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l. Introduction 

As a result of the work of Turing, Post, Kleene and Church [1, 2, 3, 9, 10, l l  
12, 17, 18] it is now widely accepted ~ that  the concept of "computable" as ap- 
plied to a function ~ of natural numbers is correctly identified with the concept 
of "partial recursive." One half of this equivalence, that  all functions computable 
by any finite, discrete, deterministic device supplied with unlimited storage are 
partial recursive, is relatively straightforward 3 once the elements of recursive 
function theory have been established. All tha t  is necessary is to number the 
configurations of machine-plus-storage medium, show that  the changes of con- 
figuration number  caused by each "move"  are given by partial recursive func- 
tions, and then use closure properties of the  class of partial recursive functions 
to deduce that  the function computed by the complete sequence of moves is 
partial recursive. Until recently all proofs [4, 6, 12, 13, 19, 20] of the converse 
half of the equivalence, namely, that  all partial recursive functions are computa- 
ble, have consisted of proofs tha t  all partial recursive functions can be computed 
by Turing machines, ~ which are certainly machines in the above sense. Although 

* Received December, 1961. 
Visitor at the University of California, Berkeley, 1958-1959, when most of this work 

was done. 
There are some finitists or intuitionists who might deny that all general recursive func- 

tions are computable, or even assert that the class of general recursive functions is not 
well-defined. However, by speaking of partial recursive functions we avoid this difference 
of opinion. For there is surely no doubt that the routines given here and elsewhere will 
actually compute the value of a given reeursive function for a given argument at which 
the function is defined, and will go on computing forever if the function is not defined at 
that argument. Of course, there may now be a difference of opinion as to whether a given . 
partial recursive function is general recursive, i.e. defined for all arguments; in fact, the 
question of whether such a function is defined for one particular argument can be as difficult 
as the Fermat conjecture. But disagreement on this or on the equivalent question of whether 
the corresponding computational routine terminates or not does not affect the completely 
finitist proof that for arguments for which the function is defined the routine will compute 
its value. 

2 Not necessarily defined for all arguments. 
a Although the belief that all "computations" can be carried out by such a device must 

be taken as an act of faith or a definition of computation. 
4 Or Markov algorithms, which are similarly restrictive. 
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not difficult, these proofs are complicated and tedious to follow for two reasons: 
(1) A Turing machine has only one head so that one is obliged to break down 
the computation into very small steps of operations on a single digit. (2) It has 
only one tape so that one has to go to some trouble tlo find the number o~e wishes 
to work on and keep it separate from other numbers. The object of this paper is 
first to obtain, by relaxing these restrictions, a form of idealized computer which 
is sufficiently flexible for one to be able to convert an intuitive computational 
procedure with littte change i~lto a program for such a machine. Since this sort 
of computer plus a given fiaite program clearly tan be regarded as a finite, 
discrete, deterministic device (plus unlimited storage), a very simple proof can 
be given to show that all partial reeursive functions are computable. We then 
gradually reintroduce restrictions (1) and (2), passing through a sequence of 
definitions of intermediate forms of machine and ending with a form from which 
we can not only obtain directly the computability of all partial recursive fune. 

• 5 tions by a Taring machine with only two tape symbols ("mark" and k lank ) 
but by a very slight change, also the strong result of Wang [20] that erasing is 

dispensable and that "shift left one square", "shift right one square", "mark a 
blank square", "conditional transfer" (jump if square under scan is marked) are 
adequate. In fact, by malting a~mther slight change we can deeide affirmatively ~ 
the question raised by Wang [20, p. 84] whether the "conditional transfer" can 
be replaced by the "dual conditional transfer" (jump ff square under scan is 
blank). The intermediate forms of machine or computational procedure are, we 
think, of some interest in their own right. For example, in Section 8 we note that 
a general-purpose computer could be built using one binatT tape and two heads, 
the right-hand one being a ~Titing head which can move only to the right and 
can print only when moving, the left-hand one a reading head which can als0 
move only to the fight and can read only when moving (and may destroy what- 
ever it reads in the process of reading it). In other words, the simple "push- 
button" or "push-down" store, 7 in which "cards" with 0 or 1 printed on them 
are added only at the top and taken off to be read only at the bottom, is a uni- 
versal computing machine. In Section t0 we show that theorems (including 
Minsky's resnlts [21]) on the computation of partial reeursive functions by ma- 
chines with one and two tapes can be obtained rather easily from one of our 
intermediate foiTns. So we might sum up by saying that we have tried to carry 
a step further the "rapprochement" between the practical and theoretical 
aspects of computation suggested and started by Wang [20]. However, we do 
not. discuss questions of economy in programming; our aim is to show as simply 
as possible that  certain operations can be carried out. In the interests of reada- 

A fact which is important  at least to metamathematic ians ,  since it is the basis of 
many undecidabil i~y proofs• 

This  has Mso been established recently (by a different method) by C. ¥ .  Lee [24]. 
7 We are grateful to A. L. Tritter for pointing out that our use of these expressions is 

nonstandard; apparently a "push-down" store is an ~,Iso (last-in, first-out) store, ~-hereas 
we describe an FIFO (first-in, first-out) store• 



COMPUTABILITI( OF I{ECURSIVE FUNCTIONS 219 

bi l i ty  we have  r e l ega t ed  to an  a p p e n d i x  cer ta in  c o m p u t a t i o n a l  de ta i l s  a n d  
S~ippl~:':~e ntars~ r emarks .  

Note. There have recently appeared papers by Ershov [5], Kaphengst [8] and Peter 
[15] which :~lso provide simple proofs of the computabili ty of all partial recursive functions 
by vari()us kinds of idealized machines or computational procedures. These are all similar 
to each other and to the methods of this paper but have interesting differences in approach. 
Ersl~ov starts  from a very wide and elegant definition of algorithm, which is particularly 
suitable for dealing with the theory of programming of digital computers; Peter starts  
from a general form of block diagram, and Kaphengst from an idealization of a digital 
computer. We comment later (Appendix A) in more detail on the differences between the 
operations used in these approaches and those used here; although all the sets of operations 
are eq~ivalent, the present method appears to be best adapted to our purpose of start ing 
from operations in terms of which all part ial  recursive functions are easily computable, 
progressively breaking these down into simpler operations, and ending with the very few 
basic operations of a non-erasing Turing machine. 

Kaphengst 's  approach is interesting in that  it  gives a direct proof of the universality of 
present-day digital computers, at  least when idealized to the extent of admitting an in- 
finity of storage registers each capable of storing arbi trar i ly long words. The only ari th- 
metic operations needed are the successor operation and the testing of two numbers for 
equality (other operations of the usual kind for transferring numbers from other addresses 
to and from the mill and the order register are also needed, of course). The proof of this 
universality which has been taci t ly  assumed by all concerned with electronic computers 
since their inception seems to have been first written down by Hermes, who showed in 
[7] how an idealized computer could be programmed to duplicate the behavior of any Turing 
machine. 

2. Un l im i t ed  Register  M a c h i n e  ( U R M )  

This ,  our  first  a n d  mos t  f lexible mach ine ,  consis ts  of a d e n u m e r a b l e  sequence  
of' reg is te rs  n u m b e r e d  1, 2, 3, - - .  , each of which  can  s tore  a n y  n a t u r a l  n u m b e r  
9, 1, '2, . • • . E a c h  p a r t i c u l a r  p r o g r a m ,  however ,  involves  on ly  a firfite n u m b e r  of 
these regis ters ,  t he  o the r s  r e m a i n i n g  e m p t y  (i.e. con ta in ing  0) t h r o u g h o u t  t h e  
c o m p u t a t i o n .  T h e  bas ic  in,~tructions (orders ,  c o m m a n d s )  a re  as  follows (he re  

(n}, (n'} deno te  r e s p e c t i v e l y  the  con t en t  of reg is te r  n before  a n d  a f t e r  c a r ry ing  

out  the  i n s t r u c t i o n ) :  

a. P(n) :  add 1 to the number in register n, i.e. {n'} -- (n}-t-1. 
b. D(n): subtract 1 from the number in register n, i.e. (n'} = ( n } - l .  ((n) ~- 0). 
c. O(n): "clear" register n, i.e. place 0 inn it, i.e. (n') = O. 
d. C(m, n): copy from register m into register n, i.e. (n'} = (m}. 
e. J[E1]: jump to exit 1. 
f. J(m)[E1]: jump to exit 1 i f  register m is empty. 

