Compuatability of Recursive Functions*
J. €. SHEPHERDSON
Unaversity of Bristol, BEnglandi
AND
H. E. Srunas

Undversity of California, Berkeley, USA

I Introduction

As a result of the work of Turing, Post, Kleene and Church [1, 2, 3, 9, 10, 11,
12, 17, 18] it is now widely accopted' that the concept of “computable” as ap-
plied to a function® of natural numbers is correctly identified with the concept
of “partial recursive,” One half of this equivalence, that all funetions computable
by any [inite, diserete, deterministic device supplied with unlimited storage are
partial recursive, is relatively straightforward® once the elements of recursive
funetion theory have been established. All that is necessary is to number the
confipurations of machine-plus-storage medium, show that the changes of con-
figuration number caused by each “move” are given by partial recursive func-
tions, and then use closure properties of the class of partial recursive functions
t0 deduee thai the function computed by the complete sequence of moves is
partial recursive. Until recently all proofs [4, 6, 12, 13, 19, 20] of the converse
half of the equivalence, namely, that all partial recursive functions are computa-
ble, have consisted of proofs that all partial recursive funetions can be computed
by Turing machines,’ which are certainly machines in the above sense. Although

* Received December, 1961.

T Visitor at the University of California, Berkeley, 1958-1959, when most of this work
was done. : :

! There are some finitists or intuitionists who might deny that all general recursive func-
tions are computable, or even assert that the class of general recursive funetions is not
well-defined. However, by speaking of partial recursive functions we avoid this difference
of opinion. For there is surely no doubt that the routines given here and elsewhere will
setually eompute the value of a given recursive funetion for a given argument at which
the function is defined, and will go on computing forever if the funetion is not defined at
that argument. Of course, there may now be a difference of opinion as to whether a given
partial recursive function is general reeursive, i.e. defined for all arguments; in fact, the
guestion of whether such a funetion is defined for one particular argument can be as difficult
28 the Fermat conjecture. But disagreement on this or on the equivalent guestion of whether
the corresponding computsational routine terminates or not does not affect the completely
finitist proof that for arguments for which the function is defined the routine will compute
its value.

? Not necessarily defined for all arguments.

3 Although the belief that all “computations” ecan be earried out by such a deviee must
be taken as an act of faith or a definition of computation.

* Or Markov algorithms, whieh ave similarly restrictive.

217

218 3. ¢ SHEPHERDSON AND . 1L STURGIS

nol duliendt, these proofs are complicated and tedious to {follow lor two reasons,
(1) A Turing machine hag only one head so that one is obliged to breale dowy
the computation into very small steps of operations on a single digit. (2) It hag
only one tape 50 that one has to go to some brouble to find the number one wishe
to work on and keep ib separate from other numbers. The object of this paper i
first to obtain, by relaxing these restrietions, a form of idealised computer which
is sufhiciently flexible for one to be able to convert an Infuitive computalion)
procedure with little change into a program for such a machine. Since this sm
of computer plus a given finite program clearly can be regarded as a finie,
diserete, deterministic device {(plus unlimited storage), a very simple proof can
be given to show that all partial recursive functions are computable. We then
gradually reintroduce resbrictions (1) and (2), passing through a sequence of
definitions of infermediate forms of machine and ending with a form from which
we can not only obtain directly the computability of all partial recursive fune
tions by & Turing machine’ with only two tape symbols { “mark” and “blank”)
but by a very slight change, also the strong result of Wang [20] that erasing is
dispensable and that “shift left one square™, “shift right one square”, “mark g
blank square”, “conditional transfer” (jump i square under scan Is warked) are
adequate. In fact, by making another slight change we can decide affirmatively’
the question raised by Wang (20, p. 84] whether the “conditional transfer” can
be replaced by the “dual condilicnal transfer” (jump if square under scan is
blank). The intermediate forms of machine or computational procedure are, we
think, of some interest in their own right. For example, in Section 8 we note that
a general-purpose compuber could be built using one binary tape and two heads,
the right-hand one being a writing head which can move only to the right and
can print only when moving, the left-hand one a reading head which can also
move only to the right and can read only when moving (and may destroy what-
ever it reads in the process of reading 1t). In other words, the simple “push-
button’ or “push-down’ store,” in which “cards” with ¢ or 1 printed on them
are added only at the top and taken off to be read only at the bottom, is a uni-
versal computing machine. In Section 10 we show that theorsms (including
Minskyv’s results [21]) on the computation of partial recursive functions by ma-
chines with one and two tapes can be obtained rather easily from one of ow
intermediate forms, S0 we might swmn up by saying that we have tried to cary
8 step further the “rapprochement” between the practical and theoretical
aspects of computation suggested and started by Wang [20]. Howoever, we do
not diseuss guestions of economy in programiming; our alin is to show as stmply
as possible that certain operations ean be carried out. Tn the inferests of reads-

5 A fact which is important ai least to metamaihematicians, since it is the basis of
many undecidability proofs.

5 This has also been established recently (by a different method) by C. Y. Lee [24].

" We are grateful to A. L, Tritter for pointing out that our use of these expressions is
nonstandard; apparently o “push-down’” store is an v1P0 (iast-in, first-out) store, wheress
we describe an piro (first-in, first-out) store,

COMPUTABILITY OF RECURSIVE FUNCTIONS 219

billly we have relegated fo an appendix certain computational details and
supplementary remarks.

Note. "There have recently appeared papers by Ershov [5), Kaphengst [8] and Peter
[18] which also provide simple proofs of the computability of all partis] recursive funetions
by various kinds of idealized machines or computational procedures. These sre all similar
to each other and to the methods of this paper but have interesting differonces in approach.
Ershov starts from a very wide and elegant definition of algorithm, which is particularly
suitable for dealing with the theory of progiamming of digital computers; Peter starts
from a general form of block disgram, and Kaphengst from an idealization of a digital
computer. We comment later (Appendix A) in more detall on the differences between the
operations used in these approaches and those used here; although all the sets of operations
are equivalent, the present method appears to be best adapted to our purpose of starting
from operations in terms of which all partial recursive functions are easily computable,
progressively breaking these down into simpler operations, and ending with the very few
basic operations of a non-erasing Turing machine.

Kaphengst’s approach is interesting in that it gives a direct proof of the universality of
present-day digital computers, at least when idealized to the extent of admitting an in-
finity of storage registers each capable of sboring arbitrarily long words., The only arith-
metie operations needed are the successor operation and the testing of two numbers for
equality (other operations of the usual kind for transferring numbers from other addresses
to and from the mill and the order register are also needed, of course). The proof of this
universality which has been tacitly assumed by all concerned with electronie computers
since their inception seems to have been first written down by Hermes, who showed in
{7] Low an idealized computer could be programmed to duplicate the behavior of any Turing
machine.

2. Unlimiled Register Machine (URM)

This, our first and most flexible machine, consists of a denumerable sequence
of registers numbered 1, 2, 3, - - -, each of which can store any natural number
0, 1,2, -+ . Each particular program, however, involves only & finite number of
these registers, the others remaining empty (i.e. containing 0) throughout the
computation. The basic dnstructions (orders, commands) are as follows (here
(n}, (n"y denote respectively the content of register n before and after earrying
out the insbruction):

a. Plny: add 1 to the number in register n, ie. (n') = {n)+1.

b, Ding: sublract 1 from the number in register n, i.e. ') = n)—1. ({n) £ 0).
e On): “elear’ vegisier m, l.e. place 0 in i, i.e. {n') = (.

d. Clm, n): eopy from register m tnto register n, ie. (n') = (m).

e JIEL: Jump o exit 1.

fo Jm)[E1]: jump to exil 1 if register m is emply.

Notes, ‘

(1) This set of instruetions is chosen for ease of programming the eomputation of partial
recursive funetions rather than economy; it is shown in Section 4 that this set is equivalent
to a smaller set,

(2) There ave infinitely many instruetions in this list since m, n range over all positive
integers,

(3} In instruetions &, b, ¢, d, the contents of all registers except n arc supposed to be
left unchanged; in instructions e, f, the contents of all registers are unchanged.

220 J. €. SHEPHERDSON AND H. . STURGIS

{4) The P, D of a, b, stand for rrivr, peuste, which is what they amount to when wy
pass to the next stage of representing the natural number 1 by a sequence of o marks,

(5 Instruction b is used in our programs only when register n i8 non-empty, 30 we leave
the definition of the machine incomplete to the extent that we do not speeify what would
happen if it were applied to an empty register (e, no effect at all, or sror without resull),

{8} Instruetion d is defined ouly for m #* n; we nake this restriction rather than saying
this 1s an instruction O'{(n, n) which doss nothing at all, since the subroutine we give late
for € (m, ») in terms of the other insbructions would go on computing forever if m =g
(it would continually subtract and add L to n).

Instructions a, b, ¢, d, are called single-exdt instroetions and are said to have
only the nomnal exit or exit 0. This means that when they ocenr i a program
there is no cholee to be made; the machine simply proceeds to the next line of
the program. Instruction f, J{m}{£1], however, is thought of a3 a fwo-exit n-
struction: if register m is non-empty, take the normal exit (i.e. proceed to the
next live of the program); if register m iz empty, take exit 1. When this instrue
tion eceurs m a program it will always be in the form J{m)[n], indicating that
to take exit 1 you proceed to line n. Instruction e, JIK1] is similarly thought of
a8 a two-exit instruction; in this ease, however, the “normal” exit is never taken

Although we do net have here any basic instructions with more than two exits
it is convenient to give a definilion of program which would apply also in such
a cage, since for later machines we wish fo use subroutines with more than two
exits. So we define & program {or routine) as a finite sequence of 7 Hnes, exch line
being of the form I[my, - - -, my), where I[F1, - -, k] 15 an instruction, k is the
number of non-normal exits of 1, and my, - - -, m; are integers between 1 and
I+1 {where it is understood that if & = 0 the line simply consists of 7 alone). In
following such & program the machine starts on lne 1 and proceeds this: when
on line ¢ Ilmy, -~ -, me] 1t carries out instruction [and proceeds to line ¢+1,
My, - -+, or my depending on whether the state of the registers is such that the
Oth (normal), 1st, -- -, or kth exit of instruction I is to be taken; on arriving st
the non-existent Line I--1, it stops, For example, the program

1. Jin}l4]
2. Din)
3. J)

conld be written more fully:

1. Proceed to {ine 2 3if register n 1s non-empty, to fine 4 (i.e. stop) 4f 7¢ 45 empiy.
2. Subtract 1 from nwmber in vegister n.
3. Jump to fine 1.

t is easily seen to have the same effect as O(n).
Following Wang, we make extensive use of subroutines. A subroutine S is like
2 program except that (like an instruction) it may have several exits, c.g. we
ase subroutines such as O(n)[F1], “clear register n and proceed to exit 17:
1. Jin){El]

2. Din)
3. J)

COMPUTABILITY OF RECURSIVE FUNCOTIONS 221

To obtain a definition for subroutines of this kind we have only to take the
above definition of a program and allow thewm, | -« i, to range over E1, - - - Bl
sawellas 1, -+, 41, Here & will be the number of non-normal exits of the sub-
routine, The basic theorem about subroutines of this kind, which (following
Wang and other writers on computing machines) we take as being sufficiently
ohvious not to need a formal praof {which is a little tedious) is that if such sub-
routines are used as new single instructions in the formation of other subroutines
and programs and so on, then all the resulting programs could be obtained with
the original set of basic instructions. The formal proof of this is obtained by
showing how to expand these subrontines in terms of basic instructions whenever
they occur in other routines or subroutines, For illustration, consider the case
of a rontine or subroutine U with { lines:

1
.U,
L

whose jth line is of the form Sfmy, - - -, my] where S|£L, -+, Bkl is a (k+1)-exit
subroutine oxpressed in terms of hasic instruetions by m lines:

L &

T

To climinate S, simply replace U; by these m instructions and convert all jump
references so that they go to the correct line in the new program; the resulting
program is

1. U
i—1. Ut
j . Sl”

jtm—1. 8,7
N r
Jtm Ui

l'rn;—i. t’g’
where (7 (6 =1, -+, 7—1,i+1, D) is obtained from U, as follows: if Uy
is I, -, n then U is I, +- -, n], where n = nunlessj <n = +1,in
which case n = n-+m—1. Similarly, if Siis I[ny, -+, #l :f,hen S isfn, <+,
n"], where n” = nj—1if 1 & n = m+l, W= m i = E @ =1,
sy k)
¥

3. Compuiability of Partial Recursive Functions by lhe URM

A single-valued function {not necessarily defined for all arguments) whose
arguments and values range over the natural numbers is partial recursive if it

222 J. ¢, SOTPHERDSON AND F. E, 3TURGIS

can be obtained from the initial functions of sehemata I, I, 111 below by means
P 5 . . . s L] e oy —r
of a finite number of applications of schemata” IV, V, VI

I Sy = a1
I, 0%y, -, 20 = 0
ITL U, o0,) = 23
IV, [CoweositioN] H b, g1, -, g ore paritel recursive so os the funciion § defineg
by flas, oo, aad = R{glan, oo, @), oo gmlrn, ey @)
V. [Privitive recursion] IS g, A are partial recurstve so 15 the funclion | defined
bfy’ BACLRE PR N Xy = 57(932 » T 2?,5),
flel, @, oo,) = Alz, 2, wo, o0, alTa, 7, XTnl.
V1. [LEaST KUMBER OPBRATOR] If ¢ i¢ pariial recursive so is the junction § dejined by
flee, - 2 = wylolen, -, 2e,) = QL
Note. In schema VI, the “uy”, “the least y such that™, is to be interpreted thus:
Fflay, «»» , z,) 18 defined to be yo when ¢(@r, -+, 20, we) = Oand gloy, ¢, 20, ¥} is de-
Jined but non-zero for v < s ; if no such ¥, exists, then f is undefined.

