his d o u b t was "it is no t clear how Crx can enable us to go th rough
an i~defini~ely long s t r ing of marked squares or whether t ha t is no t necessary."
The answer we have given is t h a t it is no t necessary; in our solut ion the only
pairs of ad jacen t squares which are bo th marked are under or t o the left of the
s tandard posit ion of the head; in o ther words we have shown tha t all " rough
work" can (a t the cost of m a n y extra pe rmu ta t i on steps) be done to the left
of, ~md not in the middle of, the main calculat ion.

ATolea.
(1) Lee's result (of. footnote 6) on the adequacy of *, ¢-, --% C' is a little weaker than

om's in that he uses additional auxiliary squares, 0 being represented by bbbb and 1 by
,bbb. These new auxiliary squares are kept permanently blank so that with C' a jump can
always be made from them--another way of avoiding the need to go through an indefinitely
long string of marked squares. Our treatment above has been complicated by our desire to
obtain Wang's results using exactly his form of representation. By means of a slight modi-
fication of t&is, using *b for 1 and b* for the comma (instead of bb), we can write subroutines
for "jump on cmmna" as well as "jump on 1" (with either C or C ~) and so avoid tile need
for the more complicated definition of TN given in 8.2. Note that even with Wang's repre-
sent~tion this is not needed for the elimination of erasing but only for the restriction to
the single conditional transfer C.

(2) Obersehelp [14] remarks that with the type of machine used by Wang it is not pos-
sible to compute each partial recursive function in such a way that the final tape is of the
form O':~10x~ 9x~Of(xl , "" ,x,~)0 ~. As he points out, only very simple functions f

~1 Wang actually considers only positive integers. We are able to include 0 without
the device of using 1 ~+1 to represent n because we can deal with null words, since we always
know how many words we are dealing with.

~ J . C . SHEPHERDSON AND H. E. STURGIS

ca~ be computed in this way (because the machine cannot erase its rough work at all).
We have shown here, however, that if one is prepared to tolerate rubbish to the lei't of the
final position of the head this form can be achieved. With the routines given ~bove the ac-
tual final form of the b,* tape would be

b-~ ,2~(,b)xlbb(,b)z2 . . . (,b)~,~bb(,b)S(~.....x,~)b ~

(for some k) so tha t the rough work takes the simple form of a solid block of completely
marked tape. As mentioned above, the final form b ~*~:(*by(~. ,~,)b ~ could also be
achieved if desired.

10. Reduct ions to Bounded N u m b e r of Registers Wi thou t Enlargement of Alphabet

T h e r e d u c t i o n to a s ing le - reg is te r mach ine was accompl i shed in Sect ion 8
on ly a t t he cos t of en l a rg ing the a l p h a b e t f rom a to a U {,}. I t is in te res t ing to
see w h a t r e d u c t i o n s in t he n u m b e r of regis ters a re poss ib le w i t h o u t doing this.
S t a r t i n g w i t h t h e case of a one - l e t t e r a l p h a b e t a = { 1}, i.e. t he case where each
r eg i s t e r s to res s i m p l y a n o n - n e g a t i v e in teger n in t he fo rm 1 • • - (n t imes) • - - 1,
our r e su l t s of Sec t ions 3, 4 fo rm a r a t h e r more c onve n i e n t s t a r t i n g p o i n t than
T M s do for e s t a b l i s h i n g t h e fo l lowing vers ion of a resu l t 22 of M i n s k y [21]:

10.1. A single register machine working on non-negative integers and with

operations

(o~) X k: multiply the number in the register by k,
(f~) + k: divide the number in the register by k
(7) Div?k[E1]: test whether the number in the register is divisible by k; if so take

exit 1, i f not proceed normally to next instruction

can compute all part ial recursive func t ions f i n the fol lowing sense: i f the number in
X l X2 . Xn the register is in i t ia l ly p~ p2 • • p~ , then it wil l f inal ly be p((~"'" '~)

Notes.
(1) h is supposed to range over all natural numbers; it will be used only for prime k

and it will be shown later that (for functions of one variable) i t is enough to have the opera-
tions for k = 2, 3, 5 only, or with a more complicated representation of argument and
value for k = 2, 3 only.

(2) p~ denotes the i th prime.
(3) Operation (f~) is used only when the number in the register is divisible by h.
(4) We could equally well obtain p~ vn~J(z~"'v~+l .,z.) as the number finally in the regis-

ter.

PROOF. W e use t h e n u m b e p l - " to r ep re sen t t he s t a t e of the URM.

I n v i ew of t h e resu l t s of Sec t ions 3, 4 we have m e r e l y to show how to perform
o p e r a t i o n s on th i s n u m b e r co r r e spond ing to the ope ra t i ons a, b, f of the URM.

T h e s e a r e e v i d e n t l y o b t a i n a b l e thus :

P(n) : XP~
D(n) : +P~
](n)[E1]: Div?p~[E1]

~2 Minsky uses a combined multiply and jump operation and a combined /t and T, viz.
test whether divisible, i f so divide and take exit 1, i f not take exit 2. I t is clear that the present
operations can be obtained from these. The results of Appendix C show the adequacy of
the set consisting of (a) and (7') : Test whether divisible by k, i f so divide by k and take exit l,

i f not take normal exit.

C O M P U T A B I L : I T Y O F R E C U R S I V E F U N C T I O N S 239

10.1 shows tha t a single register is sufScient if complicated enough opera-
tions t~,re used-- i f we want to s tar t with x~ and finish withf(x~) we must add
the operations n --~ 2 ~, 2" -+ n. Following Minsky, we proceed to see how
many additional registers are needed to replace these by the simple operations of
addition aud subtractior~ of one we have used up to now. Consider then a machine
with t~ fixed number N of registers and operations (there is no need for the
subscript N n o w s i n e e N i s fixed): (f o r n = 1 , . . . , N)

~. P(n): add one to (n)
b. D(n): subtract one from (n}
f. J(n)[E1]: jump to exit 1 i f (n) ~ 0

We first show tha t operations a, ~, ~ can be obtained using one extra register.
L~;M~L~. I f n < N, then there are programs which end with (n + l } = 0, do

not disturb any registers except n, n + l and perform the following operations:

(~) (n) × k:
(~) (n) + k:
@)])iv? ((n),k) [Eli:

multiply {n) by k
divide (n) by k ((n) supposed divisible by k)
if k I (n) take exit 1, if not take exit O.

PROOF. In Section 4 we showed how to obtain from a, b] programs for O(n) :
clear register n, J (unconditional j u m p) , J (n) , j u m p i f (n) ¢ O. In one of
these, the one for J , we disturbed a register other than n. This can be avoided
by using a compensated subroutine: J[m] -- 1. P (1) ,] (1) [m + l] with the
compensation of replaeing old line m by: m. P(1) , m + l . D(1), m-t-2, old line m.