Note.% 
(1) This set of instructions is chosen for ease of programming the computation of part ial  

recursive functions rather than economy; it is shown in Section 4 that this set is equivalent 
to a smaller set;. 

(2) There are infinitely many instructions in this list since m, n range over all positive 
integers. 

(3) In instructions a, b, c, d, the contents of all registers except n are supposed to be 
left unchanged; in instructions e, f, the contents of all registers are unchanged. 
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(4) The P, D of 2, b, stand for PJigINT, DELETE, which is what they amount to when we 
pass to the next stage of representing the naturM number x by a sequence of z marks. 

(5) Itlstruetion b is used in our programs only when register n is non-erupt, y, so we leave 
the definition of the machine incomplete to the extent that we do not specify whae would 
happen if it were applied to an empty register (e.g. no effect at, all, or STOI) wit;bout result). 

(6) Instruction d is defined only for '/~ ¢ 'n; we make this rest, riction rather than saying 
this is an instruction C(n, n) which does nothing at all, since the subroutine we give later 
for C @~, n) in terms of the other instructions would go on computing forever if vz = n 
(it would continually subtract and add 1 to n). 

In s t ruc t ions  a, b, c, d, are called single-exit  ins t ruct ions  and  are said to have 
only  the  normal  exit  or exit O. This means  tha t  when  t h e y  occur  in a program 
there is no choice to be m a d e ;  the machine  s imply  proceeds to the next line of 
the  program.  Ins t ruc t ion  f, J ( m ) [ E 1 ] ,  however ,  is t h o u g h t  of as a two-exit in- 
s t ruc t ion:  if register m is non -empty ,  take the  normal  exit (i.e. proceed to the 
next  line of the  p rog ram)  ; if register m is e m p t y ,  t ake  exit 1. W h e n  ~his instruc- 
t ion  occurs  in ~ p rog ra m  it will a lways  be in the  f o r m  J ( m ) [ n ] ,  indicat ing that 
to take  exit I you  proceed  to line n.  I n s t ruc t i on  e, J [E1]  is s imilarly thought  of 
as a two-exi t  ins t ruc t ion;  in this case, however ,  the " n o r m a l "  exit is never  taken. 

A l though  we do no t  have  here a n y  basic ins t ruc t ions  wi th  more t h a n  two exits 
it is convenient  to give a definit ion of p r o g r a m  which  would app ly  also in such 
a case, since for  later  machines  we wish to use subrout ines  with more  t h a n  two 
exits. So we define a program, (or  rout ine)  as a finite sequence of l lines, each line 
being of the  f o r m  I[m~, • . . ,  m~], where  I[E1,  • • . ,  Ek] is an  inst ruct ion,  k is the 
n u m b e r  of non -no rma l  exits of I ,  and  m~, - - -  , mk are integers betweell  1 and 
l +  1 (where it is unders tood  t h a t  if 7~ = 0 the  line s imply consists of t alone). In 
following such a p rog ra m  the  machine  s tar ts  on line 1 and  proceeds thus :  when 
on line i .  I [ m ~ , . . . ,  m~] it  carries ou t  ins t ruc t ion  I and  proceeds to line i + l ,  
m~, - • . ,  or m~: depending  on whe ther  the s ta te  of the  registers is such tha t  the 
0 th  (no rma l ) ,  1st, - - . ,  or  k th  exit of ins t ruc t ion  I is to  be taken;  on  arri\,ing at 
the non-exis tent  line l ÷  1, it stops. For  example,  the p rog ram 

1. J(n)[4] 
2. D(n) 
3. J[1] 

could be wr i t t en  more  ful ly:  

1. Proceed to line 2 i f  register n is non-empty, to line 4 (i.e. stop) i f  it ~is empty. 
2. Subtract 1 from number in register n. 
3. Jump to line 1. 

[t  is easily seen to have  the  same effect as O ( n ) .  
Following Wang ,  we make  extensive use of subroutines.  A subrout ine  S is like 
p r o g r a m  except  t h a t  (like a n  ins t ruc t ion)  it m a y  have several exits, e.g. we 

~lse subrout ines  such as O(n)[E1] ,  "clear  register  n and  proceed to exit 1":  

1. J(n)[El] 
2. D(n) 
3. J[1] 
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To obtain a definition for subroutines of this kind we have only to take the 
~tbove definition of a program and allow the m~, • •. ,  mk to range over E l ,  • • •, Ek  
as well as 1, - •. ,  l-F 1. t Iere/~ will be the number  of non-normM exits of the sub- 
routi~e. The  basic theorem about  subroutines of this kind, which (following 
Wang and other writers on eomput ing machines) we take as being sufficiently 
obvious not to need a formal proof (which is a little tedious) is tha t  if such sub- 
routines are used as new single instructions in the formation of other subroutines 
and programs and so on, then all the resulting programs could be obtained with 
the original set of basic instructions. The formal proof of this is obtained by  
showing how to expand these subroutines in re ims of basic instructions whenever 
they occur i~ other  routines or subroutines. For  illustration, consider the case 
of ~ routine or subroutine U with 1 lines: 

1. U1 

j .  (]j 

L Uz 

whose j t h  line is of the form Sims, • • ", ink] where ,5[E% . . . ,  Ek] is a ( k + l ) - e x i t  
subroutine e×pressed in terms of basic instructions by m lines: 

I. ~% 

~gL ~n 

To eliminate ~, simply replace Uj by these m instructions and convert all jump 
references so that they go to the correct line in the new program; the resulting 

program is 

1. U~' 
: : 

j--1. U ; - i  
j .  ~|tt  

j + , ~ -  1. S~" 
jq-rn. U'i+~ 

lq-n~-l. Ut' 

where U,' (i  = 1, - . . ,  j - l ,  j ÷ l ,  . . .  l) is obtained f rom U~ as follows: if U, 
is I[nl , -" -, n,] then  U / i s  I[n1', . . . ,  n/], where n '  = n unless j < n ~ lq-1, in 
which case n '  = n + m -  1. Similarly, if S, is I[nl ,  . .  ", n,] then S~ pp is I[nd% . . . ,  
n, ' ] ,  where n" = n + j - 1  if 1 G n ~ mq-1, n" = m i ' i f  n = Ei  (i = 1, 

• -., I~). 

3. Computability of Partial Recursive Functions by the URM 

A single-valued function (not necessarily defined for all arguments)  whose 
arguments  and values range over  the natural  numbers  is partial recursive if it 
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can be o b t a i n e d  f rom t h e  in i t ia l  fm~ctio:t~s of s c h e m a t a  I ,  I I ,  H I  below by means 
of a f ini te  n u m b e r  of a p p l i c a t i o n s  of s c h e m a t a  s IV,  V, \ 7 :  

I. S(a:a) = z~+l 
II .  O'~(x~ , . . .  , x~)  ~ 0 

I I I .  U~'~(x~ , . . .  , x,,) = x~ 
IV. [Co~xeos~TlOX] U h,  g~ , . . .  , g,,~ a re  p a r t i a l  r e c u r s i v e  so  i s  the  j ' u n c l i o ~  f defined 

b y  f ( x ~ ,  . . .  , z , d  = h ( g ~ ( z ~ ,  . . .  , x , d ,  " "  , g , ~ ( x ~ ,  . . .  , :c,d). 
V, [PRIMITIVE ilECUI{SlON] I f  g, h a r e  p a r t i a l  r e c w r s i v e  .so i s  l he  j '~u~c~ion f defined 

b y  f ( O ,  x~ , " "  , x~,) = g(x~  , " "  , x ~ ) ,  

f ( z + l ,  x~ , "'" , a:,~) = h ( z ,  f ( z ,  :v~ , " ' "  , x~ ) , x2  , " ' "  , x , J .  

VI. [LEAST NUMBER OPEIR~,kTOII] I f  g i s  p a r K a l  r e c u r s i v e  s o  i s  t h e  f u n c t i o n  f d e f i n e d  by 

f ( x l  , " "  , x~ )  = , y [ g ( x l  , - "  , z,~ , y) = ()]. 