We now show that all partial recursive functions are compulable by the URM
in the following sense: for each partial recursive function f of # arguments and
eacliset of natural numbers wy, -+ %y, Ny & oy, for s = [, -+, ,
z,,5 S N)thereexistsaroutine Bx(y = f(a, -+, @a)) such thatif &, -+, {&)
are the initial contents of registers x;, -+ -, 2., , then if f{{xy}, ---, .} is un
defined the machine will not stop; if f{ {xy), -+, .7} is defined the machine will
stop with (), the final content of register v, equal to f({ay), -+ -, {2}, and with
the final contents of all registers 1, 2, - -+ | ¥ except register y the same as their
initial contents.® This is the moss convenient form to choose for the intulbive
proof that all partial recursive functions are computable, since we wish fo pre-
serve the arguments for subsequent calealations; if, however, a final routine is
wanted which leaves only the value of the function and erases the contents of all
registers less than or equal to N except y, this can obviously be obiained from
the above routine by adding the instructions G(1), -+, O(y—1), Oly-+1), -,
O(N). What we must now give are subroutines for computing outright the
initial Tunetions of schema I, 1T, I, and for schemata IV, V, VI subroutines for
eomputing f from given subroutines for computing g, k. We give these helow:

noa
Ry

1. SusrovTiNg Ryly = S(z))
L. Clz, y)

2. Py
1I. Svsrovrineg Ryly = O™xy, -+, ©.))
1. Gy

fl

III. SvsrouTiNg Ex(y
L O’:xi y Y

Uy, oo, za))

8 It is convenient in stating these to allow funetions of 0 arguments (i.e. constants) so
that the » in sehematsa IT-VI ranges over the values 0,1, 2, ... |

 Obviously we eannot hope to preserve the contents of all registers except y-—we mush
have some place to do “rough work”’—it is important in the induetion to have this lower
bound A on the addresses of registers possibly disturbed.

COMPUTABILITY OF RECURSIVE FUNCTIONS 223

Vo Busnouming Kyl(y = [z, -, 7)) USING SUBROUTINES FOR ¢, f, WHERE I8
DEFINKD BY SCHEMA 1Y Thnus:
Hay, v = Mgday, o 2ad, o galzy, ooe, 20D
L BN+ = Nz, 0 xe))

i Ry N = g ey,)
el By = BN oo Vb))
Note. Registers N1, -+ | N | m are used to hold gy, -+, g, since all registers
1, o0, N {excepl m) must be left unchanged by Ry .
Vi HUBnonTiNg ror fyly = f(r1, ©-, £2)) USING SUBROUTINE FOR ¢ WHERE f IS
periNgDd BY VI taus: flay, -, we) = wylgle, - y En o,) o= 0
1. O{y)
2 B N1 =g, a0, 1))
3. JIN+-D4], Ply, J(2]

Here and later we no longer number each line of & subroutine; thig means
simply that we are using for our lines certain subroutines. Clearly, the only in-
straetions which need to be numbered are thoge to which a jump is made. Two
other abbreviatory technicues are worth introducing now, viz. if ! is an instrue-
tiot ar subroutine, then /™ stands for the result of performing I » times, i.c. for
the subrondine L4, 2.0, ---0 n. 1. Similarly, if [is a single exit instruction
or subroutine which does not affect register w then I stands for the result of
performing [(i) times and redueing (n) (the number in register n) to zero; it
can be obtained thus: L Jw)(2], 1, Din), JILL

V. SemnrOUTINE fx(y = Flo, -++, 2a}) USING SUBROUTINER ¥OR g, A WUBRE f 1S

pEFINED BY scHEMA V., mavs: f(0, 2, -+, 2) = gles, -+, @),

Jle+L ae, ooy xa) = iz, flz, 22, o0, Tady Ta o0,)

{0 By(y = gles, -, m)), O(N+1)

2 [x oN42 = AINFL g, o @), CIVE2,), PINFD]EY

O CNFHL 2

This completes the proof that all partial reenrsive funetions are computable

hy the URM. We have simply followed the intuitive argument by which one
convinees oneself that one could in fact compute all values of all functions de-
finable hy 1,--- VI. We have chosen g set of hasie Instructions large enough to
make the programming straightforward. Kleene [12, p. 363] proceeds somewhat
similarly: “An intuitive ealeulation by schemata (I)-(VI) is acecomplished by
repetitions of a few simple operations, such as copying a number previously
written (at a determinate earlier position), adding or subtracting one, deciding
whether a given number is 0 or not 0. We shall first construet some [Turing]
machines to perform such operations as these.” However, he does not give ex-
plieit programs in terms of these operations but proceeds immediately to the
one-dimensional tape and the construction of particular Turing machines. By
deferring these steps we are able to get his result and the stronger result of Wang
quite siraply from the sane intermediate form.

g J. ¢, SHEPHERDSON AND H. . STURGIS

4. Reduetion of Basic Insbruciions

We now {1y to reduce the instructions to a smaller and simpler sot. The mog
obvious candidate for such replacement is the copy instruction d. The subrouting
which springs to mind for defining this in terms of the other instructions is to
keep adding one into register n and subtracling one from vegister 2 until the
latter is empty. This certainly coples the contents of register m wdo register »
but unfortunately it destroys the original. We can avoid this by making two
coples at onee and alterwards copying one of them back into regls‘tw m. However,
this will not give exactly /(m,n}, since the original contents of the registe
(N+1, say), used to hold the second copy, will have been destroyed. What we
can obtain in this way is a bounded copy subroutine Cw{m,n) defined for m,
n = N, m # n, thus:

Cw b Clear vegrsier n, COPJ contents of regrsier mointe 18, leawing condents of all
regisfers b, -+ n—1, nt1l, - N (Encluding m) unchanged.

Before vonsidering this subroutine, pote that it can be used instead of C{mp)
in the above routines, since an appropriate bound N can always be deteriined
for the number of registers whase contents we need to keep unchanged. Indeed,
consider the bounded analogues of all our basic instroetions:

a1 . Pxi{n) dy . Cxlm, n)
b; . DN(H) ey, -[N(EH
¢, Oxln) fr. Jam) &L}

{for all m,n,N with m,n £ N}, these being defined as having exactly the same
effect as the original umul‘)scripted instructions, except that whereas the latter
were required to leave the contents of all registers (except n) unchanged the
new weaker operations are only assumed to leave all registers {except n) les
than or equal to N unchanged.

Tt is easily seen that these operations, with suitable bounding subscript &,
could replace the original ones i all the routines given so far, since each of these
needs only a bounded number of registers (in subroutines I-VI the number of
registers needed is N, N, N, N-+m, N+2, N+, respectively). Tn fact, this s
true of every routine regarded as a function fram a given [linite set of registers
i1, -, Ng to a given fiuite set {1, -« Ny} of registers. For each routine, R is
hmte d,nd is unchanged by its own operation™ so there existe a number Ny such
that R neither affects nor is affected by any registers greater than Ny ; henee if
we take N = max{ Ny, N1, Nzl and bound all operations by N the resulting pio-
gram will be equivalent froni this point of view. Siace ihis is the only way M‘
do regard routines we can say that the bounded set of operations is r‘qllwalelit
to the original set.

1¢ Bince the URM, unlike present-day electronic compiters, has no means of working
on and altering its program.

I however, a routine 1s regarded as establishing sueh o function for all Ny, NV, or 88
a4 function of the whole infinite totality of registers, then the bounded operations are weuker.
No single program formed from the bounded operations can be given which alwayy (regard-
less of what partiewlar effect the setual & -bounded operations may have on the register

COMPUTABILITY OF RECURSBIVE PUNCTIONS

tg
o

We now give a sories of reductious of this set of bounded instructions.

1. Svsrouriss vor d;, Cymn) IN TERMS OF o, , b1, ¢, €,)
Oxln), Oy (W41}
[P (10, Pl o)

| Puessm |00

S

o]

it s 1o be umi(‘rﬁfond ere that the instructions J, J(m), which are mvolved
when lines 2, 3 are oxpanded (in aceordance with the definition of 1'™ given in
Seetion 3 above), are also given the appropriate bouuding subseript N4-1.

Noteo It is interesting Lo compare Wang’s way [20, p. 73] of dealing (in slightly different
circumsatances, vie. & non-crasing Turing machine) with this difficulty that the original is
destreyed in the process of copying. He arranges for the origingl to be not completely
destroyed but only “defaced” so that it is possible (by a different routine) later to copy
onee more from the defaced original; in this second copying the original is completely
destroyed. This leads to somewhat more complicated programs than our method; however,
it is oul} by eliminating the copy eoperation ab this stage, where we can still create space
for “rough work® Just by bringing in another register, that it is possible to ses easily that
it can be done this way; the resulting program for making two “‘simultancous” copies with
4 non-erasing Turing machine would involve a large number of operations of permuting
the contents of the significant part of the tape.

9. SUBROUTINE TOR ¢, Oy(n) IN TERMS OF by, e, £
L Jwim2), Dw(ny, Jall]

We now show how to climinate the jumps ey f; in terins of the dual f; of £; :

fo . S Jump fo exit 1 4f register m @5 non-emply
3. BusroUTINE TOR fy, Jxlm) [B1] 1N TERMS OF &, i
1. Jx 2], Iy [E1]

4. BUBROUTINE ¥YOR &; , J 4[El] 18 TERMS OF 2, , T,
Lo PypN+1, Jya(N 15181

We have now shown:

4.1. For cach nabwral number Ny and each program P of the URM, there exists
o program. having the swe effect as P on registers 1, -+, Ny and composed only of
instructions from the following et (N — 1,2, -+, mn = 1,2, --+)

gy . Pylng: 'y = ni41
bi. .DN(TL): (n'} - (n)wl
fi. JTn)[E1): jump to extt 1 4f {n} # 0,

greater than N) has the same effect for all N on th, ﬁrst N registers (or on all regigters)
as the operation C{m, n). Note, however, that subroutines (1) and {(4) given below for de-
fining cory and Juse in terms of the other operations disturb the contents of only cne
register; so if there is one additional register 0 available for this use (an “arithmetic unit’’
or “milt’} then these subroutines do show that the original sel of instructions a,-- - fis
equivalent to the set a,be,f (or a,b.e,f) in the sbrong sense that for each program P of the
original URM (plus the new register 0) there exists & program £, in the reduced set of in-
struetions which has the final effect as P on all the l@gl‘-ff‘rs 1, 2, 3,---. The same applies
Lo the set a,b,T, although here slight changes are neeessary in programs (1) and {2) to avoid
register 0 being uszed simultaneously in conflicting ways. The remaining seb mentioned
in Appendix A, a,b,f plus ap initial 0, is adequate only if a second additional register is
available to hold this 0.

224 J. . SHEPHERDSON AND H. . 8TUBLIS

where the subscript N denotes that the content of registers N1, N2, - may b,
altered by the snstruction. I'n parizcelaer, oll partial recursive funclions are compuiy.
ble using these tnstructions only.

This set of mstruetions is fairly obviously mininal; for o fuller diseussion and
comparison with the operations used by Kaphengst [8], Tirshov [0} and Pete
[13], see Appendix A ; reductions in the number of registers used are considery
in SMeetions 7, 8, 10.

8. Farizal Recursive Funetions Over a General Alphabet

When computing a function f of natural nwmbers and using, say, the decimal
representation, it i3 sometimes convenient to think of the corresponding funation
7 {rom decimal expressions to decimal expressions defined by f'(d) equal to the
decimal representation of f{n), where n is the number of which d is the decimal
representation. For example, If we wish to write a program Tor the computabion
of such a function it is in the last analysis the function f' which must be con-
sidered. In this case, as has been shown in Section 4 for example, it is enough to
show how o obtain the decimal functions corresponding to the functions S(z) =
a1, Pla) = x—1, ie. how to add and subtract 1 from numbers expressed in
decimal notation. However, for some of the more complex ways of representing
natural numbers which are considered later, it is easier to work throughout with
functions of expressions or “words” over a general alphabet. By an alphabel ¢
we mean a finiteset {a;, - -+, a of objects called letters; a word over the alphabet
& is a fOnite gequence d,, - - - o, (r = 01is allowed; this gives the null word A)
of letters of @; W{@&) denotes the set of words over @. By analogy with the usual
definition of partial recursive function of natural numbers quoted in Section 3,
we may define the partial reeursive funetions over @ (i.e. with arguments and
values in WW{a)) to be the functions obtained by application of the following
schemata:

A =1, o g) Se,(m) = zwy
T, Arlay, -, @) = A
s Uiy, oo 2tn) = &4
IVE. Ifh, gi, -, are partiol recursive over (., so is lhe [unclion f defined by
Flos, o an) = Rigila, o, xal, o0 gmlt, 0, 2e))
V¥, Iig, b, (i =1, -+, s) are purtial recursive over &, so 15 the function [defined by
.f(,/\'“.: Yyt Tn) = glae, -, x"); f(:ga‘i y W2y Ty Tn) =
hilz, Sz, %y, o Ba), Ty, 0), (£ 1, 00 8).