So we are at l iberty to use all of these, hence also the device I (') introduced
in Section 3. Notice that if (n + l } = 0, then (P (n + l)) <~> copies (n) into
register n + l and clears register n. Our subroutines for a, ¢7, ~ above all s tar t
with 0 (n + l) , which clears register n-J-1. They continue as follows:

(n} N h: (P(n+l))(,O, (P(n)~)(,~+0
(n} + k: 1. (P(n~-l))(,O

2. J(n+l)[3], (D(n+l)) ~, P(n), J[2]
Div?((n),k)[E1]: 1. (P(n+l))('0

2. J(n+t)[E1], (D(n+l), P(n), J(n+l)[3]) ~-~, D(n-t-1), P(n), J[2]

Together with 10.1, the lemma gives a second result of Minsky:
10.2. With the same representation of arguments and values as in 10.1 but with

operations a, b, ~, two registers are adequate for the computation of all partial re-

cursive functions.

The next question is how many registers are needed if arguments and values
are required to be given in uneoded form. Tile answer is:

10.3. A 'machb~.e with operations a, b, f and n + 2 registers is adequate jbr the

computation of all partial recursive J~tnctions f of n variables in the following way:
start with x~ , • • • , a:~ in registers 1, • . . , n, f inish with f(x~ , • • • , x,,) in register 1.

PROOF. In view of 10.2 we have only to show how to replace the x~, . - . , x~
in registers 1, . . . , n by p~) . . . p~2 in register 1 with the others clear, and con-
versely, how to replace 2 i(~'''''" '~') in register 1 by f (x ~ , - . - , x~) in register 1.

2 4 0 J, (L SHEPt tERDSON kNt) H, E, STU[{GIS

We det:ine for i = t, . . . , n a subroutine red (i) which, if (i+2} = 0 places
1)~:' X (f-d-l} i~ re~gister i and clears registers i + 1 , i~-2.

red(i): ((i+1) X pd ~>, (P(i))< ':+~.

Now the required initial routine is simply:

P(n+ l) , red(n), r e d (n - I) , . . . , redO)

For the fitml conversion from 2 s(~'*''' '~''~ to f (x t , . . . , x~) in register 1 we
first clear registers 2, 3, then apply:

1. (P(2))<~>
2. Div?((2~,2)[3],J [4]
3. (2)+2,P (1),J[2]

A similar t rea tment shows that n + 3 registers are adequate for tim final form
z ~ , . . - :r~ i~ registers t, . . . , n; f (x ~ , . . . , x,~) in register n ÷ l .

Applyi~g the results of 10.3, 10.2 to the proof of 10.1, we obtain
10.4. I~ 10.1 for the c o m p u t a t i o n of f u n c t i o n s of n variables the operat ions ~

~d, ~. are ~ceded o~.ly /) r h ~- p~ , • ; . , p~+2 . I f the a rgumen t s and value are repre.

sented i n tDe fo rms pf'7'P2"~~',; '~, p~{(~' "), a, B, ~/ are needed on ly f o r tc = 2, 3.

For the ease of a general a lphabet a = {ao, • • • , a,_~} there is a result analo-
gous to 10.3; if s > 1 the n + 2 can be replaced by n + l . We shall merely sketch
dae proof. Let us use as the Ghdel number of the word a<, - . - a;, the word
a~ ~ where]c = @S~-l@i2Sr-2@ " '" - F i r . Using two extra registers, the words
::c~, . . . x,~ in each of registers 1, . . . , n can be replaced by their GOdel num-
bers. Now the Ghdel number of f (x ~ , • • • , x~) is a part ial recursive function of
the G/ktel number of x~, . • • , zn ; so by 10.3 it can be computed and placed in
register 1. Finally, we can (using the two extra registers) replace this Ghdel
number by the corresponding word. Since the two extt~ registers are used only
for holding words of the form a~ "~, a ('~, by the results of Section 8 they can be
replaced by a single extra register which holds a~maoa~ ~.

Thus for an alphabet ~ with two or more letters, each partial reeursive func-
t ion f of one variable over a can be computed directly with the operations
a, b, f by a machine having 2 registers: i.e. if A is placed initially in register 1
then f (A) appears there finally. Wha t can be done by a single register machine?
Clearly if we are prepared to allow complicated enough operations, sueh as re-
ptaei~ag A by its Ghdel number and vice-versa, then as in 10.1 we can compute
all part ial reeursive functions. Bu t how complicated must these operations be?
Ra ther surprisingly it turns out tha t the operations P~t~NT, DEhET~ and se*~
are enough provided they can be used at both ends of the word:

t0.5. Le t (t = {a0, " . . , a~_~} be an s-letter alphabet where s ~ 2. Con.sider

/.he jT)t~owin9 operat ions on a word A over (~ (i = O, . . • , s . -1) :

~ L
~R

bL
bR

fL ~

P(~)'L . print ai on the left..hand end of A
P(~) print a~ on the right-hand end of A R :
DL : delete the leftmost letter of A
Di~ : delete the rightrnost letter of A
J~:)[E11 j u m p to exit 1 i f a,: is the teftmost letter of A
J~[E t] : j u m p to exit 1 i f ai is the rightmost letter of A

COMPUTABILITY O[i' t{ECUI¢SIVE FUNCTIONS 24 t

l~or each part ial recursive func t ion f of one variable over (~ there exists a program
usirq/ only these operations which computes f , i.e. started on A will, i f f (A) is de-

fined, f in ish with f (A) ; i f f (A) is undefined, will not stop.

t)aoo~< We rely on the result of Section 8 that all partial recursive functions
over C~ are computable by a single-register machine with alphabet al = ~ O {,}
with the operations a, b, f' used previously. We definea mapping¢: 0h -+ (~ by

cb(aO = a~ao, q)(,) = aoa,. (i = 0 , . . . , s - l)

We have to show how to convert a word d over 8 into ¢(A) , how to convert
¢(A) back into A and how if A, is a word over ~ to perform operations on ¢(A~)
corresponding to the operations a, b, f ' on A~ . First, consider the conversion of
A into ~b(A). We have to send A = a~,a~,...a~,, into ¢ (A) = a<aoa~,ao...a~,ao.

At first sight this appears to be impossible; since there are no auxiliary letters
available there seems to be no way of distinguishing the original A from the
subsequently added letters. The key is to have the right-hand head 2a print in a
particular pat tern and to have it constantly go back and re-examine to see
whether the pat tern has been disturbed by the left-hand head. When it has,
then the original word has been completely coded, so that the process must then
stop before part of the word is coded twice. The details are as follows: first, A =
ag,a~.2 • " • a.,.~ is sent into a~,a~ 2 • . . a~,,a,a~aoao. Then a loop is entered, the general
step starting with the partially coded form a~ . • • a~,,a~a~aoaoaqaoa~ao • • • a i i _ x a o ,

which reads the leftmost letter a ~ , stores it, replaces it by a0, and before print-
i*~g a~ao on the right-hand end checks to make sure that this a~j replaced by a0
was a letter of the original word A and not the first of the added a,'s. Routine
T (R , L) transfers the word Ai = alaoaoahaoa~=ao'"a~5_,ao (i.e. the word ob-
tained by going in from the right one letter, then two letters at a time until an
a, is reached) from the right-hand end to the left-hand end, where it reappears
in the form Aj * = a,aoa~a,:,a,aa:...a~a~;_lao, and then checks the rightmost
letter to see whether it is a, as it was originally, or a0 as it is when all of A has
been coded. If it is a, then Ai ~ is transferred by a routine T (L , R) from the
left-hand end, where it is recognizable as the word obtained by going in from
the left one latter, then two letters at a time until an a0 is reached, to the right-
hand end where it reappears in the form Ai ; then a~sao is printed on the right,
a0 is deleted on the left and the loop is re-entered. If it is a0, A~ ~ is transferred
to the right as A~ and the coding is completed by the deletion of aoa~aoao on the
left. In other words, the coding routine proceeds thus:

A = % -. . a i n .
print ala~aoao on right

a l 1 • . " a i ,~axa laoao

enter j~r the firs! lime a loop, jth entry of which is from
a i d ' ' ' a i u a ~ a l a o a o a q a o • ' ' a l j _ l a o

replace a~j by ao
a o a l] + l , , , a i n a l a l a o (t g a i l a o . . , a i i _ l a o

apply T(R, L)
a l a o a l O l l • . . a l a . ~ j _ l a o a o a l j + 1 • . . a, i n a l

2a We visualize the operations being carried out by two heads, one at each end of the
word,

~ 2 . J . c . S t IEPHE[~DSON AND It . IE. STU[~GIS

check that r.ight-t~and letter is not ao ; i f not proceed to apply T(L, J~)
aoa i]+l " ." a l n a l a l a o a o a i l a o . , . ,~ i j_ lao

print a~fio on right, delete ao on left

and re-enter loop

The closing stages are:

enter loop with

replace a1 by ao

apply T()~, L)

check right-hand letter; it is ao , so apply T(L, R)

and delete aoa~aoao on the left, leaving

a i]+ l . , , a i n a l a l a o a o (~ i l a o . , , (~i]_laoaij(t O

a l a l a o a o a q a o ' ' ~ a i f f t o

a o a l a o a o a i l a O . , . a i n a o

a l a o a l a q • " " a] a i , ~ a o a o

a o a l a o a o a q a o . . . a~,~ao

O(A) = a i l a o . . , a~,~ao

In terms of the subroutines T (R , L) , T (L , R) (defined below) the program
for this is:

s-1

P(~') P~), D L , J[2l} 2. ~ L {DL, p(O)L , T(R, L), J~)[3], T(L, R), --R ,
i--O

3. T(L , R), D 2

Here we have used the absolute jump J. This can easily be programmed thus:
~<~ J~) [m+l] with the compensation of replacing old line m by J im] = 1. ~ L ,

~<~> m+l .n¢~) m + 2 . old linem.
s--I

We have also used the notation ~ F (~. This (cf. Appendix B) denotes
i=0

subroutine which follows subroutine F (~) if the leftmost letter of the word is
a~, i = 0, . . - , ~ - I , and does nothing if the word is null. It is obtainable
thus:

1.]~[2], . . . , J~-'[.~+U, 3[z+2]
2. F (°), J[s+2]

s ÷ l . F ('-1), J[s+2].

We use ER similarly.
The subroutine T (R , L) must send a word of the form Balaoaoailao...a~.,,ao

into alaoalaq . . .a la~ ,aoB. I t is obtined in the obvious way by repetition of the
operation Xaao --~ a l a X , X a l ~ X and stop.

T (R , L) is equal to:

1. P~>
2. J~)[4]

3. DR, ~ R{DR , P(~>L , P~I)L , J[2]}
i=0

4. DR

COMPUTABILITY OF :[{ECURSIVE FUNCTIONS 243

The inverse operation T(L, I~) cam obviously be obtained from this by inter-
chan,,'im~~ ~ (0), (~) ~nd L, R throughout.

The deooding procedure which sends qs(A) = ai~ao., .a,~.,~ao into A = ai~. • .a~
is much sha~pler; it can be accomplished by the routine:

1. P'fl)
s--1

/ q)r,,~ 1

3. 1)1~

It, works thus:

dtsrt wi th

4~(A) = a ~ l a o ' . , a~ao
pr in t a~ on left

alailao " " ainao
read r igh t -hand letter; 4f not a~ , delete it, t ransfer next letter f r o m r ight -hand to lef t -hand end

and 7"epeat

a,lnazailao • ' ' a~n_,ao

ailai2 • " " a~nal
when r igh t -hand letter is aj delete i t and stop

ailai2 . . . ai n = A

We must now show how to perform operations on ¢(A1) which correspond to
the operations a, b, f' performed on A1.

If we number the letters of the alphabet a~ = a U {,} 0, 1, . . . , s - l , s in
the order a0, . . . , a~_~, {,} then we can obtain the operations thus:

,~, pu) : p ~) , p(o) (i = O, . . . s - l)

b. D : DL 2
f'. JU>[E1]: J~) [E1] (i = 1, . . . , s - l)

J(°)[E1]: 1. J ~) [2] , J [4]
2. DL , J~)[3], ~(o) ~L, J[4]
3. p~O), J[E1]

J<')[E1]: 1. J ~) [2] , J [4]
(i) p~), 2. DL , J L [3], J[4]

3. P~), J[E1]

This completes the proof of 10.5. We show in Appendix E that the set of
operations used here is minimal, so for the case of an alphabet with at least two
letters, two registers are certainly necessary (and, as mentioned above, suffi-
cient) for the computation of all single-argument partial recursive functions if
the original operations a, b, (only are allowed. For a one-letter alphabet the
left- and right-hand operations are the same; so the result of Appendix E shows
that a single register with operations at both ends is not adequate. In this case
the best results are 10.1--that a single register is adequate with operations of
multiplic~tio~, division (plus exponentiation and its inverse if argument and
value are required in uncoded form); 10.2--that two registers with operations
a, b, ~ (+ 1, - 1, test whether 0) are adequate with exponential coding of argu-
meat and value; and 10.3--that with operations a, b, ~ and three registers there
is no need to code arguments and values.

244 J .C . SHEPHERDSON AND H. E. STURGIS

APPENDIX A. ~,IINIMALITY OF INSTRUCTIONS USED IN 4.1

COMPARISON WITH S[MILAR SYSTEMS

The set of instructions in 4.1, viz.

a: . PN(n): (n') = <n)+l
b : . D~v(n): (n') = (n) - i
f:.]lv(n)[E1]: jump to exit 1 if (n} ~ 0

is fairly obviously minimah namely, if the initial configuration was x, 0, 0, . . . ,
(i.e. x in register 1, all other registers empty), then with b l , ~1 alone the only
everywhere defined function f(x) whose value could be computed in register 2
would be the zero function; with a : , b: alone, only constant functions; with
a : , ~1 alone, only functions of the form f(x) = k for x = 0, f(x) = I for x ~ 0,
where k ~ I.

Concerning reductions in the range of values of N, n for these instructions,
it is clear that if they are available for an infinity of values of n, and for each
such n an infinity of values of N, we have essentially the same machine. If,
however, they are available for only a finite number of values of n or N then
they are clearly inadequate to compute functions of all numbers of variables
with the method of representation used above, i.e. with the argun:ents placed
in separate registers. (But see Section 10.)