N o t e .  In schema VI, the " ~ y " ,  "the least y such tha t" ,  is to be interpreted thus: 
f ( x ~  , " . .  , x ~ )  is defined to be y0 when g(x~  , . . .  , x , ,  , yo)  = 0 a n d  g ( x l  , . . .  , z ,  , y )  is de. 

f i n e d  but non-zero for y < y0 ; if no such y0 exists, then f is undefined. 

W e  now show t h a t  al l  p a r t i a l  r ecurs ive  func t ions  a re  c o m p u t a b l e  b y  the  URM 
in  the  fo l lowing sense:  for  each  p a r t i a l  r ecurs ive  f u n c t i o n  f of n a r g u m e ~ t s  and 
each  set  of n a t u r a l  n u m b e r s  x~, - - -, x,~ ,y, N (y ¢ x ; ,  for  i = 1, •.  • , n ;  :v~, . . . ,  

z ~ , y  =< N ) t h e r e e x i s t s a r o u t i n e  R ~ v ( y  = f ( X l , ' "  ",Zn))such t h a t  if {:h,% ' " ,  {z=) 
a re  the  in i t i a l  c o n t e n t s  of reg is te rs  x ~ ,  • .  - ,  x , ~ ,  t hen  if f (  (x~}, • - • , @~)) is un- 
def ined the  mach ine  will  no t  s top ;  if f ( (x~) ,  • • -, (x~)) is def ined the  nmchine  will 
s t op  w i th  (y), t b e  f inal  c o n t e n t  of reg i s te r  y, equa l  to f (  (xl}, - • . ,  (z, ,)) ,  arid with 
the  final c o n t e n t s  of al l  reg is te rs  1, 2, •. • , N excep t  reg i s te r  y the  s ame  as  their 
in i t i a l  c o n t e n t s ?  This  is the  m o s t  conven i en t  fo rm to choose  for t he  i~ltuitive 
proof  t h a t  al l  p a r t i a l  r ecu r s ive  func t ions  are  c o m p u t a b l e ,  s ince we wish to pre- 

serve  the  a N u m e n t s  for  subsequen t  ca lcu la t ions ;  if, however ,  a f inal  rout ine  is 
w a n t e d  which  leaves  o n l y  the  va lue  of t he  func t ion  a n d  erases  the  con ten t s  of all 
r eg i s te r s  less t, h a n  or  equa l  to  N excep t  y, th i s  can o b v i o u s l y  be o b t a i ~ c d  from 
the  a b o v e  rou t ine  b y  a d d i n g  the  in s t ruc t ions  0 ( 1 ) , . . . ,  0 @ - - 1 ) ,  0 ( ? / + 1 ) ,  . . - ,  

O ( N ) .  W h a t  we musft Imw give are  sub rou t ine s  for  e o l n p u t i n g  o u t r i g h t  the 
ini t iM func t ions  of s c h e m a  I,  I I ,  I I I ,  a n d  for s e h e m a t a  IV,  V, V I  subrou t ines  for 
c o m p u t i n g  f f rom g iven  sub rou t ines  for  c o m p u t i n g  g, h. W e  give these  below: 

I .  S U B ~ O V ~ I N E  R ~ ( y  = S ( x ) )  

1. C ( x ,  y )  

2.  P ( y )  

II .  SUBROUTINE R N ( y  = On(x1  , "'" , X~))  

1. O ( y )  

I I t .  SUBROUTINE R N ( y  = U i n ( X l  , " ' "  , Xn ) )  

1. C(x~, y) 

s I t  is convenient in stating these to allow functions of 0 arguments (i.e. constants) so 
that  the n in schemata I I -VI  ranges over the values 0, 1, 2, . . . .  

Obviously we cannot hope to preserve the contents of a l l  registers except, y--we must 
have some place to do "rough work"- - i t  is important  in the induction to have this lower 
bound N on the addresses of registers possibly disturbed. 
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l \ : .  SI 'Btt . ( )(  T [NI ;  /~N(Y -- f(..Cl , " ' "  , Xn))  USING S U B R O U T I N E S  F O R  g ,  h ,  W H E R E  f *S 
I) E F I N E I )  B Y  S C H E M A  [ ~  ' l ' f l  [ ;S : 

f(:c~ , . . .  , z , , )  = h (¢ ,q ( z~  , . . .  , x ,~ ) ,  . . .  , g , ~ ( z ,  , . . .  , x ~ ) )  

1. h ' N . ~ i ( N - } - I  = g l ( x , ,  " " ,  x . ) )  
: : : 

'm.. R.~.~,,,()V+',,. = . q , , ( x ,  , - . .  , xn) )  
m - } - l ,  h ' N , . , ( y  - -  h(N-~--l, . . . ,N-~m))  

k : o t e .  Registers iV-{ 1 , - - . ,  N km at'(} used to hold g ~ , . . . ,  5',,, since all registers 
1, ... , J\" (excepl, y) must, be left unchanged by RN. 

V [ .  S u t ~ I ¢ ( ) I  T I N E  1.'O1¢. R N ( y  = f ( x l  , ' ' "  , X n ) )  ( . S I N G  S U B R O U T I N E  F O R  g W I t E R E  f I S  

DE~,'~'E~) B ~  V [ ,  ~rHVS: f ( x ,  , " "  , X ,d  = ~ y [ g ( x ,  , ' "  , X= , y )  = 0] 

1. O ( y )  

2. R~:+,(Nq-1 = g ( x ,  , . . .  , x ,  , y ) )  

3 .  J ( N + i ) [ 4 ] ,  P ( y ) ,  J[2i 

Here and later we no longer number each line of a subroutine; this means 
simply that  we are using for our lines certain subroutines. Clearly, the only in- 
slructi(ms which need to be numbered are those to which a jump is made. Two 
other ~bbreviatory techniques are worth introducing now, via. if I is an instruc- 
tion or subroutine, then l ~' stands for the result of performing I n times, i.e. for 
(tL~ sut)routil~e 1. I, 12. 1, . . . ,  n . I .  Similarly, if I is a single exit instruction 
or subroutine which does not affect register n then I ('~> stands for the result of 
p(,rforming [ (n} times and reducing (n} (the number in register n) to zero; it, 
(am be oI)taincd thus: I .  J(n)[2t ,  [, D(n) ,  ./[l]. 

V. ',4~ B a O I T ' r l N E  1 2 N ( y  = f ( ) ' ,  , - ' '  , X~))  USING SU BRO I V r I N E S  FOR g ,  h W H E R E  f *S 

~)~:FINED By SCHEM.~ V ,  T H U S :  f ( 0 ,  x ~ , - - -  , x,~) = g ( x 2 ,  " "  , x,~), 

j ' ( z q - 1 ,  x~ , " '  , x ~ )  = h ( z ,  f ( z ,  x e  , " ' "  , x ,~),  xe  " ' "  , x.,~): 

1. /~N(Y = g ( x e  , " "  , X , , ) ) ,  0 ( N + I )  
2. { R N + . ~ ( N + 2  = h ( N + l ,  y ,  x ~ ,  " "  , z , , ) ) ,  C ( N - t - 2 ,  y ) ,  P ( N + I ) }  ( ~ )  

3. C ( N ~ i ,  a:~) 

This completes the proof that  all partial recursivc functions are computable 
by the URM. We have simply followed the intuitive argument by which one 
convinces oneself th,~t one could in fact compute all values of all functions de- 
tinable by ] , . . . , V I .  We have chosen a set of basic instructions large enough to 
make the programming straightforward. Kleene [12, p. 363] proceeds somewhat 
similarly: "An intuitive calculation by schemata ( I ) - (VI)  is accomplished by 
repetitions of a few simple operations, such as copying a number previously 
written (at a determinate earlier position), adding or subtracting one, deciding 
whether a given number is 0 or not 0. We shall first construct some [Turing] 
machines to perform such operations as these." However, he does not give ex- 
[)licit programs in terms of these operations but  proceeds immediately to the 
one-dimenskmal tape and the construction of particular Turing machines. By 
deferring these steps we are able to get his result and the stronger result of Wang 
quite simply from the same intermediate form. 
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4. t~e&zctfon of Basic I'nstr~zctions 

We now try to reduce the instructions to a smaller and simpler set.. The most 
obvious candidate for such replacement is tile copy instruction d. The subrouthle 
which springs to mind for defining this in terms of the or.her instructions is [0 
keep adding one into register n and subtracting one from register m until the 
latter is empty. This certainly copies the contents of register m into register n 
but utffortunately it destroys the originM. We can avoid this by making two 
copies at  once and afterwards copying one of them back itlto register 'm. However, 
this will not give exactly C(m,n),  since the originM contents of the register 
( N +  1, say), used to hold the second copy, will have been destroyed. What we 
can obtain in this way is a bounded copy subroutine CN(m,n) defined for m, 
n ~ N,  m ¢ n, thus: 

Cw(m,n):  Clear register n, copy contents of register m into ie, leaving conlents of all 
registers 1 , . . . , n - l ,  nq-1, . . .  N (including m) unchanged. 