VI (@= 1, -, s). Ifgis partial recursive over @, so is the function f defined by
flav, o may = walgler, o 3a, v) = Al whereploley, - @, y) = Al
means “the shortest word v composed entirely of a; (i.e, of one of the forms
Pyt ity 0y) suchthat glo , -+, 2a) = Aandgle, -+ 2, "
is defined {and = A) for all 4 of this form shorter than y.

Noles.

11y The variables @, -+, %, , %, 2z range over W{{}.

{2) za; denotes the concatenation of z and a4, Le. the word obtained by placing v 00
the right-hand end of the word z.

{3) The partial reeursive functions of nabural numbers are ineluded if the natural nume-

COMPUTABILITY OF RECURRIVE FUNCOTIONS 227

ber = 3¢ identified with the n-letter word @,*, i.e. @y -+ @ on the single-letter alphabet
@ = fes).)

(4) 1% might nppeoar more natural Lo use in VI* o p-operator giving the first word (po
restriction en its form) in » certain fixed ordering of W{®) which satisfied the given con-
dition. However, this would comnmit us o assigning (arbitrarily) this fixed ordering. As
far os generality goes, the two forms are essily seen t0 be equivalent provided the ordering
is primitive recursive, ie. using the above identification of natural numbers with words
in G provided the funetion w(x) giving the number of word z in the ordering and the fune-
tion Wir) whose value for z =) is the nth word in the ordering (and whose value for
words 0ot composed entirely of @1 may be assigned arbitrarily) are primitive recursive over
G, i.e. definable by schemata T*-V* only. (The usual lexicographic ordering certainly satis-
fies this condition.)

(5) Tt can pasily be seen that it would have been encugh to have only one of the s sche-
mats V1% We include them all for the sake of syminetry.

{6) Tt is more usual to define partial recursive functions over @ in terms of a Gadel-
numbering of W{Q) by saying that a funection is partial recursive over & when the cor-
responding funetion of Godel-numbers is partial recursive. This is easily scen to be equiv-
alent to the definition given provided the Godel-numbering is primitive recursive (see
nobe 4 above); the familiar Gédel numberings certainly ave). The present approach seems
to us to be more patural; it is similar to that of Post [17], Markov [13], and Smullyan [22],

6. Computability of Parlial Recursive Functions over @ by the URM (@)

We now give the parallel for a general alphabet to the arpuments of Sections
3, 4. The details are so similar to the case already dealt with that we shall relegate
them to Appendix B and merely state the final result—that all partial recursive
functions over @ are computable on the URM(®) whose instructions are:
(N =1,2,-;n =12 ;4= 1, 38).

a; . P}f}(n): place a; om the (right-hand) end of W}
bi. Dy(n): delete the first (lefi-most) letier of {(n) ({n) = A)
. T B jump to exit 1 if (n) begine with a;

Notes.
{1) The subseript ¥, as in Section 4, signifies that, apart from making the operations
deseribed above, the contents of registers 1, - - , N arc unaltered, although the contents

of N1, N42, --- may be changed.

(2) As before, {n) denotes the content of register n.

‘3) Instruction by will be used only when {(n} is non-null.

(4) The reason for choosing operations of adding at the end and deleting and jumping
from the beginning of a word is that it is the simplest combination fo use for building up
the subroutines for copying and primitive recursion. It is clear that one must jump and
delete from the same end in order to be able to do anything useful, but the addition of
lebters 1o o word eould take place either at the other end (as here) or at the same end, since
it is easily seen that one could then reverse a word if one wished to add to the other end.
However, this reversal needs a second register; in the later reduction to a single register
only the eqmbination given above (and its opposite) is adequate.

7. Limiled Register Machine (LRM)

Observe now that the URM ean be replaced by a machine which has at any
time a finite but variable number N of registers and with instruetions possibly

228 Jo C. BHEPHERDSON AND . . BTURGIS

depending on N. The Timited Register Machine (LRM) has for the numerieg)
(single letter alphabet) case the following instructions:

8. Pyln): add 1 1o ()

by, Dy(n): subtract 1 from {n)

T I EL: jump fo exii Lif (n) = G

hy. N — N-t-1: bring in o new register, membered N4-1
. N - N—1: vemove {emply) register N

In the general alphabet case we speak of an LRM (@) and replace instructions
a, by, Ty above by

. P}f}(n): place a; on the end of (n}
by. Dyln): delete the first letler of (r)
£, S B jump to exit 1 if (n) begins with a;

where @ = {a;, - -+, a} and therangeof 7is 1, - - -, 5. [Asin Appendix C, by,f; ean
be replaced by 2 eombined scAN AND DELETE operations, . Sedy(n)[F1, - - -, Es]]*

Here the N denotes that the instruetion has the indicated effect when the total
number of registers is N; we do not care what would happen if it were applied
when the number of registers is different from N. The range of N is 1,2, 3 -+ for
all ingtructions except hy where it18 0, 1,2, 3, --+; the range of ni8 1, 2, +--, V.
1t is supposed that the above instructions have exactly the effect specified, ie. do
not alter the contents of other registers.

We first show how to obtain a stronger form N -, N—1 of i, , “renmove the no
necessarily empty register N7°:

1. Py(N)
2. Dx(N), Jx(N)(2]
3. N-—>N-1

This is for the single-letter alphabet. For the general alphabet, replace Py{¥)
by PSPUNY and Jx(N)[2] by J& (N2, - - & (N2

The above instructions, apart from A, 7, , are exactly analogous to the bounded
forms of the instructions for the URM. We have

7.1, Al portial recursive functions are compulable by the LEM.

To prove this we need only take each routine Bx(y = f(xy, ---, %)) ete,
previously given for the URM with bounded instruetions, find the maximum
bounding subseript M which occurs, replace all the bounding subscripts by M

12 However, these two sets are not completely equivalent. The subroutine for & in terms
of by, f" given in Appendix C works with the new meaning but the subroutine for [, J4'0(r),
in terms of 3; must be modified by the ingertion of N — N-+1, N+1 — N-+2 at the beginniag
of the first line, and N+2 -+ N4+1, N+1 N at the end of the last line (where N —» N1
is defined by 1. Sedny(N)[1, -+ ,1],N — N —1). Tven with this madification the subroutine
is not eguivalent to J¥ {(n), since if the jump is taken it is taken from & position where
there are N2, niot N registers in use. But when it oceurs in a complete program with
only the single (i.e. normal) exit, this can be compensated for by replacing the line
gav, t6 which the jump is taken, by two lines m. N — N+1N-+1— N+32, mtl
N42 - N1 N+H1 N, old line m, taking the jump now to line m+1 and syitably repunl~
bering all other lines and jumps to them.

COMPUTABILITY O RECURSIVE FUNCTIONS 220

and, if M > N, add instructions N — N+-1, N+4+1 = N+L2 .. N4M-—1
—» N+ M at the beginning and N+4+M — N4+-M—1, -+, N+1 —, N ab theend.

In connection with later reduetions to Turing Machines we note here two
spocind cases of subroutines for the computation of a parlial recursive function
Jlxy, - -+, ea) which are of use. If we take B, 12 (n+1 = f(1, -- -, n)) and precede
it by n -~ n-+1, we get a routine which when started with the first » registers
contaluing 2, -, 2, finishes with n+1 registers containing x,, -- Yy Tn
flze, - -,). I we add a routine for copying the contents of register % 1 into
register 1 and deleling all registers except register 1, we get as {inal form a single
register containing f{x, , -+, x,), which is the nealest way of displaying the an-
swer, although the former routine which preserved the arguments was useful in
the inductive proof that all partial recursive functions were computable.

8. Reduciion to o Single-Register Mackine (SEM)

Instead of speaking of registers of the LRM | we may think of the state of its
storage medium at any time as a sequence {1}, -- -, {N; of numbers, or in the
general case, words over an alphabet @. This suggests yet another way of looking
at the matter; narely, we can think of {1}, ---, (N} as a single word A on the
alphabet @ U {,}. From this point of view, however, the basie instructions of the
LEM(@) are rather complicated, involving as they do changes in the middle of
the word 4. It is natural to try to follow Post [17] and replace these operations
by simpler ones which affect only the beginning and end of 4." The obvious set
to try is the analogue of the set we have used for the LRM, i.e., to regard A4 as
the content of a Single-Register Machine (SRM) which has the same instrue-
tions applicable to this register as the LRM does for each of its registers:

n, P add ay; to the end of 4
b, D delete the first letter of A
I JWOEL: jump to exdt 1 if A beging with a;

Here we suppose that alphabet G U {,} is labelled ay(,), a1, * - -, & %0 that ¢ runs
from 0 to s in these instructions. Since there Is now only one fixed register, we
have shorn the instruetiong of all subseripts and other marks which are now
UNTECOSLALY.

We now show how to obtain subroutines for the operations of the LRM (@)
in terms of these basie instructions applied to the single word A = 4., -+, d¥
where 4, , -+, Ay stand for the contents of registers 1, - - -, N of the LRM. The
key to this is a subroutine 7' for transferring a word on @ from the beginning of
the string to the end, ie. for sending Ay, Ay, -+, Ay into s, --+, Ay, 41
We first define the jump J, jump if 4 # A (if N > 1 the word 4 is always
non-null sinee it contains at least a comma, so that in this case J is an uneon-
ditional jump): JIE1 = JOUEL, JPEL, - -, JUEL

B The fact that Post was concerned with generating sets of words whereas we are con-
cerned with programs yielding at most one result makes it difficult to use his results directly.
In fact it appears o be easier to proceed in the other direction and obtain his results from
ourg, (See footnote 14.)

23 J. €. SHEPHERDSON AND IH. [, BTURGIS

We now define 7' as:
1. P

2. JW3], - JE[4-2], JV[s4-3]
3. D, P9, T2

s+2. D, P, 7]
s+3. D

We can now obtain the LRM{@) operations in the natural way-—by bnugmg
the word we want to operate on to the beginning (for operations b, , f, "} orend
(for operation a,) by applying T the appropriate number ol times, carrying out
the corresponding operation of the SRM and then restoring the word to its
original position by 7" 1n full:

g . PP = 1. 7w Pe) TE-

bi. Dy(n) = 1. T=, D, T+

0. Y (mEL = 1. T, JER), TV J(3)
2. TN-m+t J(E1]

hy. N =N+l =1, pw

iy, N—>N-1=1 7T¥1 D

Here (asbefore) T" standsfor T, - - -, T (n times). Taking this together with 7.1
we have

8.1. All partial recursive functions wer Q are compulable by a single-register
machine with alphubet G U {,} ond operations

a. P A — da;
b, D: ad — A
I, JOIEL: jump to exit 1if A begins with u;

or (see Appendix)

a. Pl A~ Ag;

8. Scd[EL, --- , B(s+1}]: scen the first lotter of A; if A = N, lake the normal exit;
tf Jirst lefter of A is a; , delete this and take exit i+1
(i - 0" ,8).

These results may be improved slightly; namely, the operations t' s need not
be defined when 4 = /\. For we can easily write the above programs so that
f',s are never applied to blank words. One way of doing this is simply to introduce
an additional register (i.e. comma) in the second line of the program and remove
it in the line before the last.

Here ¢ ranges from 0 to s where @ = {a,, - - -, a.] and ay is the comma. As noted
in Section 7 the program for computing a funetion f can be written so that applied
to Ay, oo, A0t yields 4y, oo+, A, f(A;, -+, A,) or so that it yields simply
flay, - Ay Infactif fi, - - -, frave m partial vecursive functions of A, , « - -, 4,
it iz clear that we can write a program which yields fi(d, , ---, 4.),
Julds, -, 4y). 1f we take G as the single letter alphabet {1} and use 0 as a
comma, this shows that all partial recursive functions of natural numbers are
computable by a machine with a single one-way tape, two tape symbols 0, 1 and

COMPUTABILITY OF RECURSIVID FUNCTIONS 231

| | .
) \ .
) iape . writing head
T reading i
; ! head
N |
‘ J‘» resull of |
i SCAN [— §
O
t control
center)
] ‘Iﬂ“fi directions to
program move and
divections to store print
move and -
g0an
Fig. 1

two heads—a reading head at the left-hand end and a writing head at the right-
hand end, each capable of moving to the right only and connected by a suitable
contral center and program store (Fig. 1). The adequacy of instructions a,s
{sec Appendix C) shows that both reading and writing heads need be capable
only of reading and writing while moving—so that the tape could be magnetic
tape. The reading head “deletes” simply by moving one square to the right;
sinee the tape can never be scanned again when it has passed to the left of the
reading head it does not matter if in the process of moving and seanning the
reading head destroys the tape completely.”