I t is natural to ask whether fx could be used instead of ~:. If by this we mean
is it possible to write in terms of a : , b: , f~ a subroutine R for each n-ary partial
recursive function ~ such that if x~, • • • , x~ are initially placed (say) in registers
1, • • • , n then regardless of the contents of the other registers the effect of R will be
to place the value of ¢(x: , . . - , x~) in register n + l , then the answer is nega-
tive. For if all registers are nonempty there is no way of jumping at all since
with f: this would require first clearing a register and this cannot be done with-
out a jump operation (unless one has an upper bound for the content of some
register). However, if we agree always to start with 0 in register 1 then all par
tial recursive functions can be computed, for we can keep the 0 in register 1 and
obtain J~ = JN(1). Similarly if we are given e~ : On(n) we can again clear
suitable register at the beginning of each program and so obtain J,,~. I t is easily
verified that of the set of instructions a: : P~(n), b: : DN(n), c~ : O,v(n),
d : : C~(m, n), e: : J r [E l i , fl : JN(m)[E1], ~1 : J~(m)[E1], the only
minimal subsets adequate for the computation of all partial recursive functions
as above are the ones we have considered, viz. {a:, b l , e l , f:}, {al, b , , ~'~}, {al,
b: , c: , fl}, {a:, b : , f : , fixed 0 register}. For without a conditional jump fl or
~ the arguments cannot influence the form of the computation at all; without
b: only their vanishing or nonvanishing can influence it, and without a: no values
could be written down which were greater than any arguments.

I t is interesting to compare the operations used by Kaphengst [8], Ershov [5] and Peter
[:51.

KXPH~NOST'S PM (programmgesteuerte Rechenmasehine) has a special calculating
register "mill", number ~, and an order register number 0 which contains the address of
the next order. The orders themselves are stored in the ordinary registers so the machine,
like an actual computer, is capable of doing arithmetic operations on its own program,

COMPUTABILYIW OF RECURSIVE FUNCTIONS ~45

However, K:~phengst shows t h a t i t can ca lcula te all pa r t i a l recurs ive funct ions w i thou t
using th is faci l i ty . I t is then essent ia l ly s imilar to a UI~M plus a special register, n u m b e r
~ , and the following in s t ruc t ions (for m, n = 1, 2 , . . -) :

D~ . C(m,~o): copy contents of register m into mill
D2 • C (~ , m) : copy contents of mill into register m
C1 • 0(oo) : clear mill
A~. P (~) : add 1 to number in mill
F~. J (~) [E 1] : j u m p to exit 1 i f mill is empty
G~ . 0,~ (~) : clear mill i f its contents coincide with contents of register n, otherwise

place 1 in it, i.e. (~ ') = 0 if (¢¢) = (n), (¢ 0 ') - - 1 otherwise
G2 0 ' (~) : clear mill i f not already clear; i f already clear place 1 in it, i.e.

(~ ') = 0 if (¢~) ~ 0, (~ ' } = 1 if (~) = 0
H. stop: slop i f mil l is clear (i.e. i f (~) = O)

I t is easily seen t h a t opera t ions C~, G~ are definable u in t e rms of o ther orders and t h a t
H (the only form of s top which the P h i has) can be defined in t e rms of F1 and an ord inary
absolute stop. If we remove the mill and consider the effect of the orders on registers 1, 2,
3, • • • we see t h a t the r emain ing orders are equ iva len t to the following orders for a U R M

a. P(n)
d. C (m , n)
f. ,jr (m) [Ell
g. EL(m, n) : (k'} = 0 if ira} = in)

(k ') = 1 if ira) ¢ in)
which are easily seen to be a min imal set and to be equ iva len t ~ to our original set a, - . . , f.
In t e rms of the reduc t ion to o rd ina ry comput ing machines , Kaphengs t ' s reduct ion, wi th
all a r i thmet i c opera t ions t ak ing place in only one register, is more ap t t h a n ours. How-
ever, our u l t i m a t e aim is to reduce to simple forms of Tur ing machines which operate on one
bit at a t ime; f rom th i s po in t of view the opera t ions P(n) and D(n) are simpler t h a n the
copy opera t ion . Similar remarks apply to the basic sets described below corresponding to
Ershov ' s and P e t e r ' s t r e a t m e n t .

ERs lmv ' s class ~ (~ ~, $~) of ope ra to r a lgor i thms differs from the U R M in i ts p rogram
s t ruc ture and t r e a t m e n t , e.g. l ike the P M i ts p rogram is s tored in the registers. B u t i t is
subs tan t i a l ly e q u i v a l e n t to a U R M wi th the following ins t ruc t ions

d. C(m, n)
cI. Cl(m, n) : copy (m)~-i into n, i.e. in ') = (m } ~ l
e. J [E1]
f*. J-(m, n)[E1, E2]: j u m p to exit 1 i f @~) =< (n)

j u m p to exit 2 i f (m) > (n)
together wi th the ab i l i ty to place any cons t an t s in any registers a t the beginning of the
program. Once again i t is easy to see by direct cons t ruc t ion of subrou t ines t h a t th is set of
ins t ruc t ions is equ iva l en t ~ to our original set a, . . . , f and to the set a,d,f ,g jus t given.
e is a special case of f* bu t is l i s ted separa te ly because i t is an inseparable p a r t of all Er -
shov's a lgor i thmic programs. A p a r t from this, the set of ins t ruc t ions is obviously minimal
(a l though f* is necessary only for one fixed va lue of m (or n)) .

PETER'S t~reatment involves basic opera t ions such as (xl , " " , x ,) --~ (x l , " " , x~ ,
~ , . . . , x~), b u t wi th a s l ight re - formula t ion it could be regarded as roughly equ iva len t

to a U R M wi th ins t ruc t ions
c. O(n)
d. C(m, n)
~. C,(m, n)
f t . J (~ , n) [El, E21: j ump to exit 1 i f (m) = in)

j u m p to exit 2 i f (m) ~ (n)

~-~ Using, in the case of G~, o ther registers for rough work (holding 0 and 1).
~ In the sense of 4.1, i.e. in the i r effect on the con ten t s of any finite set of registers.
:G In the sense of 4.1, i.e. in the i r effect on the conten ts of any finite set of registers.

246 J . c . SHEPHERDSON AND It. E. STUR(iIS

These (apart from the f~tct that by using d, c need be available only for one fixed register,
number 1 say, a only for m = n = 0, and ft only for m = 0, n = 1) are also clearly minin~al
and equivalent to the o ther seas.

To sum up these various minimal systems of instructions one might stay tha t a unive~'sal
computer working on natural numbers must be capable of produci~)g 0, of adding 1 to a
number (i.e. of performing the operations which generate the natural numbers) , of copying
a number, and ei ther of comparing two numbers for equal i ty or order, or comparing one
number with zero and reducing (i.e. by D(n)) a number step by step to zero, and directly
(e.g. f*) or indirect ly (f, g) changing the course of the computa t ion depending on the re-
sul t of this comparison. The various minimal systems are very similar; from the point of
view of proving as quickly as possible the computabi l i ty of all par t ia l recursive functiol~s
Peter ' s is perhaps the best; for proving their computabi l i ty by Tur ing machines a further
analysis of the copying operat ion is necessary along tile lines we have taken above.

A P P E N D I X B. DETAILS OF SECTION 6.