Before considering this subroutine, note that  it can be used iastcad of C(m,n) 
in the above routines, since an appropriate bound N can ahvays be determined 
for the nuInber of registers whose contents we need to keep unchanged. Indeed, 
consider the bounded analogues of all our basic instructions: 

a~. Paz(7~) d~. Cv(m,n) 
b l .  D~(n) e l .  J ~ ( E 1 ]  
c~ . O~v(n) f t .  J~-(m)[El] 

(for all m,n,N with m,n =< N),  these being defined as having exactly the same 
eft'Get as the original unsubseripted instructions, except that  whereas the latter 
were required to leave the contents of all registers (execpe n) unchanged, the 
new weaker operations are only assumed to leave all registers (except n) less 
than or equal to N unchanged. 

I t  is easily seen that  these operations, with suitable bounding subscript N, 
could replace the original ones in all the routines given so far, since each of these 
needs only a bounded number of registers (in subroutines I -VI  the number 0f 
registers needed is N, N, N, N+m,  N+2, N + I ,  respectively). In f~ct, this is 
true of every routine regarded as a function from a given finite set of registers 
{1, - . - ,  No} to a given finite set {1, . . . ,  N~} of registers. For each routine, R is 

• 1 0  finite and is unchanged by its own operatmn so there exists a number N,e stleh 
that  R neither affects nor is affected by any registers greater than NR ; hence if 
we take N = max{N0,N,,N,/ and bound all operations by N the resulting pro- 
gram will be equivalent from this point of view. Since this :is the only way we 
do regard routines we can say that  the bounded set of operations is equivalent ~ 
to the original set. 

~0 Since the URM, unlike p resen t -day  electronic  computers ,  has no means  of working 
on and a l t e r ing  i ts  program.  

*~ If, however,  a rout ine  is regarded as es taMish ing  such a fune t iou  for all N(, , N~ or as 
a funct ion of the whole infinite to t a l i ty  of registers,  t hen  the bounded  opera t ions  are weaker. 
No single program formed from the bounded  opera t ions  can be given which always (regard- 
less of what  par t i cu la r  effect the actual  Nq:)ounded opera t ions  may have o~ the registers 
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We ~ow give ~ series of reduetiorls of ~his set of bounded  ins t ruct ions .  

J. ~(rI.II[f)U~I?INE FOg dj , C~¢(m,n) IN TF, RMS OF al ~ bl , e l ,  e i ,  fl 
l. 0x('n), ON~.~(N+I) 
2. {PN~(N-bl) ,  PN.+.~('n)}('d 
;'~. [ p N ÷ ,  (,lra) } (N+I) 

It, is t.() 1)e unders tood  here t ha t  the ins t ruc t ions  J ,  J ( m ) ,  which are involved 

whe~ 1if/ca 2, 3 are expanded  ( in accordance with the defini t ion of I (m) given in  

S(~(::lio~ 3 ~fl:)ove), are also given the appropr ia te  b o u n d i n g  subscr ip t  Nq-1 .  

Nulc. It is interesting to compare Wang's way [20, p. 73] of dealing (in slightly different 
circumstances, viz. a non-erasing Turing machine) with this difficulty that the original is 
destroyed in the process of copying. He arranges for the original to be not completely 
destroyed but only "defaced" so that it is possible (by a different routine) later to copy 
once more from the defaced originM; in this second copying the original is completely 
destroyed. This leads to somewhat more complicated programs than our method; however, 
it is only by eliminating the copy operation at this stage, where we can still create space 
for "rough work" iust by bringing in another register, that it is possible to see easily that 
i~ cam be done this way; the resulting program for making two "simultaneous" copies with 
a non-erasir~g Turing machine would involve a large number of operations of pernmting 
the contents of the significant part of the tape. 

~. SUBROUTINE FOR Cl , ON(n) IN TERMS OF bt ,  e~, ft 
1. J~.(n)[2], D~(n), J~-[1] 

We now show how to e l iminate  the  j umps  e~,f~ in  terms of the  dual  fl of f~ : 

f~ . J~(m)[E1]: jump to exit 1 i f  register m is non-empty 

3. SVmZOUT~Nn FOR fl , JN(m) [Et] IN TERMS OF e~ , fl 
1. ],v (m)[2], Jg  [El] 

4. SUBROUTINE FOR e~, JN[E1] IN TERMS OF a i  , f l  

I. PN+~(N~-i), JN+~(N+I)[E1] 

~,\f(': flfl.V({ llO~.V St tOWII :  

,1.1. f 'or each nah~.ral number  No and ectch program. P of  the U R M ,  there exists 

(~ program having the same effect as P on registers 1, . . . ,  No and composed only of  

instrz~ctions f rom the fi)lfowing list ( N  = 1, 2, • • . ,  n = t ,  2, . • • ) 

at .  PN(n): (n'} = (n )+ l  
b~. Dr(n) :  (n') = ( n ) - i  
f~ . .JN(n)[E1]: jurnp to exit 1 f f  (n) ~ O, 

greater than N) has ttle same effect for all N on the first N registers (or on all registers) 
~s the operation C(m, n). Note, however, that subroutines (1) and (4) given below for de- 
fining copy and JuMp, in terms of the other operations disturb the contents of only one 
register; so if there is one additional register 0 available for this use (an "arithmetic uni t"  
er "mill") then these subroutines do show that tile original set of instructions a , . . . , f  is 
equivalent to the set a,b,e,f (or a,b,c,f) in the strong sense that for each program P of the 
origin~d Ut{M (plus the new register 0) there exists a program th in the reduced set of in- 
structions w'hich has the final effect as P on all the registers 1, 2, 3,-. . .  The same applies 
to the set a,b,f, Mthough here slight changes are necessary in programs (1) and (2) to avoid 
register 0 being used simultaneously in conflicting ways. The remaining set mentioned 
in Appendix A, a,b,f plus an initiM 0, is adequate only if a second additional register is 
aw~ilnble to hold this 0. 
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~c/~/'c #~e s u b s c r i p t  N denotes  that the conLc~lt o f  r e g i d e r s  N q - I ,  N q - 2 ,  . . .  "may be, 

aZtere d b!t the i n s t r u c t i o n .  [~  par t ic~&u' ,  alg part'ia, g rccur,~ivc j:uncl'io~l,~ ~u'c com.pula. 

bge ~tsin(i t/~ese i n s t r u c t i o n s  o'nIy, 

This  set of ins t ruc t ions  is f~zirly obvious ly  m i n i m a l ; f o r  a fuller discussion and 
compar i son  with the operatio~is used by  K a p h e n g s t  [81t, E r s h o v  [5t and  Peter 
[15], see Appe~,dix A; reduct ions  in the m m , b e r  of registers  used are ('onsidered 
in Seeticms 7, 8, 10. 