These tnstruetions a3 (in the weakened form where s is not applied to a null word)
provide a simple transition to Post normal systems. If we have 2 program of m lines on an
alphabet O = {pg, -++ , ¢a] we consider a Post normal system on alphabet @ =
o, 0 . fts . @20, 0, gml Obtained as follows: for each line of the program of the form
i Sedty, -, fea] Introduce “productions” gl — P o= 1, -+, s+1), for
pach line 7. PW add productions ¢ - Pa g5, and finally add the productions a8 —
Pa; (7 =0, -, 5} for gelting the ¢ back to the beginning again). It is easily proved
that if W, W, are words on® then ¢\W = ¢»W)1 by these productions if and only if the pro-
gearo started on W would end with W, . So if we now fzke sueh a program for the compnta-
tion of » partial recursive function j{n) which is defined on a nonreeursive set and takes
the value § when defined, we obtain a normal system such that the problem whether
g1 == g,, is unsolvable. The reverse system is one in which the problem ¢ = ¢1% is un-
solvable, l.e. this system with initial assertion g, has unsolvable decision problem. An
argument used by Post [23 p. 5] shows that the same Is true for the system with all the
productions made symmetrical, viz. g P > Pgy ., , ete. Using the fact that for every
recursively enumerable set 8 of words over (@ there exists a function f taking the value 0
on & and undefined outside we see that for each such set S there exists a normal system
{symmetrical if desired) on sn alphabet including @ such that, if W is a word on &, g
is derivable if and ouly if W belongs to 8. To get the full result of Post [17], or rather a
result which implies it, we must get rid of the g here. The easiest way to do this is to use
o trick of Post’s: start with alphabet

(17 == !(Lf_\, "‘,Gs,da, "',‘ia;qla "'5‘17.-:5613"'16’“}

instoad of (7 and veplace the above productions by gl — Py, ¢:P — Pa;f.a .
aP s Pa for all o & @7, & . ¢ being defined as a+, gs respectively), £ — P .

232 J. C. SHEPHERDSON AND M. B, STURGES

Another physical realization of the SUM(@) is that of a stack of cards, cach
printed with a symbol from @, which can be added to only at the top and read
and removed only at the bottom. If Instructions a, s are used we need to examing
the bottom card only when it is removed s¢ we see that a binary “push down?
(push-button) store with instruetions

(1) wdd card al top printed O

(2) add card at lop printed 1

(3) vemove bottom cerd; if printed 0 yump to tnstruction my
if printed 1 jump lo tnslruction wiy

18 a universal computer; i.e. supplied with a suitable program of instructions of
this type it can compute any partial recursive function in the sense that if the
stack of cards is initially 17 G 172 0 -+ 1™ (where 1 stands for a stack of g,
cards marked 1) then it will finally be 17" As shown in Appendix C,
instruction (3) can be weakened to

{3 remove bottom card; if printed 0 proceed fo next tnstrucéion
iof printed 1 jump lo tnstruclion m.

It is of some interest to notice that the above iustruetions can be still further
weakened by placing the eomma, used only for punctuation purposes, in a less
privileged position than the other letters—namely, by omitting the jump opera-
tions on the comma—and having to koow the nunber of commas in a word
before operating on it. The weoaker set we wish to consider (whieh will be used in
Section 9 to obtain the universality of wesk forms of Turing machine) is:

ar. Py add a: to the end of A 16 =0, -+, 8)
b:. Dn: delele the first letler of A
£ JWIEN): jump to exil 147 A begins with as (1 = 1, <=+, 8)

Here N (which takes values 1,2,---) is one more than the number of commas
in A;ie. it is the number of words on & which 4 represents; these instructions
are to be used only on words containing the correct number of commas. The
result we want is

8.2, Theorem 8.1 holds for the weaker set of instructions {a, , by, £},

Since we no longer have JY, the jump-on-comma, the previous subroutine
for transferring a word [rom beginning to end no longer works. However, it 8
Is any subroutine which jumps when finished (i,e. never takes the normal exit 0}
we can obtain {for N > 1) a subroutine Tx{S) which, started on a word 4.,
Az, - -, Ay, transfers the first word onto the end of the last one and then performs
subroutine S, i.e. goes to A, -, Apd; and then performs S T, (8) is cqual
to:

1LJ30, e I s+, Dy, 8
2. Dy, PP, 11}

s+l Dy, PP, (1

#2 The {1] here is simply an abbreviation for the instruction of line 1.

COMPUTABILITY GF RECURSIVE PUNCTIONS 233

We now define by induction on r & ,‘?‘-‘Ilhl‘outii‘.!‘{: Kx(r}|E1] which, started on
Ay oA sacds g, o, Ay sends this info ay Ay, -0, Aw, Ay e Ay and
jumps o exib 1:

() r =10 RxOEL] = 1. JJ B
2 r >0 Ralr+-1)[E1) = 1. P”” Ty (R r)[EL])
Now a subroutine which started on Ay, -+, Ay sends this inbo qd,, -, Ay

and jumps to exit 1:

S = L P, Pha, TR Ry (N~ DB
Vinally, T , which started on Ay, ---, Ay sends this into Ay, +o«, Ay, 4, :
Ty o= 1. PP, Taeol¥*2)

2. Dx

Now as above we define for N > 1:

ar. PY@) =1 ¥, P
bi. Dyplm) =1 Tyt Dy, T
he., N =N+l =1 PF

i1, N o N—-if=1. T8 Dy
£, I i) = 1 4y S k1), T

[

with, in £1, the compensation™ " of replacing line m by

1A1

m, Ty, m+1,

TEE old line m,

For & = 1, kL, is defined us above, i; is undefined, and a, , by , £.” are defined by:

ar. Py = PP
£ S 0NEL = J7 (B

9. Reductions To Turing Machines (TM)

Nole {irst that the passage from a program to a table of internal state transi-
tions is immediate—simply assign an internal state for each line of the program
(when written out in full).

So we have only to concern ourselves with getting the instructions into the
TM form, ie. motion (one sgquare left and right) printing and scanning by a
single head. Formulated in terins of instructions, a TM is a program of iustruc-
tions for & machine which has a single reading-writing head moving on a linear

% n this case the use of “compensaved’’ subroutines is incvitable; for the given instruc-
flons ay by ,f;" provide no means of Jmnpmg from a woxd Ay, --+ , Ay when 4, is null, so
if w1 and 4, begins with ¢; but 4, is null then I,V {n), which calla for a jump, cannot
he obtained by an ordinary subroutine on a1 by £/,

234 J. €. SHEPHERUSON AND H. &, STURGIS

tape which is marked off into squares and is infinite in both™ diveetions. Ag any
given time, the head “covers’” jusl one gquare; it s capable of readivg from ang
printing on this square only. The symbols it can priot nre 0 {(blank, as) and the

svimbols from some non-null alphabet @ = {a,, -- -, a}. The basic instruetion
are:

L mave the head one square lefl

B move the head one square right
=0, .8y PO print g (le erase the symbol on the squore under the Tead and re.

place 8 by a;)
Se scan the square under the head; if the symbol printed on 4 is g ok
extt i1 (=0, .-, 8)

For the sake of easier comparison with our earlier formulation and with the
results of Wang [20] we shall single out PY_ print 0. and denote it by & (erase),
and replace Se by the equivalent set of instructions

(5= 0, <+, 8 JE: Jumpioexit 14 the scanned symbol is a;

So the set we consider is
W0 o, Yo s Ry .
L, B PPU=1 .8, ElLe P, JP (=0 - 3.

v . 0 .
We shall see later that & and J are dispensable.

We now propose 10 use the 0 as a comma and represent a word 4,, - -+ |, 4, of
the SRM(aU {,}) by

""" ﬂvr'l ;Ox‘i :G."{; tr OA;;O“’

where | indieates the staudard position of the reading head"™ on the first square
to the right of the arrow and the horizontal line on the left indicates that wedo
not care what is printed on the tape there. This leaves a certain ambiguity—the
sarne tape also represents the sequences Ay, - -, Awx, Ny Ay, - Ax, AN
ete. This is of no concern since in compubing partial recursive Iunctions over
@& we deal always with g known number & of words over G.

To tie up with our previous results, we must give subroutines for earrying out
thie basic instructions of the SRM{aU [,}}. As weakened in 8.2, we cleatly

Here we follow Post [16], Kleene [12] and Wang [20] rather than Turing (18], who used
5 one-way infinite tape. However, as Wang remarks, the two-way tape maechine as used here
twith the head never moving to the left of its initial position) is weaker than the maehing
with 8 one-way tape and a specially marked initial square, since it is deprived ol the use
of this as & fixed point.

% In some formulations of TMs the requirement is wade that one should not order
print a; when the seanned square already has g on it. It is easily seen that one can always
write programs so as o avoid this since the scan operation allows one to observe ihe square
first before deeiding whether to print; in faet the s(s-+1) weaker operations, “replace ¢
by o (4,7 =0, -+, 558 #% 7) could, for the same reason, replace the s-+1 operations P,

2 Kleene [12] and Wang [20] take the standard position of the reading head at the right-
hand end of the expression; it elearly makes little difference which we choese; the left-hand
position saves a few orders in our subroutines.

COMPUTABILITY OF RECURSIVE PUNCTIONS 235

pantot get the original ¥-independent orders in view of the ambiguity of our

. 19 e
represontation. Tirst we need:

DUBROUTING fg : proceed do nexd Glunk lo he righl
o8, S, -, St

Simlariy, Lo . Now subroubines for operations a, , by, i, of the SRM{aU {,1)

are:

woo PP = 1. Ly RV, P LV R
]'31 B .j}lq,‘ =], EJ R
Fo. JPEL = J9E)

Taking this together with 8.2 we obiain the result:

9.1, Jvery partial recursive junclion [of n arguments over the alphabet & 13
computable by o Turing machine cver the alphabet QU [0} in the following sense:
if the wnatial tape configuration is

Qg - 210207

defined < will stop with tape configuration
(g Oe » - - 02a0f (21, » -, 220",

As pomnted oub in Section 5, thiz could bo replaced by 0[f(zi, -+, 2.)07 if
tlegirad.]

Be {Kleene [12])) I the natural number n is represented by 17, ie. 1 .-+ 1
(n 1'%, then all partial recursive functions of natural numbers are computable
on o Turing machine with alphabet {0,1}, i.e. “blank™ and “mark.” Of course
this is an extremely uneconomical way of representing natural numbers; how-
ever, we ean easily obtain a corresponding result, e.g. a decimal representation
in any seale. Consider, for example, the binary decimal representation—to avoid
confusion with the use of O as blank, suppose that the symbols used in this are
1 and 2. New the binary representation of f(z,, - -+, 2.) is clearly” a partial
recursive function over {1,2] of the words &, -+, ., which are the binary
representation of @y, -+, 2, %0 that 9.1 shows that a Turing machine over
10,1,2) cauld compute f with respect to the binary representation, le. when
started with 0[50 - -+ £,0 it would finish with 0}f(z;, -+, 2.)0.

Moving toward the results of Wang {20] on the computability of all partial
recursive functions by TMs which have no erase operation, the first step is to
notice that with a very slight change in the meaning of the basic instruetions

thun, of flxy, -+, z,) 18 undefined the machine will not stop; i flay, -+, x,) is

8 This could be achieved, and the ambiguity avoided, if we did not deal with null words
or if & symbot different from 0 (and distinet from the letters of @) were used as the comma.
Notiee that the weakening which gave rise to the complexity in 8.2, namely, the omission
of “fump on comma’ 18 not needed for the result 9.1 about ordinary TMz but only for ob-
tuining the results of Wang for a particular representation using a nonerasing machine.

W The simplest way of proving this fully is to show that the functions converting from
the ““4ally® representation 1 of n to the binary representation on {1, 2} and vice versa,
arc primitive recursive functions over (1, 2}.

236 JoC. BHEPHERDSON AND H. B, 8TURGIS

the programs just given are applicable ¢ a more general case. Suppose thyt
we have a weak TM whose alphabet & containg GU {0} and whose operations
are:

L move the head one square left
7 maove the head one square right
¥ replace the symbol on the scanned square by o symbol tn {
t=1,--,3 PO print a; on the scanned squore provided this is blank
=1, -, 8y JOWEL jump to extt 1 if the scanned symbol s a;
Notes.

(1) & denotes ® — @,

(2) In F we do not stipulate whether and in what way the symbol from & which re.
places the scanned symbol depends on this or on other factors. All we need to know is that
the new symbeol is in &.

(3) As before g1, + -+ , a. are supposed to be the elements of @.

4) We use instruetion P® only when scanned square is blank.

Now let us use d to denote an unspecified symbol from & and agree to rep-
resent the sequence 4, -+, Ay of words over @ by the tape configuration
e} Ay Aed - - @4407. Then it is easily seen that all the subrousines just
given still function as desired (although Ry, Lo should now be described some-
what differently, vis proceed to next @ to the right, left). 8o we have

9.2. Every portial recursive funclion § over & s compulable by a weak TM over
any alphabet ® confuining @U {0} dn the following sense: if the indtial fape con-
l . a Y - - Bl a .
figuration is ... d x3dxe -+ du,0° then the final tape configuration when

j(ll y Py :En\)
s defined 43
........ Gla@rs - - araf(zy, -0, 2007

for .@[f(z;, <+,)07 if desired].