COMPUTABILITY OF PARTIAL RECURSIVE FUNCTIONS OVER C~ENEIRAL

ALPHABET (~ BY THE URM(a)
We show that all partial recursive functions over a are computable on the

U R M (a) whose instructions are:

al . P~) (n) : place a~ on the (right-hand) end of (n}
b. D~) : delete the first (left-most) letter of (n) ((n} ~ A)
f1'. J~)(n)[E1]: jump to exit 1 i f (n} begins with ai

Note that Ershov's class a (~ 2 , $2) of algorithms of [5] corresponds closely
to the above instructions together with C(m, n), with all operations taking
place at the beginning of the word. His class a(Ws, ~z) amounts to using the
operations

C(m, n)
Jxt(m, n, k) : (k'} = (m}(n} (juxtaposi t ion or concatenat ion of (m) and (n})
J*(m, n)[E1, E2]: jump to exit 1 i f (m} ends (n)

jump to exit 2 i f not

and allowing any constants to be placed in any registers initially. As he says, it is
easy to see that these two sets of operations are equivalent (and universal)
either by his proof that a (~ 2 , $2) is capable of dealing with all Markov al-
gorithms, or our proof below that the U R M (a) is capable of computing all
partial recursive functions over a. For a further set of universal operations, see
Appendix (C).

We first introduce auxiliary subroutines as in Section 4 for the more complex
operations originally used in Sections 2, 3. Slight changes are necessary in some
cases due to the fact that there may now be more than one letter in the alphabet.

(1) SUBROUTINE FOR]N(n)[E1]: jump to exit 1 i f (n) ~ f
1. J~)(n)[E1], - . . , J~)(n)[E1]

(2) SUBROUTINE FOR JN[E1]: jump to exit 1
1. P~)+ i (N+i) ,]~+~(N-C1)[E1]

(3) SUBROUTINE FOR J~z(n)[E1]: jump to exit 1 i f (n) = f
1. J~(n)[2], J~v[E1]

(4) SUBROUTINE FOR A_~(n): clear regisler n (i.e. place i in it)
1. JN(n)[2], DAy(n), J~.[1]

COMPUTABILITY OF RECURSIVE FUNCTIONS 247

We now in t roduce a convenient abbreviat ion. Suppose we have subrout ines
t,'~ ~) (i = 1, - • - , s) for performing certain operations. I t is convenient to have a
subroutk~e which will follow subrout ine Fir I) if' (n} begins wi th al, • • • ; will fol-
low FN (~) if (n} begins wi th a~ ; and will, say, do noth ing if (n} = / ' \ . We denote
such a subrout ine by ~ = l (n) l e ~ ° and obta in it thus :

]. J~) (n)[2], . . . , J~)(n) [s+lj, Ju(n)[s+2]
~e(~) JN[.*+2] 2. ~ N ,

s+ l . F~), Jx[.s+2].

Str ict ly speaking the ~ should have a subscript N to denote tha t the addit ional
J , J (n) ins t ruct ions it involves have subscr ipt N. Since we use it only when all
the F (~) have the same subscr ipt N we omi t this subscript on the ~. We have
followed the same procedure wi th the I<~) subrout ine given in Section 3 above.

iT(i) / (n) The analogue of this la t ter operat ion, which we denote by (*ee ,~ has the fol-
lowing effect: if (n} = a~ . . . a~ then it performs the sequence of operat ions
1~ **>, . . . , I ~ *~) (if (n} = A , does nothing) and reduces (n) to A , possibly dis-
turbing the contents of registers N + i , N + 2 ,

Here I ~ *), . . - , I~ *) is a given sequence of instruct ions or subroutines which
are supposed no t to affect register n. Using the above I - n o t a t i o n we can obtain
{I~°} ~ thus :

1. ~ (n) { IN%DN(n) , JN[1]}
i = l

Now we can define

(5) SUB~OU~'INE ~'OR C N (m , n) : c o p y (m) i n t o r e g i s t e r n

1. A~(n), AN+i(N+I)
2. {PN+I(N+I), Ply_hi(n)},
3. /--N'+I k':~])*

We now proceed to give subrout ines for schemata I * - V I * of Section 5:

I*, SUBROUTINE RN(y = S a i (x))

1. CN(X, y)
(~)

2. P~v (Y)
I I* . SUBROUTINE R x (y = / ~ ' ~ (x l , " " , x ~))

1. AN(Y)
III*. SUBROUTINE I ~ N (y = V i ' ~ (x l , " ' " , X n))

1. Cze(x~ , y)
IV*. SUBROUTIN~Z R . v (y = f (x l , " '" , x~)) USING SUBROUTINES FOR g, h WHERE f IS DE-

FINED tRY SCHEMA IV@~ THUS:
f (x l , " ' " , X~) = h (g l (x l , " ' " , x ,~) , " ' " , g~n(x l , " ' " , x ~))

1. R,v+I(N+I = g l (x l , "'" , x ,))

m . R N + , , (N + m = g ,~ (x l , " " , x,O)

m-F1. R,v+.,(y ~- h (N + l , . . . , N + m))
V*. SUBROUTINE R N (y = f (x , , " '" , X ,)) USING SUBROUTINES FOR g, h, WrHERE f IS I)E-

FINED BY SCHEMA V* THUS: f(A, X~ , "'" , X,,) = g(xe , " '" , X,O, trod
f (z a g , x e , . . " , x , ,) = h d z , f (z , z i , " " , x , ~) , x ~ , " " , x , ,) (i = 1 , . . . , s)

1. R . v (y = g (x ~ , ' " , x,0), ~x+~(N÷l) ~(o ~ T ± ~ < ~ }
2. {/RN+~(N+2 = h~(N+l, y, x~ , . . " , x,~), CN+~(N+2, y), --~+~, ~w,~
3. Cx+~(N+I, x~),

248 ft. C. SHEPHERDSON AND I[. E. STURGIS

V i i * . S U B R O U T I N E FOR R N (y = f (x t , ' ' " , X n)) U S I N G S U B R O U T I N E g ~VttER.E f IS DEFINEI)

RYVL*, THUS: f (X l , ' ' ' , X , d = ~iyIg(x~ , ' ' ' , :~,~ , Y) = Ad

1. A N (Y)
2. R~-+~(N+I = g(x~ , " " , x ~ , y))

P~-~-1 (y), Jv+l[2] 3. d~v+~(iV+l)[4], (1)

This completes the proof that all partial recursive functions are computable
by the U R M (a) .

A P P E N D I X C. ALTERNATIVE SET OF BASIC INSTi~UCTIONS

"SCAN AND D E L E T E " INSTEAD OF "SEPARATE ~QCAN, DELETE"

There is an alternative set of basic instructions which could have been used
in Section 6 instead of a~, b t , f(, viz.

a ~ . P ~) (n) :
s i . S c d ~ (n) [E 1 , . . .

place a¢ on end of (n)
, Es]: scan t h e f i r s t letter of (n); i f <n} = /'~ take n o r m a l exit,

i f f i r s t letter of {n) i s a¢ delete this and proceed to
ex i t i (i = 1, . - . , s)

Here sl, "scan and delete" is an (s+ l) - ex i t instruction. This set seems to be of
some interest in that it shows that there is never any need to scan a symbol
twice, that a general-purpose computer can be built using only scanning devices
which destroy the symbol scanned. To see that the new set of instructions is
adequate one could write the above programs using s~ instead of b~, f~%
the resulting programs are perhaps slightly simpler since it will be observed
tha t in nearly every case we did delete after scanning. However, one can show
that the new set of instructions is actually equivalent to the old. 0 n the one
hand, si can easily be obtained using b~, fl', viz. S c d . ~ - (n) [E 1 , . . . , Es] =

~ = 1 (n) { D ~ : (n) , J~-[E~]}. To obtain a l , f (from a~, s~ is a little more com-
plicated; we first define

D ~ . (n) = 1. Scd~v(n)[2 , . . . ,2] and / i N (n) = 1. S c d . v (n) [1 , . . . ,1].