5. P a r t i a l  R e c u r s i v c  Funct ior~s  Over a Gc~cra l  A l p h a b e t  

W h e n  c o m p u t i n g  a func t ion  f of na tu r a l  n u m b e r s  and  using, say ,  the decimal 
representa t ion ,  it is some t imes  conven ien t  to th ink  of the cor responding  ftmeti0n 
f~ f rom decimal  expressions to decimal  expressions defined by  f l ( d )  equal  to the 
decimal  r ep resen ta t ion  of f ( ' n ) ,  where  n is the  n u m b e r  of which d is the decimal 
representa t ion .  For  example ,  if we wish to write a p r o g r a m  for  the computation 
of such a funct ion  it is in the  last  analys is  the  func t ion  j'~ which m u s t  be con- 
sidered. I n  this ease, as has been shown  in Sect ion  4 for example ,  it is enough to 
show how to ob ta in  the dec imal  funct ions  cor responding  to the  func t ions  S ( z )  = 

x + I ,  P ( : c )  = x - l ,  i.e. how to add  and  subtract ,  1 f rom n u m b e r s  expressed in 
decimal  nota t ion .  Howeve r ,  for  some of the  more  eomplex  ways  of representing 
na tu ra l  n u m b e r s  which  are considered later ,  it is easier  to work  t h r o u g h o u t  with 
funct ions  of express ions  or " w o r d s "  over  a general  a lphabe t .  B y  an  alphabet a 

we m e a n  a finite set  {al ,  . • -, a.~} of ob jec t s  called letters; a w o r d  ove r  the alphabet 
a is a finite sequence  a~, . . -  a,:, (r  = 0 is a l lowed;  this gives the  null word A) 
of le t ters  of (~; t.V((~) denotes  the  set  of words  over  (~. B y  ana logy  wi th  the usual 
defini t ion of par t i a l  reeurs ive  func t ion  of na tu r a l  n u m b e r s  quo ted  in Section ,3, 
we m a y  define the par t ia l  recursive funct ions  over  ~ (i.e. wi th  a r g u m e n t s  and 
values  in IV(e . ) )  to be the  func t ions  ob ta ined  by  app l ica t ion  of the following 
s c h e m a t a :  

L * .  ( i =  t , . . . , . ~ )  & ~ ( x ~ )  = x ~ a ~  

II*. A " ( z l  , " "  , :c,5 = / \  
I I I * .  U ~ ( : e l ,  . "  ,a:,~) = z~ 

IV*. I f  h, g~ , . . .  , g,, are partial recursive over (~, so is the func t ion  f d4r~ed b!j 
f ( x ,  , " ' "  , x , , )  = h ( g , ( x ,  , " "  , x ~ ) ,  " ' "  , g i n ( z ,  , " ' "  , x , . ) )  

V*. I f  g, h~ (i = l ,  . • • , s) are partial  recursive over ~ ,  so is the func t ion  f defined by 
f ( / \ ,  ace, --- , z , , )  = g ( x e ,  . . .  , x ~ ) ,  f ( z a ~  , x e  , . . .  , x ~ )  = 

h ~ ( z ,  f ( z ,  * e  , " ' "  , x ~ ) ,  x 2  , . "  , x , , ) ,  ( i  = 1 ,  . . .  s ) .  

VIi*. (i = 1, . . .  , s). I f  g is partial recursive over Og, .so is the func t ion  f defined by 
J'(x~ , . . .  , x~) = u~y[q(xl , " "  , z~ , y) = A], wherez,:y[g(xl , . . .  , x, , y) = A] 
means " the  shortest word y composed entirely of a~ (i.e., of one of the forms 
/ \ ,  a ~  , a ~ a i  , a ~ a ¢ a . a  ---) such that g ( x t  , - - .  , x ~  , y )  = /\, and g ( z ,  , - - .  , x , , ,  yl) 
is defined (and ~/',,) for all y, of this form shorter than y. 

Noles .  

(1) T h e  v a r i a b l e s  x~ , . . .  , x,, , y ,  z r a n g e  o v e r  W ( C ) .  

(2) xa,: d e n o t e s  t h e  c o n c a t e n a t i o n  of  x a n d  a,: , i . e .  t h e  w o r d  o b t a i n e d  b y  p l a c i n g  al on 

the right-hand end of the word x. 
(3) The partial recursive functions of natural numbers are included if the tmtural mlm- 
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bet n is identified with the n-letter word a~ ~', i.e. a~a~ . . .  a~ on the single-letter alphabet 
6h = {all. 

(4) It might appear more natural to use in VI* a u-operator giving the first word (no 
restriction on its form) in a certMn fixed ordering of W((~) which satisfied the given con- 
dition. However, this would commit us to assigning (arbitrarily) this fixed ordering. As 
far as geimra]ity goes, the two forms are easily seen to be equivalent provided the ordering 
is primitive recursive, i.e. using the above identification of natural numbers with words 
in ~, provided ~he function n(x) giving the number of word x in the ordering and the func- 
tion W(x) whose value for x = al" is the nth word in the ordering (and whose value for 
words ~mt composed entirely of a~ may be assigned arbitrarily) are primitive recursive over 
(t, i.e. definable by schemata I*-V* only. (The usual lexicographic ordering certainly satis- 
ties this condition.) 

(5) It can easily be seen that it would have been enough to have only one of the s sche- 
mata VIi*, We include them all for the sake of symmetry. 

(6) It is more usual to define partial recursive functions over ~ in terms of a GOdel- 
immbering of W(05) by saying that a function is partial recursive over (1 when the cor- 
responding function of G6del-numbers is partial recursive. This is easily seen to be equiv- 
alent to the definition given provided the GSdel-numbering is primitive recursive (see 
note 4 above); the familiar GSdel-numberings certainly are). The present approach seems 
to us to be more natural; it is similar to that of Post [17], Marker [13], and Smullyan [22], 

6. Co~p~ttability of Part ial  Recursive Functions over ~ by the URM((~)  

We now give the  paral lel  for a general  a l phabe t  to the  a r gume n t s  of Sections 

3, 4. Tile detai ls  are so s imi lar  to the case a l ready  deal t  wi th  t h a t  we shall relegate 

them to A p p e n d i x  B and  mere ly  s ta te  the  final r e s u l t - - t h a t  all  par t ia l  recursive 
funct ions  over  (~ are c o m p u t a b l e  on the  U R M ( a )  whose ins t ruc t ions  are:  

(N = 1 , 2 , . . . ;  n = 1 , 2 , . . . ; i  = 1 , . . . , s ) .  

a~. P~i) (n): place a~ on the (righl-hand) end of (n) 
b l .  DN(n): delete the first (left-most) letter of (n} ((n} ~ A) 
flq J~i)(n)[E1]: jump to exit 1 if (n) begins with a~ 

Notes. 
(t) The subscript N, as in Section 4, signifies that, apart from making the operations 

described above, the contents of registers 1, -.- , N are unaltered, although the eontents 
of N ÷ i ,  N+2, . . .  may be changed. 

(2) As before, (n) denotes the content of register n. 
(3) Instruction b~ will be used only when (n} is non-null. 
(4) The reason for choosing operations of adding at the end and deleting and jumping 

from the beginning of a word is that it is the simplest combination to use for building up 
the subroutines for copying and primitive recursion. It  is clear that one must jump and 
delete from the same end in order to be able to do anything useful, but the addition of 
letters to a word could take place either at the other end (as here) or at the same end, since 
it is easily seem that one could then reverse a word if one wished to add to the other end. 
However, this reversal needs a second register; in the later reduction to a single register 
only the combination given above (and its opposite) is adequate. 

7. Limited Register Machine  ( L R M )  

Observe now t h a t  the U R M  can  be replaced b y  a mach ine  which has a t  a n y  

time a finite b u t  var iab le  n u m b e r  N of registers a n d  wi th  ins t ruc t ions  possibly 
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depending on iV. The  Limited Register Machine ( L R M )  has for the numerical 
(single letter a lphabet)  case the following inst~ructions: 

a l  • P R y ( n ) :  add 1 to (n} 
bl .  D,v(n): subtract 1 froth (n} 
71 • ],~,(n)[E1]: jump to exit 1 ~f (n} ¢ 0 
hi . N ~ N + i :  bring in a new register, numbered N + I  
ii . N -~ N - l :  remove (empty) register N 

In  the general a lphabet  ease we speak of an L R M ( a )  and replace instructions 
a~, b~, ~ above by  

al . P}~)(n): place a~ on the end of <n) 
bl • D~(n): delete the first letter of <n} 
f,'. J~°(n)[E1]: jump to exit 1 i f  {n) begins with a~ 

where (~ = { a~, • • -, a~} and the range of i is 1, - . . ,  s. [As in Appendix C, b~,h' can 
be replaced by  a combined SCAN AND DELE~ operat ion s~. Scd~(n)  [El,  • •. ,  Es].] ~2 

Here  the N denotes tha t  the instruction has the indicated effect when the total 
number  of registers is N; we do not  care wha t  would happen  if it were applied 
when the number  of registers is different f rom N. The  range of N is 1, 2, 3 . - .  for 
all instructions except h~ where it is 0, 1, 2, 3, • • .; the range of n is 1, 2, . . . ,  N. 
I t  is supposed tha t  the above  instructions have  exact ly the effect specified, i.e. do 
not al ter  the contents  of other  registers. 