The simplest casc of this which involves a “non-erasing” machine is where
@ is the one-letter alphabet {1}, where @& is {0, 1, 2} and where operation E eon-
sists of replacing the scanned symbol by 2. This is non-erasing in the following
sense: the sequence of symbols appearing during the course of compulation or
any given square has no eyele of length greater than one {(as it may, eg. 0 51
0, for a normal TM) ; once a square has had a 1 printed on it the 0 can never
be restored; all that can be done is to “degenerate’” it further by replacing the
1 by 2. Identifying the natural number » with 1" gives, in a sense, the simplest
non-erasing TM for the computation of all partial reeursive functions of natursl
numbers. Wang’s result can now be obtained by mapping this alphabet {0, 1,2
as follows onto a binary alphabet {bx} (6 == blank): 0 -—bb, 1 - b, 2 — s

On this alphabet {b,+} the operations Wang uses are

—: move heod one syuare left

~»: mope head one square right

w1 mark the scanned squarg (i.e. print)

C: o jump o exit 1 if scanned square 13 marked.

COMPUTABILITY OF RBCURSIVE FUNCTIONS 237

To obtain his result™ on the computability of all partiel recursive [unctions
with this representation and these basic operations from the {0, 1, 2}-case of 9.2
just diseussed, we Lave only to show how to obtaln the above bperations L RE
PP This we do as follows: o

When the “old” (i.e. {0, 1, 2}-machine) head is scanning a symbol 0, 1 or 2,
the new head will gean the leftmost of the corresponding pair of symbels from
the alphabet (5,4, With this convention the subroutines are

LI e

1.’{; -,

i PRE R
J 43 *

TOMEL: 1. =, Cl2), +, ClEL, ~, 2. <

Wang says [20, p. 84] that he does not know whether ¢ can be replaced by
C': jump to exit | if scanned square is blank. The casiest way of seeing that it
can iz to change the above convention, use the rightmost of the pair of symhaols
on {b#] a8 the standard position of the scanning head, and change the last three
subroutines above to:

E: L

Yt ey Ee,

JUEL]: 1. «, ¢'[2), —, C’[EL], «
2. =

The reason for his doubt was “it is not clear how 'z can enable us to go through
an indefinitely long string of marked squares or whether that is not necessary.”
The answer we have given is that it is not necessary; in our solution the only
pairs of adjacent squares which are both marked are under or to the left of the
standavd position of the head; in other words we have shown that all “rough
work” ¢an (at the cost of many extra permutation steps) be done to the left
of, and not in the middle of, the main caleulation.

Noiles.

(1) Lee’s vesult (of. footnote 6) on the adequacy of #, <, ~, ¢’ is a little weaker than
ours in that he uses additional auxiliary squares, U being represented by bbbb and 1 by
«0bh. These new auxiliary squares are kept permanently blank so that with ¢ a jump can
always be made from them—another way of avoiding the need to go through an indefinitely
long string of marked squares. Our treatment above has been complicated by our desire Lo
obtain Wang's results using exactly his form of representation. By means of a slight modi-
fication of this, using b for 1 and b+ for the comma, (instead of bb), we can write subroutines
for “jump on comnia’ as well as “jump on 17 (with either € or ') and so avoid the need
for the more complicated definition of Ty given in 8.2. Note that even with Wang’s repre-
sentation this is not needed for the climinatien of erasing but only for the restriction to
the single conditional transfer C.

{2) Oberschelp [14] remarks that with the type of machine used by Wang it is not pos-
sible to compuie cach partial recursive function in such a way that the final tape is of the
forta O z:0%s + -+ Ox0f{@y , + -+ ,2n)0°. As he points out, only very simple functions f

%t Wang actualy considers only positive integers. We are able to inelude 0 without
the device of using 17+ to represent n because we can deal with null words, since we always
know how many words we are dealing with. ,

238 I. C. SUEPHOERDBON AND H. E. STURGIS

can be computed in this way (because the machine ecannot erase its reugh work at g]])
We have shown here, however, that if one is prepared to tolerate rubbich to the left of the
final position of the head this form ean be achieved, With the routines given above the ae.
tual final form of the b,x tape would be

D42k (bl (#D)Fe + o (xb)embb (xb) WL a2

(for some k) so that the rough work takes the simple form of a solid block of completely
marked tape. As mentioned above, the final form & P2k () e b pould alzo be
achieved if desired.

10. Reductions to Bownded Nuwmber of Registers Without Enlargement of -Alphabei

The reduction to o single-register machine was accomplished in Section 8
only at the cost of enlarging the alphabet frem @ to @U {,}. Tt is interesting to
see what reductions in the number of registers are possible without doing this,
Starting with the case of a one-letter alphabet @ = {1}, i.e. the case where each
register stores simply a non-negative integer # in the form 1 - - - (n times) - 1,
our results of Seetions 3, 4 form a rather more convenlent starting point than
TMs do for establishing the following version of a result” of Minsky [21]:

10.1. A single register maching working on non-negalive inlegers and will
operalions

(o) X k= mulliply the number in the register by &
& ok divide the number in the register by k
() DivekIELl: test whether the number in the regisier is divisible by ks if so take
exit 1, if nol proceed normally lo nexi inslruciion
can compute all partial recursive functions f in the following sense: if the nuwmber in

EACTRERL A

the register is initially pi'ps® - -« sy then it will finally be pi

Notes.

{1) k is supposed to range over all natural numbers; it will be used only for prime k
and it will be shown later that (for functions of one variable) it is enough to have the operu-
tions for & = 2, 8, 5 only, or with a more complicated representation of argument and
value for k = 2, 3 only.

(2) p; denotes the ith prime.

(3) Operation {8) is used only when the number In the register is divisible by k.

(4) We could equally well obtain pf* - pﬁ,"p';(_f_i"”‘m") as the number finally in the regis-

ter.

Proor. We use the number pi” - - - pﬁ,rN:' to represent the state of the URM.
In view of the results of Sections 3, 4 we have merely to show h_ow to perform
operations on this number corresponding to the operations a, b, [of the URM.
These are evidently obtainable thus:

P (n) Xpn

Dn): '
J)[FE1l: Divep.lEl]

2 Minsky uses a combined multiply snd jump operation and a combined 8 and v, viz
test whether divisible, if so divide and lake exit 1, if not take exit 2, Tt is clear that the prescnt
operations can be obtained from these. The results of Appendix C show the adequacy of
the =et consisting of (z) and (y'): Test whether divisible by k, if so divide by & and take exil L,
if not take normal ezil.

COMPUTABILITY OF RECURSIVE FUNCTIONS 239

10.1 shows that o single register is sufficient if complicated enough opera-
tions are used—if we want to start with @ and [inish with f(z) we must add
the operations # > 2", 2" —» n. Following Minsky, we procesd to see how
many additional registers are needed to replace these by the simple operations of
addition and subtraction of onc we have used up to now. Consider then a machine
with o fixed number N of registers and operations (there is ne need for the

subscript N now gince N is fixed): (form =1, -+, N)
a. Fn): add one o (n)
b, D{n): sublract one from (n)

T J@)EL: jump to exit L if (n) 5% 0

We first show that operations a, 8, v can be obtained using oue extra register.
LEvyMa. If n < N, then there are programs which end with (n+1) = 0, do
not disturb any registers excepl n, n1 and perform the following opervations:

ley {n) X k: multiply {n) by k
g ny =k divtde {n) by k ({n) supposed devisible by k)
(vi Divi{{n),B)[E1): 47 k| {n) take exit 1, if not take exit 0.

Proor. 1 Bection 4 we showed how to obtain from a, b J programs for O(») :
clear register n, J (unconditionol jump), J(n), jumpif (ny # 0. In one of
these, the one for J, we disturbed a register other than n. This can be avoided
by using a compensated subroutine: J[m] = 1. P(1), J(1){m-+1] with the
compensation of replacing old linem by:m. P(1), m+1. D(1), m+2. old line m.

So we are at liberty to use all of these, hence also the device I introduced
in Seetion 3. Notice that if (n+1) = 0, then (P{n+1))" copies {x) into
register n+-1 and clears register ». Our subroutines for «, 8, v above all start
with O(n-+1), which clears register n4-1. They continue as follows:

{ny X k: (P(n+-1)){n, (P(r)E)in)
(= ke 1. (Plnt1))
2. T+, (Dm+1)E, Pw), J12]
Divatmd BN 1. (Pird1))is
9. Jin+D{EL], (Dine1y, Pin), Tt DB, Dintl), Pl), Ji2]

Together with 10.1, the lemma gives a second result of Minsky:

102, With the same representation of arguments and values as tn 10.1 bui with
operations a, b, T, two registers are adequate for the computation of all partial re-
curstve functions.

The next question is how many registers are needed if arguments and values
are required to be given in uncoded form. The answer is:

10.3. A wmachine with operations a, b, T and n+4-2 registers is adequate for the
computation of ail partial vecursive functions | of 1 vartables in the foliowing way:
start with @y | -« -, 2, in vegisters 1, - -+, n, fingsh with f{z , -,) tn register 1.

Proor. In view of 10.2 we have only to show how to replace the 2, -+, 2
in registers 1, --- , % by p{* - -+ i in register 1 with the otbers clear, and con-
versely, how to replace 271 in register 1 by f{ay, -+~ , 2x) in register L.

240 J. U, SHEPHERDSON AND o, B. STURGES
‘\’»{{: define fm‘. i= 1, oo, noa subroutine red(2) which, if (74+2) = 0 place
p X EALY du vegister ¢ and clears reglslevs (41, -H2.
red(@): (UL X pat, (PE) e,
Now the required nitial routine is simply:
Pln4-1), red(n), redin—1), -+, red(1}

For the final econversion from 270 to flx,, --+, £.) in register 1 we
first elear registers 2, 3, then apply:

1. (P2
9. Divi((, 2/ 14
3. 22, PR
A similar treatment shows that n+3 registers are adequate for the final form
£y, e, T, In registers 1, -, 7y f{z, -0, 2, 1n register n-4-1,
Applving the results of 10.3, 10.2 to the proof of 10.1, we obtain
104, In 101 for the computation of funclions of n variables the operations o,
8, ¥ are nceded only | "0; ko= pi, e, Pusz. If the arguments and volue arve repre.

r’_ v f\":.,.,.,:zn N . P
sented in the forms pide B pii s o, B, v are needed only jor k = 2, 3.

For the ease of a general alphabet @ = {ao, -+, a.y} thereis a [Lault d:ﬂﬂlﬂ-
gous 30 10.3;1f s > 1 the n1+2 can be replaced by n—{—l We shall merely skoteh
the proof. Let us use as the Godel number of the word a., -+ g, the word

where b = 5,8 g gy Using two extra registers, the words
2, -, an 0 each of vegisters 1, -+ -, # can be replaced by thetr Godel num-
bers. Now the Gédel number of {2y, - -+, 2.} 18 & partial recursive funetion of
the Gédel number of z,, -+, 2, ; 50 by 1().5 it can be computed and placed in
register 1. Finally, we ean (using the two extra registers) replace this Godel
number by the corvesponding word. Since the two extra registers are used only
for holding words of the form o, 0", by the results of Section 8 they can be
replaced by a single extra register which holds ay"ae”,

Thus for an alphabet @ with two or more letters, each partial recursive func-
tion f of one variable over @ can be computed directly with the operations
a, b, T bv & machine having 2 registers: Le. if A is placed initially in register 1
then f{ 4} appears there finally. What can be done by a single register machine?

;9@31‘; if we are prepared to allow complicated enough operations, such as re-
placing 4 by its Gddel number and vice-versa, then as in 10.1 we can compute
all partial recursive functions. But how complicated must these operations be?
Rather surprisingly 1t turns out that the operations PRINT, DELETE and scaN
are enough provided they can be used at both ends of the word:

105, Let @ = lag, -+, Qe be an s-letier alphabet where s = 2. Consuler
the following operotions on @ word A over @ (4 = 0, «- | s—1):
a7 . P},) privnd u; on the left-hund end of A
ar. Py privd aq on the vight-hand end of A
by. Do delete the leftinost letier ¢f A
ba. Dy delate the rightmost letler of A

i, J{”‘F’J}t Jump Lo exit 1 if a; s the leftmost lotter of A
fu". !M LBV jump to exil 1 of ag 18 the rightmost lelter of A

COMPUTABILITY OF RECURSIVE FUNCUTIONS 241

For cach partial vecursive function f of one variable over & there evisis g program
wsvng ondy these operations which computes f, e, sturted on A will, if f(A) is de-
Jined, findsh with J(AY; of [(A) 25 undefined, will not stop.