Then we define S c d ~ ' (n) [E 1 , . . . , E (s + l)] , an (s+2)-exit instructio~ which
differs from S c d (n) [E 1 , . . . , Es] in that when (n} = A exit s + l is taken in-
stead of exit 0 (i.e. which provides a jump on fl, as well as the other jumps):

Scdze ' (n)[E1, . . . , E (s + l)]

= 1. SCdN(n)[E1, , Es] , a) "'" P N (n) , S c d z e (n) [E (s + l) , . . . , E (s+I)]

Now construct a subroutine C P N (m : n , , n 2 , . . . , nr)[E1] which copies (m}
onto the end of each of (nl}, .-- , (n,} (we actually need this only for ~' = l, 2)
and proceeds to exit 1, (m) being replaced by A,.

1. Scd~ / (m)[2 , 3, . . - , s + l , E l i
• -- , P N (n~), {1}

s + l . P'~)(n~), . . . P(;) , ,v (n~), {1}

COMPUT.\P, ILITi" OF ILECD~RS[VE FUNCTIONS 249

Here the {1} :is s imply used as an abbreviat ion for the instructions of line 1, viz.
S c d , v ' (m) [2, 3, . . . , s + l , El] . We can now obtain J ~) (n) [E l l by copying <n)
out into (cleared) registers N- t - l , Nq-2, copying one of them back again into
register n and operat ing with S c d on the other:

1. /~v+~(N+l), A~v+2(N+2), CPN+2(n; N-}- i , N-+-2)[2]
2. CP~c+~(N-]-I; n)[3]
3. SCdN+~[4, . . . , E1, . . . , 4]

where, in line 3, the E1 is in the i th place.
For the single-register machine of Section 8 also the instructions a. P(~),

b. D, f ' . J(~)[E1] can be replaced by a and s:

s. Scd[E1, . . . , Es , E(s+i)]: scan the f irst letter of A ; i f A = /~ take normal exit,
i f f irst letter of A is a~ delete this and take exit
i + l (i = O, . . . , s)

However, just as in Section 7 (cf. footnote 12), these two sets of instructions
are not completely equ iva len t - - fo r example, an unconditional jump can be ob-
tained from a, s but not f rom a, b, fP. The simplest way to show the adequacy
of a, s is to repeat the t r ea tment of Section 8 and show how to obtain the L R M
operations a~, b~, s~, h~, i~ in terms of a, s. The program for T is now:

1. p(0)
2. Scd[s+3, 3, " " , s+2]
3. P(~), {2}
:

s+2. P<'), {2}

The programs for a~, h~ are the same as before. For the others we write

i i . N - -) N - 1 = 1. T -~-i,Scd[2, " . ,2]
Sl • SCdN(n)[ml , . . . , m~] = 1. T "-l, Scd[2, (ma+l)', -.- , (m~+l)']

2. p(o), TN-,~

with the "compensa t ion" (see footnote 12) 57 of replacing each line m~ (i = 1,
• . . , s) by two lines m i . T N-l, m , + l . T N-~+I, old line m i , renumbering all
lines and jumps as necessary ((m ~ + l) ' refers to the final number of the new

line m e + l) .
Similarly, the instructions a~. P ~) , b~. D ~ , fl'. J~)[E1] of 8.2 can be

replaced by a~ and

s. Scdt¢[E1, . . " , Es]: scan the f irst letter of A ; i f i t is a~ delete i t and take exit i
(i = 0, . . . , s)2S; i f A is nul l do nothing and take the normal
exit (i.e. exit number O--this can occur only i f N = 1)

27 This use of compensating subroutines can actually be avoided here by the use of more
complex programs which first duplicate the initial letter of A, ; see the treatment below
in terms of tlle weaker form of Scd.

28 Note that this means that if A begins with a comma, i.e. with a0, then there is no jmnp
but simply the normal exit to the next line of the program.

250 J'. C. SHEPHERDSON AND II. E. STURGIS

The t reatment is very similar to that of 8.2. T x (S) is obtained thus:

1. Scd~-[2, . . . , s+l], S

: :

-~v, {i}

Next, by induction on r, a subroutine R~v'(r) [El] is defined which sends A~, . . .
A , , a~A~+, , . . . , A i r into A~+~ , • • . . A ~ , A 1 , • "" , A ~ told jumps to exit 1:

(1) r = 0. R~v'(0)[E1] = ScdN[E1 , . . . , Ell
: o (0) (2) r > 0. R ~ v ' (r + l) [E 1] = 1. --z¢ , Tzc+~(RN'('r)[E1])

Then an unconditional jump

J~v[E1] = 1.

and

p(O) pa) T~+i(R~-'(N-I)[EI]) N ~ N + I

T,v = 1. P~), T,v+l(Jx[2]).

Finally, we show how to program the operations a~, s~, h~, i~ of the LRM(a)
(which in Section 7 were shown to be adequate for the computat ion of all par-
tial recursive functions), a~, h~ are dealt with exactly as above and we define:

i l . N ~ N - 1 = 1. T~r -1, Scd~[2 , . . . , 2]
n - 1

sl • Scdze (n) [E1 , . . . , Es] = 1. Tic , ScdN[2, 3, ..- , s÷l], pr0)~v_l , T~ -'~, J¥[s+2]
N - - n + l 2. Tz¢ , J~v[E1]

:

s+l. T i t -'~+1, JN[Es] .

A P P E N D I X D. NEED FOR " A u x I L I A R Y " SQUARES IN NON-ERASING TMS

Wang [20] says " i t is an open question whether we can dispense with auxiliary
squares and still be able to compute all recursive functions by programs con-
sisting of only basic steps -% ~---, ,, C x . Of course it is not necessary to use every
other square as the auxiliary square. If we do not mind complications, we can
take any fixed n and use every n th scluare as the auxiliary square." Oberschelp
[14] shows tha t with the representation of n by , " only a very restricted class of
"semiperiodic" functions are computable--because once the head gets into a
long block of marked squares it cannot alter these in any way so tha t it has only
its finite internal memory to tell it how far it has gone; as a result the actual
number of marked squares passed over leaves no trace, only its residue class
modulo something. In a sense this shows that , for this particular " ta l ly" repre-
sentation auxiliary squares a r e necessary. A similar argument shows that very
few partial recursive functions over a are computable by a T M with alphabet
aU {0} which is not allowed to change any of the symbols from a into anything
else but only to print them on blank squares. However, if one goes back from
words on an alphabet to the actual natural numbers it is rather difficult to de-
fine what is meant by saying that auxiliary squares are used in a particular