We first show how to obtain  a stronger fo rm N - ~  N -  1 of i~, "remove the not 
necessarily empty  register N " :  

1. P~(N) 
2. Daz(N), J.v(N)[2] 
3. N - - ~ N - 1  

This  is for the single-letter alphabet .  For  the general a lphabet ,  replace P~.(N) 
by  P2P (N)  and ]~.(N)[2] b y  J ~ ) ( N ) [ 2 ] , . . .  , J~)  ( N )  [2], 

The  above instructions, apa r t  f rom h~, i~, are exactly analogous to the bounded 
forms of the instructions for the U R M .  We have  

7.1. All  partial recursive funct ions are computable by the L R M .  
To prove this we need only take  each routine R ~ ( y  = f ( x l , . . . , x , ~ ) )  etc., 

previously given for the U R M  with bounded instructions, find the maximum 
bounding subscript  M which occurs, replace all the bounding subscripts by ~// 

~2 However, these two sets are not completely equivalent. The subroutine for s~ in terms 
of b~,f1' given in Appendix C works with the new meaning but the subroutine for h ' ,  j~(o (n), 
in terms of s~ must be modified by the insertion of N -~ N-~I, Nd-1-4 Nd-2 at the beginning 
of the first line, and N+2 --,~ N + I ,  N + I  --~N at the end of the last line (where N o~N-1 
is defined by 1. Sed~(N) [1, .-. , 1],N --4 N - l ) .  Even with this modification the subroutine 
is not equivalent to J.~r (o (n), since if the jump is taken it is taken from a position where 
there are N+2, not N registers in use. But when it occurs in a complete program with 
only the single (i.e. normal) exit, this can be compensated for by replacing the line m, 
say, to which the jump is taken, by two lines m. N - 4  N + l , Y d - 1 - ~  N+2, m+l. 
N+2 - ~ N ÷ i , N + I  -~N,  old line m, taking the jump now to line m + l  and suitably renum- 
bering all other lines and jumps to them. 
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a~d, if M > N, a d c l i n s t r u c t i o n s N - - ~ N + l ,  N + ! - - ~ N + 2 ,  . . - ,  N + M - 1  

--> N + M  at the beginning and N + M  --~1 N + M - 1 ,  • • . ,  N + I  --~1 N at  the end. 
L~ eo~meetior~ with later reductions to Turing Machines we note here two 

special cases of subroutines for the computat ion of a partial recursive function 
j'(x~, . . . ,  :cO which are of use. If we take R,+, ( n +  1 = f(1,  . . . ,  n)) and precede 
it by n --> n + l ,  we get a routine which when started with the first n registers 
contailfing x , ,  . . . ,  x,, finishes with n + l  registers containing x~, . . . ,  x ~ ,  
f ( x , ,  - . - ,  x~O. If we add a routine for copying tim contents of register n + l  into 
register il and deleting all registers except register 1, we get as final form a single 
register containing f ( x ~ ,  . • . ,  x~) ,  which is the nearest way of displaying the an- 
swer, although the former routine which preserved the arguments was useful in 
the inductive proof tha t  all partial  recursive functions were computable. 

8./~eduction to a Single-Register Mach ine  ( S R M )  

Instead of speaking of registers of the LRM, we may think of the state of its 
storage medium at  any time as a sequence (1}, . . - ,  (N} of numbers, or in the 
general case, words over an alphabet  (~. This suggests yet  another way of looking 
at tile matter ;  namely, we can think of ( 1} , - . - ,  (N} as a single word A on the 
alphabet a U {,}. From this point of view, however, the basic instructions of the 
LRM (a )  are ra ther  complicated, involving as they do changes in the middle of 
the word A. I t  is natural  to t ry  to follow Post [17] and replace these operations 
by simpler ones which affect only the beginning and end of A.~a The obvious set 
to t ry  is the analogue of the set we have used for the LRM, i.e., to regard A as 
the content of a Single-Register Machine (SRM) which has the same instruc- 
tions applicable to this register as the L R M  does for each of its registers: 

a. p ( o :  add a~ to the end of A 
b. D: delete the first letter of A 
f'. j(O[E1]: jump to exit 1 i f  A begins with a~ 

Here we suppose that  alphabet (~ U {,} is labelled a0(,), a ~ , . . . , a ~  so that  i runs 
from 0 to s in these instructions. Since there is now only one fixed register, we 
have shorn the instructions of all subscripts and other marks which are now 
unnecessary. 

We now show how to obtain subroutines for the operations of the L R M ( a )  
in terms of these basic instructions applied to the single word A = A~, • •. ,  A~ 
where A t ,  •. -, A~v s taM for the contents of registers 1, • •. ,  N of the LRM. The 
key to this is a subroutine T for transferring a word on ~ from the beginning of 
the string to the end, i.e. for sending A~, A2, . - . ,  AN into A2, . " ,  A.v, A1. 
We first define the jump J ,  jump if A ~ /X ( i f N  > 1 the w o r d A  is always 
nomnull since it contains a t  least a comma, so that  in this case ] is an uncon- 
ditional jump) :  J[E1] = J(°)[Et], Jm[E1], - • ", J(~)[E1]. 

~a The fact that Post was concerned with generating sets of words whereas we are con- 
cerned with programs yielding at most one result makes it difficult to use his results directly. 
In fact it appears to be easier to proceed in the other direction and obtain his results from 
ours. (See footnote 14.) 
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We now define T as: 

1. p(o) 
2. JO)~3], ... , Y(')[s+2], d(°)[s+3] 
3. D, t 'C~), ,T[2] 
: : 

s+2. D, P %  3[2] 
s+3. D 

We can now obtain the L R M ( a )  operations in the natural  way-- -by  bringing 
the word we want  to operate on to the beginning (for operations b~, ft') or end 
(for operat ion a~) by  applying T the appropriate  number  of times, carrying out 
the corresponding operation of the SRM and then restoring the word to its 
original position by T. In  full: 

• r ,~ T y -  n aq P~)(n) = 1. ~ , p(o,  
b1 . Dee(n) = 1. T '~-1, D, T ~v-''+l 
h ' .  J ~ ) ( n ) [ E l ]  = 1. T"-~, J(')[2],  T~v-~% ./[a] 

2. T ~'-~+*, dIE1] 
hl .  N ~ N + I  = 1. p(o) 
il .  N ~ N - 1  = 1. T ' w l , D  

Here (as 
we have 

before) T" stands for T, • - . ,  T (n t imes) .  Taking this together  with 7.1 

8.1. Al l  part ial  recursive J~nct ions  over (~ are computable by a single-register 
machine  wi th  alphabet (~ U {,} and operationa 

a. p(o: A .-~ Aa~ 
b. D: a~A ~ A 
f'. J(O[E1]: jump to exit 1 i f  A begins with a~ 

or (see Appendix C) 

a .  p ( . o :  

s. Scd[E1, . . .  ,E(s+I)] :  
A ~ A ~ i  

scan the first letter of A; i f  A = A ,  take the normal exit; 
i f  first letter of A is ai , delete this and take exit i+1 
( i =  O, . . . , s ) .  

These results m a y  be improved slightly; namely,  the operat ions f' ,s need not 
be defined when A = A .  For  we can easily write the above programs so that 
f ' ,s are never applied to blank words. One way  of doing this is s imply  to introduce 
an additional register (i.e. comma)  in the second line of the p rogram and remove 
it in the line before the last. 