Proor. We rely on the result of Section 8 that all partial recursive functions
over & are computable by a single-register machine with alphabet @, = @ U ! i
with the operations a, b, f used previously. We delinea mappingsé: @, — @ By

dla] = aa, () = am . (i=0, - s=1)
We have to show how to convert a word 4 over @ into ¢(A), how to convert
¢(A) back inio 4 and how if A, isa word over @, to perform operations on ¢ (A0
corresponding to the operations a, b, I’ on A, . I'irst, consider the conversion of
4 into o(A). We have to send A = aqay,- - -a,, into ¢(4) = a;,au0.,a- - ‘s, -
At first sight this appears to be impossible; since there are no auxiliary letters
available there seerus to be no way of distinguishing the original 4 from the
subsequently added letters. The key is to have the right-hand head™ print in a
particular pattern and to have it constantly go back and re-examine to see
whether the pattern has been disturbed by the left-hand head. When it has,
then the originul word has been completely coded, so that the process must then
stop before part of the word is coded twice. The details are as follows: first, 4 =
Gy iy v @, 0% senb into aq @y, - @ @@, - Then a loop is entered, the general
step starting with the partially coded form a:; - - - @, @1000000:, 000,05 - - - s; 0,
which reads the leftmost letter a.; , stores it, replaces it by aq, and before print-
ing @ o0 on the right-hand end checks to muke sure that this a;; replaced by ay
was & letter of the original word A and not the first of the added a’s. Routine
T(R, L) transfers the word A; = @t Qetity: - ~04_00 (ie. the word ob-
tained by poing in from the right one letter, then two letiers at a time until an
¢, is reacbed) from the right-hand end to the left-hand end, where it reappears
in the form A/ = aaeae;aa;,- - ‘@, .00, and then cheeks the rightmost
letter t0 see whother it ig @, as it wag originally, or aq as it is when all of 4 has
beer voded. Tf it is ¢y then A is transferred by a routine T(L, R) from the
left-band end, where it is recognizable as the word obtained by going in from
the left one letter, then two letters at a time until an g, is reached, to the right-
hand end where it reappears in the form A; ; then a;a, is printed on the right,
as is deleted on the left and the loop is re-entered. If it is @y, A, iz transferred
to the right as d; and the coding is completed by the deletion of gomaw, on the
left. In other words, the coding routine proceeds thus:

A = @iy e
DrEnd GidiGoty on right
Qiy ot Giglhith@ole
enter for the fivst time a loop, jth entry of which is from
Gip t o Qi Qallodi G0 * 77 ry @
replace Go; by ao
Qolli; g 7 QigTadaQolbo@yy G~ 00 @iy

apply T(R, L)
Q1odig = (lgaa‘j‘iﬂn(luaij‘i'l R 2 3]

% We visualize the operstions being carried out by two heads, one at each end of the
word,

242 I. . SHEPHERDSON AND H. B, STURGIS

check that right-hand letler is not oo ; if not proceed to apply T'(L, B}

Go(l--;:._{_l e (.!g"alfi.lu.olluargdo st ”«.’J-,,(C!n
print @i oo om right, delele o 0% feft
a‘£;’+1 s g U dothedy Ay H;J-_jag(ujrag
and re-enter loop
The closwg stages are:
enler loop wiih
datlaiothatle) e * - i o
replece ¢ by ao
ol 10l Gy * 0+ Ohey i
apply {8, L)
Q1o ity 0 Grligalio

check right-hand lefter; it 4s as , so apply T(,,)
ﬂualﬂuaoa;l&o s Gy,

and delefe asgiteas on the leff, leaving
@(d) = ai 00 anbe
In terms of the subroutines T(R, L), T(L, R) (defined below) the program
for this is:

L (PR, PP

s—1

2. ZL Dy, PD, TR, L), J3' 3, T(L, B, PR, P, Dy, Ji21)
3. T(L R}, DL
Here we have used the absolute jump J. This can easily be programmed thus:
Jim) = 1. Pi’, Ji'lm+1] with the compensation of replacing old line by
m. P, m-rl Dm m—+2. old line m.
s—1
We have also used the notamon 2. F. This (cf. Appendix B) denotes s

% =ul}

subroutine whmh follows subroutme F@ if the leftmost letter of the word i3
a;, ¢t =0, -+, 81, and does nothing if the word is null. It is chtainable
thus:

Lo TPR), e T s, S
2. PO, Jst2]

s+1. FO-B Jls4-2).

We uge Zjp similarly.

The subroutine T(R, L) must send a word of the form Baaogots, ae- - 0,0
Into @aso:, - - -aa:,0:8. It is obtined in the obvious way by repetition of the
operation Xamy — ¢,aX, X, — X and stop.

T(R, L) is equal to:

Py
J (l)E J

g1

1

2

3. Dg, ER Dy, PP, PP,
=)

4. D,

COMPUTABILITY OF RONCURNIVE IUNCIIONS 245

The uwerii oporawm T(L,) can obviously be obtained from this by inter
chzwwm : Y% and L, B throughous.

The (iwcadam procedure which sends ¢(A4) = a0 oo b0 4 = g, a;
is much simpler; it ean be accorplished by the routine:

gl

I

- 01} 5:1

20 4R Dy 2w APY, e, T2
f)

3. D

Tt works thus:

sinrf wilh
‘f’(fl} = iy Qo * 0 Qipdo
prind ay on lefl
1ty iy ~*° Aipglo
read vight-hand letier; ©f not a, , delele it, Iransfer next letler from right-hand to left-hond enc
and repaal

By, Qg o "0 Qe 100
@i Gig ' DinO1

when right-hoand letter 18 a; delefe 18 and stop
A Qi » - @iy, = A

We must now show 1’10W to perform operations on ¢{A,) which correspond tc
the operations a, b, f performed on A,.
If we number the letters of the alphabet @& = aU ,} 0, 1, ---, s—1, ¢ in

the order ag, »+« , @y, {,} then we can oblain the operations thus:
a. PO P(;J) P}Q)) (G =0, ,5-1)
{1
P Py, Py
b, O D2

£, JOEL: JUEL G=1 e, s—1)
JOEL: JUR, S
D, OB PO, S
P JIEL]
J”’P] J14]
DL,J“’W, PP, JH4)
(u) . JIEL

Feo (B

This completes the proof of 10.5. We show in Appendix E that the set of
operations used here is minimal, so for the case of an alphabet with at least two
letters, two registers are eertainly necessary (and, as mentioned above, suffi-
cient) for the computation of all single-argument partial recursive functions if
the original operations a, b, " only are allowed. For a one-letter alphabet the
left- and right-hand operations are the same; so the result of Appendix E shows
that a single register with operations at both ends is not adequate. In this case
the best results are 10.1—that a single register is adequate with operations of
multiplication, division (plus exponentiation and its inverse if argument and
vatue are required in uncoded form); 10.2—Lihat two registers with operations
a, b, T {41, —1, test whether 0) are adequate with exponential coding of argu-
ment and mlue smd 10.3—that with operations a, b, I and three registers there
15 no need to code arguments and values.

244 J. ¢. SHEPHERDSON AND H. E. STURGIS

APPENDIX A, Mixmvavrry or Instructions Usen iy 41
COMPARISON WITH SIMILAR SYSTEMS
The set of instructions in 4.1, viz,
ar. Px(n): {n"y = {n)+1

by. Dy(n): Ny = (n)—1
i, Jxm)[ELl]: jump to exit 1if (r) = 0

is fairly obviously minimal: namely, if the initial configuration was z, 0,0,...
(i.e. z in register 1, all other registers empty), then with by, f; alone the only
everywhere defined funetion f(x) whose value could be computed in register 9
would be the zero function; with a,, b; alone, only constant functions; with
a, , T alone, only functions of the form f(z) = kfora = 0, f(z) = lforx = 0
where &k 2= I,

Concerning reductions in the range of values of N, n for these instruetions,
it is clear that if they are available for an infinity of values of #, and for each
such » an infinity of values of N, we have essentially the same machine. I,
however, they are available for only a finite number of values of » or N they
they are clearly inadequate to compute functions of all numbers of variables
with the method of representation used above, i.e. with the arguments placed
in geparate registers. (Bu$ see Section 10.)

Tt is patural to ask whether {; could be used instead of f; . If by this we wean
is it possible to write in terms of a, , by, f; a subroutine R for each z-ary partial
recursive function ¢ such that if z, , - -+, 2, are initially placed (say) in registers
1, -+ -, n then regardless of the conients of the other registers the effect of B will be
to place the value of ¢(zi, -, w.) in register n+1, then the answer is neg-
tive. For if all registers are nonempty there is no way of jumping at all sinee
with f; this would require first clearing a register and this cannot be done with-
out a jump operation (unless one has an upper bound for the content of some
register). However, if we agree always fo start with 0 in register 1 then all par
tial recursive functions can be computed, for we can keep the 0 in register 1 and
obtain Jy = Jy(1). Similarly if we are given ¢, : Oy{n) we can again clear a
suitable register at the beginning of each program and so obtain J» . Tt is easily
verified that of the set of instructions a,: Px(n), by: Dy(n), e : Oy(n),
di: Cu(m, n), e: JulB1], fi: Ju(m)[E1], 1 : Jx(m)[E1], the only
minimal subsets adequate for the computation of all partial recursive functions
as above are the ones we have considered, viz. {a,, by, er, £}, {a,, by, [0, lar,
by, e, B, {81, by, fi, fixed 0 register}. For without a conditional jump f or
fi the arguments cannot influence the form of the computation at all; without
b1 only their vanishing or nonvanishing can influence it, and without a, no values
could be written down which were greater than any arguments.

It is interesting to compare the operations used by Kaphengst [8], Tishov [5] and Peter
151.

KAPHENGST’S PM (programmgestoucrte Rechenmaschine) has o special caleulating
register “mili”’, number w, and an order register number 0 which conisins the address of
cpe next order. The orders themselves are stored in the ordinary registers so the machine,
like an actual computer, is capable of doing arithmetic operations on its own progra#.

COMPUTABILITY OF RECURSIVE FPUNCIIONS 245

However, Kaphengst shows that it can caleulate all partial recursive functions without
using this facility. If is then essentially similar to a URM plus a speeial register, number
o, and the following instructions (for m, n = 1, 2, - -):

. Clm=): copy contents of register m inio mill

Dy, (e, m): vopy conlents of mill tnte register m

O, O(w): cloar well

Ay, Ple): add 1 Lo number 1n mill

Py, J{e)IEL]: jump to exit 1 4if mill is emply

G1. Op(=): elear mall if its contents coincide with contents of regisfer n, otherwise
place 1 in ¢, t.e. ('} = 01if {x) = (n), {o') = 1 otherwise

Gz. 0(m): clear mill if mot already clear; 4 already clear place 1 in i, 1.e.

(') =01if (w)#0, () =11if (@) =10
H. stop: stop if mzll is clear (e if {=) = 0)

Tt is easily seen that operations €., Gp are definable in terms of other orders and that
H (the only form of stop which the PM has) can be defined in terms of F, and an ordinary
whsolule stop. If we remove the mill and consider the effect of the orders on registers 1, 2,

3+ wesee that the remaining orders are equivalent to the following orders for a TRM
a. Pln)
d. Cim, n)

f. J(m) K1}
g Eplm,n): k') = 0if (m) = {(n)
'y = 1if n) # (n)
which are easily seen to be a minimal set and to be equivalent® to our original seta, -+ | f.
In terms of the reduction to ordinary eomputing machines, Kaphengst’s reduction, with
all arithmetic operations taking place in only one register, is more apt than ours. How-
ever, our yltimate aim is to reduce to simple forms of Turing machines which operate on one
bit at a time; from this point of view the operations P(n) and [(n) are simpler than the
copy operation. Similar remarks apply to the basie sets deseribed below corresponding to
Trshov’s and Peter’s treatment,
Trsaov's class @V, &1) of operator algorithms differs from the URM in its program
structure and trestment, e.z. like the PM its program is stored in the registers. But it is
substantially equivalent to a URM with the following instruetions

4. C(m, n)

d. Cilm, n): copy {m>+1dnio n, i.e. (n') = (m)+1
e, J[F1}

5. J(m, n){EL, B2} Juinp to exit 14f {m) £ (n)

Jump to exit 24f {m} > (n)
together with the ability to place any constants in any registers at the beginning of the
program. Once again it is easy fo see by direet construetion of subroutines that this set of
instructions is equivalent® to our original set =, -+, f and to the set a,d,f,g just given.
¢ is a special case of * but is listed separately because it is an inseparable part of all Er-
shov’s algerithmie programs. Apart from this, the sot of instructions is obviously minimal
(although £* is necessary only for onc fixed value of m (or n)).

PETER’s treatment involves basic operations such as (x1, <=+, Za) = (T1, ** , En,
2y, ++ , in), but with a slight re-formulation it eould be regarded as roughly equivalent
to o URM with instructions

¢. Oin)

d. O{m, n}

d. (e, n)

. S 0m, n) (B, E2): jump (o exit 14f (ne) = {n)
Jump to exit 2 5f {m} 5= (n)

Using, in the ease of (s, other registers for rough work (holding 0 and 1). .
% Tn the sense of 4.1, i.c. in their effect on the contents of any finite set of reg}sters.
% In the sense of 4.1, i.e. in their effect on the contents of any finite set of registers.

240 J. €. SHEPHERDSON AND H. B. STURGIS

These (apart from the fact that by using d, © need be available only for one fixed register,
number 1 say, d only form = n = 0, and {1 only form = 0, n = 1) are also clearly minimy)
and equivalent 0 the other sels.

To sum up these various minimal systems of instructions one might say that a universy)
computer working on natural numbers must be capable of preducing 0, of adding 1 to 4
number (i.e. of performing the operations which generate the natural nurabers), of copying
a number, and etther of comparing two numbers for eyuality or order, or somparing one
number with zero and reducing (Le. by D)) a number step by step to zero, and directly
{e.g. %) or indirectiy {f, ¢) changing the course of the computation depending on the re-
sult of this comparison. The various minimal systems are very similar; from the point of
view of proving as quickly as possible the computability of all partial recursive functions
Peter’'s is perhaps the best; for proving their eomputability by Turing machines o further
analysis of the copying operation is necessary along the lines we have taken nbove.