COMPUTAt~ILITY OF RECURSIVE FUNCTIONS 251

representation. Both tile representation of n by (*b) ~ and the tally representa-
tion (*) '~ itself "use auxiliary squares" in that they are much longer than the
irredundant binary representation of n of length log2 n. I t looks as though all
that one can define precisely is the degree of redundancy of the coding--the
function f (n) giving the length of the representation of n. From this point of
view it is difficult to distinguish between the erasing and nonerasing machines.
Both require auxiliary squares for punctuation; if x1, " . . , x~ is a sequence of
natural numbers you cannot simply take the binary representations of x l , -. • ,
z~, and place them end to end, since there would then be no way of telling where
one number stopped and another began, nor of recognizing the end of x~. I t
seems to be impossible to avoid having regularly oeeurring "auxiliary" squares
to deal with this punctuation problem so tha t the ideal coding of length log2 n
is not attainable even asymptotically. By taking blocks of length k sufficiently
large, representing a binary word u l , - . , uk by u l . . - u ~ , and leaving bk+!
to represent the comma, we can achieve a length of (1-be) log2 n for any e > 0.
However we shall now show that the same condensation can be achieved with
the nonerasing machine.

First we observe that if we take the binary representation of a number x
and, starting from the left, mark it off into blocks of ~ so that it appears as u~,

• • • u~,v, where each of ul, • • •, u, is of length k and v is of length greater than 0
and less than/~, then we may regard this as a word on a new alphabet a ~ with
2k+~-2 letters, viz. the 2 k "ful l" blocks of length k, and the 2k-~+2~-%i--.. + 2
ir~eomplete blocks of l eng ths /c -1 , - . . , 1. Writing x' to denote the word of a ~
corresponding to x in this way, it is clear tha t x ~ is computable from x and vice
versa, so that if f is a partial reeursive function of x~, .. • , x~ then f (x ~ , • • •

I • I '
X ~) ' g (x l ' , " ' ' , X~,'), where g is a partial reeursive function of x~, • • , x~.
Hence by 9.2 there is a program on a weak T M over a ' U {0} which computes g.
Let us use an alphabet a ' U {0, e} for this machine, the operation E being the
replacement of the scanned symbol by e. We now map the 2 ~+~ symbols of
a ' U {0, e} back onto the binary alphabet {b, .}, using the blocks of length
k + l , with 0 mapped onto the block b k+' and e mapped onto .k+~, the mapping
being otherwise arbitrary. In this way we have taken the original binary ex-
pression for x and replaced each block of k symbols (and the incomplete block
at the end) by one of k + 1 symbols, so that we have achieved the same degree
of condensation as before. To complete the proof that the operations of a non-
erasing TM are adequate to compute all partial recursive functions with this
representation we now show tha t this last mapping of a ' U {0, e} onto {b, .}
is such that a nonerasing TiN[on {b, *} with operations +-, --~,., C (or C C-
this can be dealt with similarly) can carry out the operations of a weak TM on
alphabet a ' U {0, e}. We need a subroutine R (k + I) [E 1 , . . . , E(2~+~-l)]
with 2 k+~ exits, which will examine the]c-t--1 squares to the right of the head and
take exit t if they contain the binary expansion of t (b = 0, • = 1, most signifi-
cant place on the left), with the position of the head on exit being on the furthest
1 to the right in this block of k + l if t ¢ 0, on the original square if t = 0 (i.e.
is k + l - p (k ~ - l , t) places to the right of the initial position, where p(k--t-1, t)

252 J. C. SHEPHERDSON AND H. E. STURGIS

equals the greatest r less than or equal to k + l such that 2' I t). Tl~is ca~ be
defined inductively as follows:

R(1)[EI] = 1. -~,C[E1],*-
R(k+I)[E1, . . . ,E(2~+1-1)] = 1. R(k)[t-+t+l],--~k+',C[E1],e -~+~

2. --~ ,C[E3],~--,C[E2]

t+ l. ---~P(k't)+~,C[E(2t-~ l)],~.-~(~'t> %C[E(2t)]
:

2 ~. -~(~.~-~),C[E(2~+~-I)],~-~I~.~-~),C[E(2k~-~-2)I

The notation R (k) [t - - > t - ~ l] here means that , for t = 1, - . - , 2 k - 1 , exit t
of R(k)[E1, . . . , E(2k--1)] is connected to line t + l , i.e. stands for R(k)[2,
• . . , 2k]. If we now number the blocks of k + 1 squares according to the binary
number they represent, as above, then the weak T M operations on these blocks
are: L = 4--J¢+i; R = __..,~-~-I E = ('--:~', .)/z-D1, <_____k+l p (i) - - ~ , . i l -~,

,12, . . . , _% .~+~, ~_ k+l, where il . - . i~+1 is the binary expansion of i (i = 1,
• - . , 2 k + l - 1) .

J(i)[m] = 1. R(k+l)[2, 3, . . . , (m+l)', . . . , 2k+1],--~ k+~
2. ._+P (~+1,1) +) (,~+1,2)
3, -.->P(k÷l,2) ~__p(k-~l,3)

2k+l. __.~p (}+1,2k÷l-l))<__k+l

with the compensation: replace old line m by

m.._~}+1-p(k+~,{), m + I.+ -}+I-p(}+I'{), old line m.

Here the (m + I) ~ in line I is connected to exit i and, as before, stands for the
final number of the added line m+ i.

A P P E N D I X E. PROOF TttAT ALL OPERATIONS AT BOTH ENDS ARE
NECESSARY FOR COMPUTING ALL RECURSIVE FUNCTIONS WITH A

SINGLE t~EGISTER ~ A C H I N E WORKING ON THE SAME ALPHABET

THEORE~I. A n S R M on alphabet (~ = [a, , -" " , a,} with heads operating at the
two ends of the word is not capable of computing all one-place recursive functions
over • unless both heads are capable of printing, dekt ing and "reading" (i.e. malting
the letter which is scanned influence the fu ture computation in some way such as a
conditional transfer).

PROOF. Let (P be a given program of l - 1 lines for an SRM whose r.h.h.
(right-hand head) is capable of all three types of operation but whose 1.h.h.
(left-hand head) is not. We shall show tha t if (P computes a function which
takes infinitely many values, then there exist words U, V, U', V' such that, for
every word X, e sends U X V into U r X V '. This proves the theorem since it
shows that the function f defined by f (W) = W W is not computable by such a
machine.