Here i ranges f rom 0 to s where (~ = {al, • •. ,  a,} and a0 is the comma.  As noted 
in Section 7 the program for computing a func t ion f  can be wri t ten so tha t  applied 
to A1,  • - -, A,, it yields A~, • •., A~ , f ( A t ,  • • -, A,,) or so tha t  it yields simply 
f (A1 ,  • •. ,  A ~). In  fact  if f l ,  • • ", f~ are m part ial  reeursive funetions of A L, • • ", A,~ 
it is clear tha t  we can write a program which yields f~(A~ , . . . ,  A ,O,  " " ,  

f , ~ (A~ ,  • • . ,  A n ) .  If  we take a as the single letter a lphabet  {1} and use 0 as a 
comma,  this shows tha t  all partial  reeursive functions of natural  numbers  are 
computable by  a machine with a single one-way tape, two tape symbols  0, 1 and 
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! scan ~ ......................... 
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. . . . . . . . . . . . . . .  ~ . _ _ ]  

directions to 
move  and  
pr in t  

Fig. 1 

head 

~wo hea(ls---a reading head at the left-hand end and a writing head at tile right- 
l~at~ct end, each capable of moving to the right only and connected by a suitable 
control center and program store (Fig. 1). The adequacy of instructions a,s 
(see Appe~ldix C) shows that both reading and writing heads need be capable 
otfly of reading and writing while moving--so that the tape could be magnetic 
tape. The reading head "deletes" simply by moving one square to the right; 
since the tape can never be scanned again when it has passed to the left of the 
reading head it does not matter if in the process of moving and scanning the 
reading head destroys the tape completely) 4 

~4 These  i n s t r u c t i o n s  a,s (in tile weakened  fo rm where  s is n o t  app l ied  to  a nul l  word)  
provide  a s imple  t r a n s i t i o n  to  P o s t  no rma l  sy s t ems .  I f  we have  a p r o g r a m  of m l ines on an  
a lphabe t  g = ~ao, . . . ,  a,} we cons ide r  a P o s t  no rma l  s y s t e m  on a l p h a b e t  g ' =  
{a0 , . . .  , a~ , q~ , . . .  , q,~,} o b t a i n e d  as fol lows:  for  each  l ine of the  p r o g r a m  of the  fo rm 
i. , ~ c d ~ t ~  , . - .  , i .~+~l  i n t roduce  " p r o d u c t i o n s "  q~ajP --~ Pqi i+ 1 (j = 1, ---  s-t- l) ,  for  
eaei~ !iae i. p(i)  add  p r o d u c t i o n s  q~P -~ Paiq~+~ , and  finally add  the  p r o d u c t i o n s  a i P  -+ 
f 'a i  ( j  = O, . . .  , s) (for g e t t i n g  the  q back to  t h e  beg inn ing  again) .  I t  is eas i ly  p r o v e d  
thaL if W,  W~ are w o r d s  on (~ then  q~W ~ q,~W~ by these  p roduc t i ons  if a n d  on ly  if the  pro-  
gram s t a r t e d  on W would  end  wi th  I.V~ . So if we now t ake  such  a p r o g r a m  for t he  c o m p u t a -  
t ion of a pa r t i a l  r eeu r s ive  func t i on  f ( n )  which  is def ined on a nom'ecur s ive  se t  and t akes  
the value 0 when  def ined ,  we ob t a in  a normal  s y s t e m  such t h a t  t h e  p rob l em w h e t h e r  
qjl" => q.~ is unso lvab le .  The  reverse  s y s t e m  is one in which  the  p rob l em qm ~ q~l~ is un-  
solvable ,  i.e. th i s  s y s t e m  wi th  in i t ia l  a sse r t ion  q,,, ha s  unso lvab le  dec is ion  problem.  An 
argumm~t used  by P o s t  [23, p. 5] shows  t h a t  the  s ame  is t rue  for the  s y s t e m  wi th  all t h e  
p roduc t ions  m a d e  s y m m e t r i c a l ,  viz.  q~ajP ,-~ Pq~j+~ , etc.  Us ing  the  fac t  t h a t  for e v e r y  
recurs ive ly  e n u m e r a b t e  se t  S of words  over  ~ the re  ex is t s  a func t ion  f t ak ing  t h e  value 0 
on S and  unde f ined  ou t s ide  we see t h a t  for each  such  se t  S the re  ex is t s  a normal  s y s t e m  
( symmet r i ca l  if des i r ed )  on tm a l p h a b e t  inc lud ing  ( t  such  t h a t ,  if W is a word  on ~ ,  qlW 
is deriw:d)le if and on ly  if W belongs  to  S. To ge t  the  full  resu l t  of P o s t  [17], or r a t he r  a 
result  which  impl ies  i t ,  we m u s t  ge t  r id  of t he  q~ here .  [['he eas ies t  way  to  do th is  is to  use 
a t r ick  of P o s t ' s :  s t a r t  wi th  a l p h a b e t  

( U '  = { a 0 ,  . - '  , a s , a 0 ,  . . .  , d . , , q l ,  " "  , q , , ~ , ~ l ,  " "  , ~ , , ~ }  

i as tead  of @' aad  rep lace  the  above  p r o d u c t i o n s  by  q~aiP -~ P{e]+l , q~P -+ Paj~x+1. 
a P  ...... Pc~ (for all c~ (i (F ' ,  ~ , qi be ing  def ined as a~ , q~ respec t ive ly) ,  P -~ P~/, . 
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Another physical realization of the SRM(Ct) is that  of a stack of et~rds, each 
printed with a symbol from (~, which can be added to only at  the top a~d read 
and removed only at the bottom. If instructions a, s are used we need to examine 
the bot tom card only when it is removed so we see tha t  a binary "push-down" 
(push-button)  store with instructions 

(1) add card at top printed 0 
(2) add card at top pointed 1 
(3) remove bottom card; i f  printed 0 j u m p  to instruct ion m~ 

i f  printed 1 j u m p  to instruct ion m2 

is a universal computer;  i.e. supplied with a suitable program of instructions of 
this type it can compute any partial recursive function in the sense that  if tile 
stack of cards is initially 1 ~ 0 1 ~2 0 . . .  1 ~" (where I q stands for a stack of z~ 
cards marked 1) thett it will finally be 1 s(~~'' .... ~). As shown in Appet~dix C, 
instruction (3) can be weakened to 

(3 ~) remove bottom card; "(f printed 0 proceed to next instruct ion 
i f  printed 1 j u m p  to instruct ion m.. 

I t  is of some interest to notice that  the above instructions can be still further 
weakened by  placing the comma, used only for punctuat ion purposes, i~ ~t less 
privileged position than the other le t ters--namely,  by omitt ing the jump opera- 
tions on the comma- -and  having to know the number of commas in a word 
before operating on it. The weaker set we wish to consider (which will be used in 
Section 9 to obtMn the universality of weak forms of Tur ing machine) is: 

al . P~)'. . add a~ to the end of A (i = 0, - . .  , s )  
b~ . D,v : delete the first letter of A 
f~'. J ~ ) [ E 1 ] :  j u m p  to exit 1 i f  A begins with a~ (i = 1, . . .  , s) 

Here N (which takes values 1, 2 ,. • • ) is one more than the number  of commas 
in A; i.e. it. is the number of words on (~ which A represents; these instructions 
are to be used only on words containing the correct number of commas. The 
result we want is 

8.2. Theorem 8.1 holds for the weaker set of instruction.s {al , b l ,  f[}. 

Since we no longer have j(0)  the jump-on-comma, the previous subroutine 
for transferring a word front beginning to end no longer works. However,  if S 
is any subroutine which jumps when finished (i.e. never takes the normal exit 0) 
we can obtain (for N > 1) a subroutine Ts.(S) which, started on a word A~, 
As, • • . ,  A~v, transfers the first word onto the end of the last one and then  performs 
subroutine S, i.e. goes to As ,. •., AsA~ and then performs S. 14~ T~v(S) is equal 
t o :  

1. 0) J .v  [2], . . .  , J ~ ) [ s + l ] ,  D~¢,  S 

: : 

s + l .  DN , P ~ ) ,  {1} 

i,~ T h e  {1} h e r e  i s  s i m p l y  a n  a b b r e v i a t i o n  f o r  t h e  i n s t r u c t i o n  of Line 1. 
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We ~ow de:fine b y  i nduc t i on  on r a sub rou t ine  R~v(r)[E1] which,  s t a r t e d  on  
A t ,  ." ", A~ ,ai A,+~ , . . . ,  AN sends  th is  in to  a~ A~+~ , . . . ,  A N ,  A~ , . . . ,  A ,  and 
j u m p s  to exi t  1: 

(1) r = 0. RN(0)[E1] = 1. d~)fE1] 
(2) r > 0. R~(r+l)[Li'll = 1. P~), i_"~+~(R~.(r)[E1]) 