APPENDIX B. D=rramws or Secriow 6,

ComMruTaBILITY OF PARTIATL RECURSIVE I'uNCTIONS OVER (JENERAL
ArpHABET @ BY THE URM{Q)
We show that all partial recursive functions over @ are computable on the
URM(@&) whose instructions are:

a1 . Ps)(n): place a; on the (righi-hand) end of {n)
b. DY delete the first (lefi-most) letler of (n) ({n) # A)

f JSTEL: jump to exit 14f (n) begins with a;

Note that Ershov’s class G@(UV., 8) of algorithins of [5] corresponds closely
to the above instructions fogether with C(m, n), with all operations taking
place at the beginning of the word. His class @{U;, §;) amounts to using the
operations

Cim, n)
Jxi{m, n, k): {£'> = {m){n} (juxtaposition or coneatenation of !{m> and (nY)
J¥(m, n)[EL, E2]: jump fo exit 1 of {ney ends {n)

Jump o exit 2 1f not

and allowing any constants to be placed in any registers initially. As he says, it is
easy to see that these two sets of operations are equivalent (and universal)
either by his proof that @(Vs, &) is capable of desaling with all Markov a-
gorithms, or our proof below that the URM{(@A) is capable of computing all
partial recursive functions over @. For a further set of universal operations, see
Appendix (C).

We first introduce auxiliary subroutines as in Seetion 4 for the more comples
operations originally used in Sections 2, 3. Slight changes are necessary in some
cases due to the fact that there may now be more than one lotter in the alphabet.

(1) BuBRoOUTINE FOR Jy(m)[EL]: jump lo exit L if) = A

L JYmIEL, -, T8)
(2} BuBrovtINE For Jy[F1l: jump lo exit 1
Lo PV VL, T (N1 B
63 SUBROUTINE FOR Ju(n)[F1}: jump o exit 1 4f (n) = A
Lo Jyln)(2], JulE1]
(4) SUBROUTINE FOR An(n): clegr regisler n (i.e. place A in i)
1. Jxn)(2], Dyin), Jyll)

COMPUTARBILITY OF RECURSIVE FUNCTIONS 247

Wc now mtroduce a convenient abbreviation. Suppose we have subroutines
=15 for performing certain operations. It is convenient to have a
subl(mmne which will follow subroutine 7§ if {») begins with @, - - - ; will fol-
low Fy'" i (n) begins with a, ; and will, say, do nothing if {n) = A. We denote
such a subroutine by ZLl (n) F_f;) and obtain it thus:

LR mR), e I s, Sa(n)ls
2. PO st

shi. FY . Jals ol

Strictly speaking the Z should have a subseript NV to denote that the additional
J, J(n) instruetions it involves have subseript N. Sinee we use it only when all
the 7™ have the same subscript N we omit this subseript on the =. We have
followed the same procedure with the 7' subroutine given in Seetion 3 above.
The analogue of this laiter operation, which we denote by {Z5°}{™ has the fol-
lowing effect: if () = ay, -- - 0;, then it performs the sequence of operations
S0 IVP G n) = A, does nothing) and reduces {n) to A\, possibly dis-
turbing the contents of registers N1, N2,
Here 19, -+, I is a given sequence of mstruotlons or subroutines which
are 5\(1{)}}’)036)(1 not to affect register n. Using the above Z-notation we can obtain
(1371 thus:

1. Z}(n)-IIN(‘*'),DN(H)JN[U}

Now we can define

(5) Husmouming For Cxlm, n): copy Om) into register n
1. Awl(nd, /'\pr_l(’\"%-l
2. {P;;l,crvﬂ), PR T
3. %Pf«?il(m)}sw

We now proceed to give subroutines for schemata I*-VI* of Section 5:

1*, Suprovsing By(y = Sa:dz))

1. (JAE.L J)
2. P;}]LJ)
7%, SuproutTiNG fx{y = Ar{@, -, 2a))
1. Ax()
1T, SorrovTINE Ex(y = Uz, -, 2a))
1. C’N(Tx y J)
IV* Swraovrive Ry(y = ffx; ,++-, &) TSING SUBROUTINES FOR g, h WHERE f is DE-
FiNgD BY seHima IVF ravUs:
floy, o) = Algelen, - za)y o am @, o, Za))
1. By (N4 =gz, -+, Tn))
n. R).q.m (N"i"m = m (931 P Tn))
mAl. Byemly = BN, - M)
V¥, Susrovmive Ruly = flo, -+ xn)) USING SUBROUTINES FOR g, h, WHERE { 18 DE-
FINED BY SCOEMA V¥ THUS! f(/\, Lo, o, Tw) = gl{wz, o 3571); and

f(za;’xg’ e ,xﬂ) = h_;(z,f(z T, " n); Lo, ;xn) (1 =1 - r‘\:}
1. Ra(y = glae, -, 2)), Awn(V4HD .
2. UBNH(N—%? === IL;(:V*FL Y, Le, " Tn\ (/};...(\f +9 l;,, P;\,g.a(]\ +3) v
5. Oy a(NA4L 20,

248 J. €. SHEPHERDSON AND H., T. STURGS

VI*. Surrovvink ror By{y = f{z1, -, Ts)) USING SUDROULING & WHERE £ 13 deriygg
BY VI, maUS: flzo, -, @) = wylg@e, -, 2, v) = Al
L Awy)
2. RywerNA41 = glzy, o, &n, ¥)
2 Te(VHDEL PYL), Trial2]

This completes the proof that all partial recursive functions are computabls
by the URM(@&).

APPENDIX C. Arrernativi Ser or Basic INsTRUCTIONS
“ScaN AND DELETE” InsTeAD oF “SmEParatre Scan, DeLeTe’”

There is an alternative set of basie instructions which could have been used
- - - . ! .
in Section 6 instead of a; , by, i, viz.

Ay . P}}I: (n): place a; on end of (n)

81. Sedyn)IBL, --- | Es]: scan the first letter of (n); if (n) = A take normal erit,
if first letter of (n) s a: delete ihis and proceed to
exitz (=1, - 5)

Here 5, “scan and delete” is an (s--1)-exit instruetion. This set seems 0 be of
sowe interest in that it shows that there is never any need to scan a symbol
twice, that a general-purpose computer can be built using only scanning devices
which destroy the symbol scanned. To see that the new set of instructions is
adequate one could write the above programs using s, instead of b, ,f;'—
the resulting programs are perhaps slightly simpler since it will be observed
that in nearly every case we did delete after scanning. However, one can show
that the new set of instructions is actually equivalent to the old. On the one
hand, s; can easily be obtained using by, ', viz. Sedy(n) g1, -, Es] =
> (n){Dy(n), JRIE]!. To obtain a,, f," from a,, s, is a little more com-
plicated; we first define

Dy(n) = 1. Sedy(n)[2, ---,2] and Ay(n) = 1. Sedy{ndll, -, 10

Then we define Scdy'(n)[F1, -+ | E(s+1)}, an (s+2)-exit instruction which
differs from Scd(n)[F1, ---, Es] in that when {ny = A exit 841 iz taken in-
stead of exit 0 (i.e. which provides a jump on A as well as the other junps)

Sedy'()EL +-- | E(s+1)]

= L. Sedw()L, -+, s, Py (0}, Sedy (n){F(s+1), -, Bla+1l
Now construct a subroutine CPy(m: ny, ny, --- | a1 E1] which coples (m)
onto the end of each of (), -+, (n,) (we actually need this only for » = 1, 2)

and proceeds to exit 1, (m) being replaced by A.

L Sedy'(m)(2,3, -+, 541, Bl]
2. P, -, PR, 11}

|) N : .
s+1. PR (), -0, PY (n), |1}

COMPUTABILITY QOF RECURSIVE FUNCTIONS 244

Here the {1} is simply used as an abbreviation for the instructions of line 1, viz.
Sedy () (2, 3, -+, s+1, H1]. We can now cbtain JS (n)[E1] by copying {n)
out into (elearcd) registers N4-1, N+2, copying one of them back again into
vegister 7 and operating with Sed on the other:

1o AwrdNHD, A o{N+2), OPyyoln; N+1, N+2)[2]
2. UPypa{N+1; n)[3)
3. Bedyyalé, o Bl o 4]

where, in line 3, the £1 is in the 7th place.
For the single-register machine of Section 8 also the instructions a. P,
b b, 1. JPE1] can be replaced by a and s:

s. SedlH1, -+, Bs, E(s+1)}: scan the first letter of A;if A = A take normal exdl,
if first letter of A is a; delefe this and take exit
i+1GE =0, -, 8)

However, just as in Bection 7 (ef. footnote 12), these two sets of instructions
are not completely equivalont—for example, an unconditional jump ean be ob-
tained from a, s but not from a, b, {’. The simplest way to show the adequacy
of &, s is to repeat the freatment of Section 8 and show how to obtain the LRM
gperations ay, by, &, by, I i terms of a, s. The program for T is now:

1. PO
2. Bedls+3, 3, -+, 5+2]
o, f2f

-e L3

s k2. P, (2]
The programs for &, hy are the same as before. For the others we write

. N N-1=1. 1 8edf2, .-, 2]
s, Sedyln)bmy, -+, me] = 1 T#1 8ed]2, (ma+1), -+, na+1)]
9o, PO PN

with the “compensation” (see footnote 12)” of replacing each line m; (7 = 1,
-, s) by two lines m;. T, m+1. T old line m,, renumbering all
lines and jumps as necessary (('m@—{—l)' refers to the final number of the new
line my+1), .
Similarly, the instructions a;. P§', bi. Dy, L' Ji'[E1] of 82 can be
replaced by &, and

8. ScdylEl, -~ , Bsl: scon the first letler of A; if it s a: delele i and take exit o
=0, ,85;if Aisnull do nothing and toke the normal
exil (i.e. exil number O—this can ocour only ff N = 1)

% This use of compensating subroutines can actually be avoided here by the use of more
complex programs whieh first duplicate the initial letter of 4. ; see the treatment below
in terms of the weaker form of Scd.

% Note that this means that if A begins with a comma, i.6. with ao , then there is no jump
but simply the normal exit to the next line of the program.

250 J. ¢, SHEPHERDSON AND . B. 5TURGLS

The treatment is very similar to that of 8.2. Tx(8) is obtained thus:

1. Sedyl2, -~ , s, 8

H
2. 1y,

s+1. PS), {11

. . I e .. T
Next, by induetion on 7, & subrouting Ry () [£1] is delined which sends A, -
Apy degs, o0, Ay inbo Aepn, o0 2 Axy Ay, o000 Ay and junaps to exit 1

y

L)y r=0. Ra'EL] = SudylB1, -, E1]
@) r > 0. Ry (r+1)EL = 1. P;:), T;.r,(.l(RN’(r}[EH)

Then an unconditional jump
JNEL =t PYPRL, TRy (N—1IET)
and
T =1 PP, Ty lI a2l

Finally, we show how to program the operations a;, s, hy, i of the LRM(a)
(which in Section 7 were shown to be adequate for the computation of all par-
tial recursive functions). a., h; are dealt with exactly as above and we define:

i, N—-N—-1=1 7%, 8cdyl2, -+, 2]
51 . SCdN(n)[E}':) E':’} = 1. T:’ Ir Sedy(2, 3, -r 81, P 1 ’ IN“ 7]@['S"PZE
2. TYUT TR

sti. TN TalBs).