In order to define U, V, we take a word W0 with the proper ty tha t when

COMPUTA;3ILITY OF RECURSIVE FUNCTIONS 253

(t) is applied with W0 as initial word, then at no stage of tile computation will
the register contain a word with less titan max{l, 2} letters. Such a ~% certainly
exists for there are only finitely many (skl) different possible final outcomes from a
position where the word in the register has only k letters, and we are supposing
that (P computes a function with infinitely many values. In defining U it is con-
venient to imagine that the word which is the content of the register at any time
is printed on a doubly infinite tape divided into squares (all of which are blank
except those occupied by this word) with the square originally occupied by the
first letter of W0 numbered 0 and the squares to the right of this numbered 1, 2,
3: • " " . Tim 1.h.h. starts on square number 0 and, in the course of the application
of 6) to W0, passes over only a finite number of squares. Let no be the number
of the furthest square to the right reached by the 1.h.h., so that the 1.h.h. passes
at some time over squares 0, 1, - •. , no (and possibly over squares with negative
numbers, i.e. to the left of square number 0). Now U is defined as the (no+ 1)-
letter word whose first letter is the first letter of W0 and, generally, whose rth
letter is the letter which was on square number r when the 1.h.h. reached this
square Jbr the first time. V is defined in a symmetrical way with respect to the
right hand end of the word I:V0. I f we can show that the program • applied to
the word U X V produces the same succession of steps as when it is applied to
Wo, then the result of (P must be to leave the X unseanned, i.e. to produce a
word U'XV' , where U', V' are independent of X. I t is clear therefore that the
desired result will follow from the following lemma:

LnM~,a A. I f the right-hand head scans a certain square, moves off this square
to the right 29 and later returns to read this square, then the letter printed on that square
will be unchanged (i.e. cannot have been changed by the left-hand head), and sir~d-
larly for' the leJ't-hand head.

We derive this from another lemma:
L~M~IA B. I f the left-hand head cannot read and the right-hand head moves at

least l - 1 squares to the right of the present square before returning to scan it, then
it never returr~s.

PI~OOF OF ImMM~t B. Let the squares be numbered 0, 1, 2, . . . to the right,
starting from the present square. Consider, for each of the 1 squares 0, 1, • • •
l - 1 the number of the line of the program in which that square is left by the
r.hh. for the last time on its way out to square l-- 1. Since there are only l lines
in the program there must exist i~, i~, 0 N i~ < i2 N l--1, which are left
in the same program line, 10, say. This means that after leaving square /1 in
line 10 the r.h.h., before returning to this square, arrives at square i2 in line 10.
In other words, when started with the r.h.h, on square i~ in line 10, facing blank
squares to the right, the computation proceeds, without the r.h.h, scanning
squa.re i~ or any square to the left of it, through steps which bring the r.h.h, to
square i~ with the progi~.~m again on line 10. Since the 1.h.h. cannot read, it
cannot cause any change in procedure, so the conditions are now effectively
the same as before, i.e. the r.h.h, must now go on to the square i~+(i2-i~),

~9 Remai~ing on the square is considered to fall under this description also.

254 J. C. SHEPHERDSON AND tt. E. STURGIS

leave this in the same line l0 of the program and so on, i.e. the motion of the
machine will consist in the r.h.h, moving cyclically and endlessly to the right

PROOF OF LEMMA A. We are supposing the 1.h.h. is not capable of all three
operations. There are thus three cases to be considered:

(1) The l.h.h, cannot read. In this case Lemma B immediately gives the result
of Lemma A for the r.h.h., since we are supposing that the word in the register is
never reduced to fewer than 1 letters, so tha t the 1.h.h. could only arrive at and
alter a certain square if the r.h.h, had proceeded at least l - 1 squares to the
right, in which case Lemma B shows that the r.h.h, never returns to scan the
altered square. For the 1.h.h. Lemma A is vacuously true, since the 1.h.h. is
supposed to be unable to read.

(2) The l.h.h, cannot print. In this case the 1.h.h. certainly cannot alter a
square between scannings by the r .h .h . - -nor can it delete it since this would
imply the word was at some stage reduced to null. Nor can the r.h.h, alter a
square scanned by the 1.h.h., for since the 1.h.h. cannot move left it, could only
satisfy the conditions of lemma A by remaining on the square and then the
r.h.h, could only alter this square by reducing the word to length 1, contrary to
hypothesis.

(3) The l.h.h, cannot delete. Then the 1.h.h. cannot move right so it could only
alter a square which had been occupied by the r.h.h, if it was present on this
square when the r.h.h, was, i.e. if the word was at some time reduced to one
letter, contrary to hypothesis. Also, since the 1.h.h. cannot move right, it can
only satisfy the conditions of Lemma A itself by staying still, in which case the
r.h.h, cannot alter the square it (the 1.h.h.) is occupying without reducing the
word to length one, contrary to hypothesis.

REFERENCES

1. CHURCH, A. A set of postulates for the foundation of logic. Ann. Math. {2} 33 (1932),
346-366; 3~4 (1933).

2. ----. An unsolvable problem of elementary number theory. Amer. J. Math. 58 (1936),
345--363.

3. - - . A note on the Entscheidungsproblem. J. Symb. Logic 1 (1936), 40-41, 101--102.
4. DAvis, M: Computability and Unsolvability. New York, 1958.
5. ERs~ov, A.P. On operator algorithms. (Russian) Dok. Akad. Nauk 122 (1958), 967-

970. English translation, Automat. Express 1 (1959), 20-23.
6. HERMES, I-I. Vorlesung ~ber Entscheidungsproblemen inn Mathematih rend Logik. Ausarb.

Math. Phys. Vorlesungen, Vol. 15. Munster, 1955.
7. HERMES, H. Die Universalitiit programmgesteuerter Rechenmaschinen. Math.-Phys.

Semsterberichte (G5ttingen) 41 (1954), 42-53.
8. KAPHENGST, H. Eine Abstrakte programmgesteuerte Rechenmasehine. Zeit. Math.

Logik Grund. d. Math: 5 (1959), 366-379.
9. KLEENE, S.C. General recursive functions of natural numbers, Math. Ann. 112 (1936),

727-742.
10. ----. A theory of positive integers in formal logic. Amer. J. Math. 57 (1935), 153-173,

219-244.
11. ----. h-definability and reeursiveness. Duke Math. J. 2 (1936), 340-353.
12. - - - - . Introduction to Metamathematics, Ch. 13. Princeton, 1952.

COMPUTABILITY OF RECURSIVE FUNCTIONS 255

13. 5'L~R~ov, A. A. Teoriya algorifmov. Tr. Mat. Inst. Steklov, No. 42. Moscow, 1954.
14. Om~nsci-~nI,~, W. Varianten yon T'aringmaschinen, Arch. math. Logik Grund., No.

~/I-2 (1958), 53-62.
15. P~!:TER, R. Graphschemata and rekur~ive Funktionen, Dialectica 12 (1958), 373.
t6. POST, E. L. Finite combinatory processes--formulation, I. J. Symb. Logic 1 (1936),

103-t05.
17. - - - . Formal reductions of the general combinatorial decision problem. Amer. J.

Math. 65 (t943), 197-215.
18. TUmNG, A. M. On computable numbers with an application to the Entscheidungs-

problem. Proc. Lond. Math. Soc. {2], 42 (1936-7), 230-265; addendum and corrigen-
dum, 43 (1937), 544-546.

t9. - - - - . Computability and X-definability. J. ~ymb. Logic 2 (1937), 153-163.
20. WANQ, H. A variant to Turing's theory of computing machines. J. ACM 4 (1957),

63-92.
21. MINs~z, M. Recursive unsolwbil i ty of Post's problem. M.I.T. Lincoln Lab. Report

54G-0023.
22. S~.~WLLY.XN, R. J~[. Theory of Formal Systems. Princeton, 1961.
23. POST, E . L . Recursive unsolvability of a problem of Thue. J. Symb. Logic 12 (1947),

1-11.
24. LE~ C.Y. Categorizing automata by W-machine programs. J. ACM 8 (1961), 384-399.