APPENDIX D. Npiv ror “AUXILIARTY” SQUARES IN Nov-Erasing TMs

Wang [20] says ‘it is an open question whether we can dispense with auxiliary
squares and still be able to compute all recursive functions by programs con-
sisting of only basic steps —, <, ¥, Cz. Of course it is not necessary to use every
other square as the a,umilary square. If we do not mind complications, we can
take any fixed n and use every nth square as the auxiliary square.” Oberschelp
[14] shows that with the representation of » by *" only a very restricted class of
“semiperiodic” functions are computable—because once the head gets info &
long block of marked squares it cannot alter these in any way so that it has only
its finite internal memory to tell it how far it has gone; as a result the aectual
number of marked squares passed over leaves no trace, only its residue class
modulo something. In a sense this shows that, for this particular “tally’” repre-
sentation auxiliary squares are necessary. A similar argument shows that very
few partial recursive functions over @ are computable by a TM with alphabet
AU {0} which is not allowed to change any of the symbols from @ into anything
else but only to print them on blank squares. However, if oue goes back [rom
words on aun alphabet to the actual natural numbers it is rather difficult to de-
fine what is meant by saying that auxiliary squares are used in a particular

COMPUTABILITY OF RECURBIVE PUNCTIONS 251

representation. Both the representation of # by («0)™ and the tally representa-
tlon (%) " itself “use auxiliary squares” in that they are much longer than the
irredundant bmary representation of n of length logy n. It looks as though ail
that one can define precisely is the degree of redundancy of the coding—the
funetion f{w) giving the length of the represeatation of ». From this point of
view it is difficult to distinguish between the erasing snd nonerasing machines.
Both require auxiliary squares for punetuation; if 2, -+, a, Is a sequence of
natural numbers you cannot simply take the binary representations of z, st
. , and place them end to end, since there would then be no way of telling where
onc number stopped and another began, nor of recognizing the end of z, . It
seems to be impossible to avoid having regularly occurring “auxiliary” squares
to deal with this punctuation problem so that the ideal coding of length log,
is not attainable even asymptotically. By taking blocks of length % sufficiently
large, representing a binary word 4, -+ % by 1w -+ e and leaving pFH!
o represent the comma, we can achicve a length of (14-¢) loge n for any « > 0,
However we shall now ghow that the same condensation can be achieved with
the nonerasing machine,

First we observe that if we take the binary representation of a npumber z
and, starting from the left, mark it off into blocks of £ so that it appears as w, ,

-, where each of wy, -+, %, i of length & and v 15 of length greater than 0
and less than &, then we may regard this as a word on a new alphabet @’ with
2F -9 letters, viz. the 2° “full” blocks of length k, and the 2" 42" 4. .. 42
incomplete blocks of lengths k~1, ---, 1. Writing to denote the word of @
corvesponding to z in this way, it is clear that 2’ is computable from z and vice
versa, 5o that if f is a partial recursive function of @, -+ -, . then f(z,, ---,
za) = glay’, -+, 2.}, where g is a partial recursive function of =1, - -+, .
Hence by 9.2 there is a program on a weak TM over & U {0} which computes g.
Let us use an alphabet @"U [0, ¢ for this machine, the operation E being the
replacement of the scanned symbol by e. We now map the 2" symbols of
@'U {0, ¢ back onto the binary alphabet [b, #}, using the blocks of length
k-1, with 0 mapped onto the block 5" and e mapped onto ***, the mapping
being otherwise arbitrary. In this way we bave taken the original binary ex-
pression for 2 and replaced each block of % symbols (and the inecomplete block
at the end) by one of k41 symbols, so that we have achieved the same degree
of condenzation as hefore. To complete the proof that the operations of a non-
erasing TM are adequate to compute all partial recursive functions with this
representation we now show that this last mapping of @'U {0, ¢ onto {b, %
is sueh that a nonerasing TM on {b, *} with operations <« , >, %, ' (or ¢'—
this ean be dealt with similarly) can carry out the operations of a weak TM on
alphabet @' U {0, ¢. We need a subroutine R(k+1)[EL, ---, E{2 1))
with 2°** exits, which will examine the k-1 squares to the right of the head and
take exit ¢ if they contain the binary expansion of ¢ (b = 0, * = 1, most signifi-
cant place on the left), with the position of the head on exit being on the furthest
1 to the right in this block of k+1 if £ # 0, on the original square if £ = 0 (ie.
8 k-+1 — p(k--1, 2) places to the right of the initial position, where p(k+1, 2)

252 J. C. SHEPHERDSON AND H. L. STURGIS
equals the greatest » less than or equal to k41 such that 2" |). This can be
defined inductively as follows:

R(Q)[E1]
RGADIEL -, E@1-1)]

—,CEL],
RNt 11,451 Ot
=, C[E3),~,C]52)

[y

[

o

1, e O[E (1)], et ¢ 00 OB (20)]

.

ok, —sp et (B (@it)] b (k250 B (Y|

The notalion R(k)[¢ — i4-1] here means that, for ¢ = 1, -- -, 2k~1, exit |
of R(E)EL, -, BE(2*~1)] is connected to line ¢+1, ie. stands for R(k)J,
++-, 2. If we now number the blocks of k-1 squares according to the binary
number they represent, as above, then the weak TM operations on these blocks

K+l Bt £l BEL, 00 :
al‘e:L=(_‘+; R=— ;Ez(""}: *\ , — P = *l; =

2 *”‘*‘, <—~’°+1, where ¢ - - - fp41 is the binary expansion of 7 (§ = 1,
. 2k+1_ 1)
J 0[] R(k.{_l}[g: 3, (mﬂu])f, S, -Zk'l-}]’v,k-l-l

= 1.
2 __}P(k+!<1)’(;.ﬂ (kt1,2)
3. PR o LD

2t _,,ﬁ(lc+1.2f¢+‘>l),e._k+1

with the compensation: replace old line m by

M. rﬁk+1_”(k+l'i), w4+ 1.<——k+"l—"(k+1'i), old line m.

Here the (in 4+ 1) in line 1 is connected to exit 7 and, as before, stands for the
final number of the added line m-+1.

APPENDIX E. Proor Taar Arn OpERaTIONS AT BorH FnDs Are
Nrcrssary vor Comruring Art Recursive FPUNCTIONS WITH A
SiNngLE Recister Macmive WORKING ON THE SAME ALPHABET

TusoreM. An SEM on alphabet @ = far, - -, a} with heads aperating at the
two ends of the word 13 not capable of computing ail one-place reciursive junctions
over @ unless both heads are capable of printing, deleting and “reading” (1Le. making
the letter which is scanned influence the future computation in svme way such as ¢
conditional fransfer) .

Proor. Lel @ be a given program of /—1 Jines for an SRM whose r.h.h.
(right-hand head) is eapable of all three types of operation but whose Lhh
(left-hand head) is not. We shall show that if @ computes a funetion which
takes infinitely many values, then there exist words U, V, U, V' such that, for
every word X, @ sends UXV into U'XV’. This proves the theorem since it
shows that the function 7 defined by f(W) = WW is not computable by sucha
machine.

In order to define U, V, we take a word W, o with the property that when

COMPUTABILITY OF RECURSIVE FUNCTIONS 253

@ is applied with Wy as initial word, then at 1o stage of the computation will
the register conbain a word with Jess than max{/, 2} letters. Such a W, certainly
exists for there are only Guitely many (s 1) different possible final outeomes [rom a
positien wheve the word in the register has only & letters, and we are sSupposing
that ¢ computes & function with infinitely many values. In defining U7 it is con-
venicnt to imagine that the word which is the content of the register at any time
is printed on a doubly infinite tape divided into squares (all of which are blank
except those occupied by this word) with the square originally occupied by the
first letter of Wy numbered 0 and the squares to the right of this numbered 1, 2,
3, --- . The Lh.h. starts on square number 0 and, in the course of the apphc.d,tlon
of @ to Wy, passes over only a [inite number of squares. Let 7y be the number
of the furthest square to the right reached by the 1 h.h., so that the Lh.h. pasges
at some time over squares 0, 1, -+ -, 75 (and possibly over squares with negative
numbers, 1.e. to the left of square number 0), Now U s defined as the (ne+1)-
letter word whose first letter is the first letter of Wy and, generally, whose rth
letter is the letter which was on square number » when the Lh.h. reached this
square for the first time. V' is defined in & symmetrical way with respect to the
right hand end of the word Wy . If we can show that the program @ applied to
the word UXV produces the same succession of steps as when it is applied to
Wy, then the result of ® must be to leave the X unscanned, i.e. to produce a
word U'XV’, where U, V' are independent of X. It is clear therefore that the
desired result will follow from the following lemma:

Leaaa Ao If the vight-hand head scans a certain square, moves off this square
to the f‘ighlgg and later veturns lo read this square, then the letler printed on that square
will be unchanged (7.e. cannot have been changed by the left-hund head), and simi-
lavly for the left-hand head,

We derive this from another lemma:

Liesmia B, If the lefi-hand head cannol read and the right-hand head moves at
lemst [—1 squares fa the right of the present square before returning to scan i, then
2% never reluIns.

Proor or LemMa B, Let the squares be numbered 0, 1, 2, - - to the right,
starting from the present square. Consider, for each of thel squares 0, 1, --- |
{—1 the number of the line of the program in which that square is left by the
r.hh. for the lost time on its way out to square {—1. Since there are only [lines
in the program there must exist ¢, 72, 0 £ 4 < @2 £ {—1, which are left
in the same program line, Iy, say. This means that after leaving square 4 in
line &) the r.huh., before returning to thiz square, arrives at square ¢ in line /.
In other words, when started with the r.h.h. on square #; in line 4, facing blank
squares to the right, the computation proceeds, without the r.h.h. scanning
square iy or any square to the left of i, through steps which bring the r.hLh. to
square 7 with the program again on line [y . Since the Lh.h. cannot read, it
eannot cause any change in procedure, so the conditions are now effectively
the same as before, i.e. the r.ih. must now go on to the square &+ (Z2—7),

® Remaining on the square is eonsidered to fall under this description also.

254 I. C. SHEPHERDSON AND H. . STURGIS

leave this in the same line & of the program and so on, ie. the motion of the
machine will eonsist in the r.h.h. moving eyelically and endlessly to the righs

Proor oF Limma A, We are supposing the Lh.h. is not capable of all three
operations. There are thus three cases (o be congidered :

(1) The Lh.h. cannot read. In this case Lemma B immediately gives the resulg
of Lemma A for the r.h.h., since we ave supposing that the word in the register is
never reduced to fewer than [letters, so that the Lh.h. could only arrive at and
alter a certain square if the r.h.h. had proceeded at least {—1 squares to the
right, in which case Lemma B shows that the r.huh, never returns to scan the
altered square. For the Lh.h. Lemma A is vacuously true, since the 1hl. i
supposed to be unable to read.

(2) The Lh.h. cannot print. In this case the Lh.h. cerfainly cannot alter y
square between scannings by the rhh.—mnor can it delete it since this would
imply the word was at some stage reduced to null. Nor can the r.huh. alier a
square scanned by the Lhh., for sinee the Lh.h. cannot move left it could only
satisfy the eonditions of lemma A by remaining on the square and then the
r.huh. could only alter this square by reducing the word to length 1, contrary to
hypothesis.

(3) The Lh.h. cannot delele. Then the Lh.h. eannot move right so it could only
alter u square which had been occupied by the r.h.h. if it was present on this
square when the r.h.h. was, ie. if the word was at some time reduced to one
letter, contrary to hypothesis. Also, since the Lh.h. cannot move right, it can
only satisfy the conditions of Lemma A itself by staying still, in which case the
r..h, cannot alter the square it (the Lh.h.) is occupying without reducing the
word to length one, contrary to hypothesis. '

REFERENCES

1. Cuurce, A. A set of postulates for the foundation of logic. Ann. Math. {2} 33 (1932},
546-366; 34 (1933).

2. ——. An unsolvable problem of elementary number theory. dAmer. J. Math. 58 (1936),
345-363.
3. —. A note on the Entscheidungspreblem. J. Symb. Logic 1 (1036), 40-41, 101-102.

4. Davis, M. Computabilily and Unsolvability. New York, 1958.
5. Ersnov, A. P. On operator algorithms. (Russian) Dok. Akad. Nauk {22 (1958), 967-
470. English translation, Awtomal. Bxpress 1 (1959), 20-23.
6. Henmes, H. Vorlesung dber Enischeidungsproblemen in Mathematik und Logik. Ausarb.
Math. Phys. Vorlesungen, Vol. 15. Munster, 1955.
. Henmes, H. Die Universalitit programmgesteuerter Rechenmaschiven. Math.-Phys.
Semsterberichte (Gottingen) 4 (1054), 42-53.
8. KarnueNest, H. Eine Abstrakte programmgesteuerte Rechenmaschine. Zeit. Math.
Togik Grund. d. Math: § (1959), 366-379.
9. KigENE, 8. C. General recursive functions of natural numbers, Math. Ann. 112 (1936},

727-742.

10. ——. A theory of positive integers in formal logic. Amer. J. Math. §7 (1985), 153-178,
219-244. '

. ——. M-definability and recursiveness. Duke Math. J. 2 (1936), 340-353.

12. —— Introduction to Meiamathematics, Ch. 13. Prineeton, 1952,

13.
18,

17.

18

COMPUTABILITY OF HRECURSIVE FUNCTIONS 255

<

13. Marzov, A. A, Taeoriya aelgorifmov. Tr. Mat. Tnst. Steklov, No. 42, Moscow, 1954.
i, OserscunLe, W, Vartonten von Turtngmaschinen, Arch. math. Logik Grund., No.

4/1-2 (1958), 53-6B2.

Purer, B, Graphschemoto und rekursive Funktionen, Dialectica 12 (1958), 878.

Posr, T. L. Finite combinatory processes—Iformulation, I. J. Symb. Logic 1 (1936),
£03-105.

—, Tormal reductions of the general combinstorial deecision problem. Amer. J.
Muth. 66 (1943, 197-215.

Tyring, A. M, On computable numbers with an application to the Entscheidungs-
problem. Proc. Lond. Math. Soc. {2}, 42 (1936-7), 230-265; addendum and corrigen-
dum, 43 (1937), 544-546.

9.~ Computability and M-definability. .J. Symb. Logic 2 (1937}, 1563-163.
. Wang, H. A variant to Turing’s theory of computing machines, J. ACM 4 (1957),

63-92,

. Minsgy, M. Recursive unsolvability of Post’s problem. M.I.T. Lineoln Lab. Report

54G-0023.

. Suvrivan, R. M. Theory of Formal Systems. Princeton, 1961.
23, Post, B. L. Recursive unsolvability of a problem of Thue. J. Symb. Logic 12 (1947),

1-11,

. Lew, C. Y. Uategorizing automata by W-machine programs. J. AUM § (1961), 384-390,