Now a s u b r o u t i n e  which  s t a r t e d  on  A1 ,  " ", A~v sends  this  i n to  a~A,,  . . . ,  AN 
and j u m p s  to exi t  1: 

/~(0) ) 1 .~dt) / o  " -  dN*[fs'l] = 1. --N , t ~V+i , ls-+IUGv(N-1)[E1]) 

F ina l ly ,  T ~ ,  wh ich  s t a r t e d  on A1,  - - .  , AN sends  this  in to  A~ ,  . . .  , Ant,  At  : 

T~V = J.. - - N  , T ~ , ' + I ( f l N * [ 2 D  

2 .  D~v 

NOW as a b o v e  we def ine for N > 1: 
//)(g) a l .  , ~ ( n )  = 1.  ~/'~, *~-,TN'<O , ,N- -°  

).,,~ 1 T ~ - n + l  b~ . DN(n) = 1. ,¢ , D.v , 

h~. i V - + ; V ÷ I  = 1. P~) 

T N - I  i l .  N - - > N - - 1  = 1. >- , Da," 

h ' .  J~)(n)[m] = 1. ~N , [m+l],  ,VN---+I a N  

with,  in f , ' ,  t he  c o m p e n s a t i o n  ~aa2 of rep lac ing  l ine m by  

n - !  
-7 ,v , old line m .  

For  N = 1, h, is def ined  as above ,  i, is undef ined,  and  a~, b , ,  f~' a re  defined b y :  

a~. P i ° ( l )  = P~) 
b~. D~(1) = D, 
f~'. ,I~ ° (1)[/,'1] = ,/~O[Et]. 

9. Reductions To Turing Machines ( T M )  

No~e first  t h a t  t h e  passage  f rom a p r o g r a m  to a t ab l e  of i n t e r n a l  s t a t e  t r ans i -  

t ions is i m m e d i a t e - - s i m p l y  ass ign  an  in te rna l  s t a t e  for each  l ine of the  p r o g r a m  

(when w r i t t e n  o u t  in  fu l l ) .  
So we have  on ly  to  concern  ourse lves  wi th  ge t t i ng  the  ins t ruc t ions  in to  t h e  

T M  form, i.e. m o t i o n  (one  squa re  left  a n d  r igh t )  p r in t i ng  a n d  scanning  b y  a 

single head.  F o r m u l a t e d  in t e r m s  of ins t ruc t ions ,  a T M  is a p r o g r a m  of ins t ruc-  
t ions for a m a c h i n e  which  has a single r e ad ing -w r i t i ng  head  mov ing  on a l inear  

~5 In this case the use of "compensated" subroutines is inevitable; for the given instruc- 
tions a~ ,b~ ,fl' provide no means of jumping from a word A~ , . . .  , AN when A 1  i s  n u l l ,  s o  

if n -~ 1 and A~, begins with a~ but A1 is null then J~)(n), which calls for a jump, cannot 
be obtained by fm ordimwy subroutine on a~ ,b~ ,f~q 
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t ape  ~ hich is m a r k e d  off in to  squa re s  and  is infi~ite i,~ b o t h  *~ d i rec t ions .  At any 

g iven  t ime,  t he  head  " c o v e r s "  j u s t  one squa re ;  i t  is capab le  of r ead ing  f rom aM 
p r i n t i n g  on th i s  squa re  on ly .  T h e  s y m b o l s  i t  can pr i r l t  a re  0 ( b l a n k ,  a0) and the 
s y m b o l s  f rom some non-nu l l  a l p h a b e t  ~ = {a~, . - .  , a,}. T h e  bas ic  instructions 

(i = O, . . .  , s) 

L move the head one square left 
t~ move the head one square r ight  
p ( o  p r i n t  a~ ~7 (i.e. erase the s ymbo l  opt the sq~x~re under" the he~d a~d re. 

place i t  by aO 
Sc  scan  lhe square u n d e r  the head; i f  lhe symbol  p r i x t e d  on i t  is  a~ lake 

exi t  i + 1  (i = O, . . .  , s) 

F o r  t h e  sake  of eas ier  compa r i son  w i t h  ou r  ea r l i e r  f o r m u l a t i o n  and  wi th  the 
resu l t s  of W a n g  [20] we sha l l  single o u t  p(O), p r i n t  0, and  d e n o t e  i t  by  ./;' (erase), 

a n d  rep lace  S c  b y  the  e q u i v a l e n t  se t  of i n s t r u c t i o n s  

(i = O, . . "  , s) J ( ~ :  j u m p  to e z i t  l 'if the s canned  symboI  is  a~ 

So the  set  we cons ide r  is 

L,  R ,  p<O ( i  = 1, . . .  , s ) ,  E ( i . e .  pC0>), , /<o ( i  = 0,  . . .  , s ) .  

W e  sha l l  see l a t e r  that ,  E a n d  jco> a r e  d i spensab le .  

W e  now propose  to  use  tl~e 0 as  a c o m m a  a n d  r e p r e s e n t  a word  A i ,  - ' .  , A,v of 

the  8 R M ( a U  {,}) b y  

............ OLA 10A ~0A~ . . ' 0A ,~-0 ~ 

where  .~. ind ica tes  t i le  s t a n d a r d  pos i t i on  of t he  r e a d i n g  head  *s on t h e  ~" * h i s s  square 

to  t he  r i gh t  of  t he  a r r o w  a n d  the  h o r i z o n t a l  l ine on the  lef t  i nd i ea fe s  t h a t  we do 
no t  ca re  w h a t  is p r i n t e d  on the  t a p e  there .  T h i s  l eaves  a c e r t a i n  a m b i g u i t y - - t h e  

s ame  t a p e  also r ep r e sen t s  t h e  sequences  A , ,  • • • , A .~- , / ' \  ; Ax ,  • • • , A~. , /~\ ,  A; 
etc.  Th i s  is of no eoncerrx since in c o m p u t i n g  p a r t i a l  r ecu r s ive  func t ions  over 

we dea l  a l w a y s  w i t h  a k n o w n  n u m b e r  N of w o r d s  ove r  cg. 
T o  t ie  up  wi th  our  p r e v i o u s  resul ts ,  we m u s t  g ive  s u b r o u t i n e s  for  ca r ry ing  out 

the  bas ic  i n s t ruc t i ons  of t h e  S t { M ( t ~ U  {,}). As  w e a k e n e d  in 8.2, we clearly 

~ Here we follow Post [16], Kleene [12] and Wang [20] rather than Turing [18], who used 
a one-way infinite tape. However, as Wang remarks, the two-way tape machine as used here 
(with the head never moving to the left of its initial position) is weaker than the machine 
with a one-way tape and a specially marked initial square, since i t  is deprived of the use 
of this as a fixed point. 

~r In some formulations of TMs the requirement is made that  one should not order 
pr in t  a~ when the scanned square already has a,: on it,. I t  is easily seen that  one can always 
write programs so as to avoid this since the scan operation allows one to observe the square 
first before deciding whether to print; in fact the s ( a+ l )  weaker operations, "replace al 
by a / '  (i, j = 0, . . .  , s; i ~- j )  could, for the same reason, replace the s + l  operations p(i). 

~ Kleene [12] and Wang [20] take the standard position of the reading head at the right- 
hand end of the expression; it dea r ly  makes litt le differenee which we choose; the left-hand 
position saves a few orders in our subroutines. 
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cmtuot get the original N-independent  orders in view of the ambigui ty  of our 
rep~'{'sentation. ~ ]°irst we need: 

Sin3~OUTIN~; t~o:  proceed to next blan]~ fo lhe Tight 
l .  /~, J (O[1] ,  . . .  , 3 ( , / [ t ]  

Similadi% Lo. Now subroutines for operations a~, b~, f / o f  the S R M ( ~ U  {,}) 
&re : 

'a~. po:~v = 1. L,  l~oN, p ( 1 )  L0 N, t~ 
}u. D,v = i. E, R 

i ' / .  ,<v L~H = J(~)[E1] 

Taking this together  with 8.2 we obtain the result: 
9.1. Eve<e~ p a r t i G  reeursive f u n c t i o n  f of  n arguments  over the alphabet ~ is 

eom.p~.~tab!e by a T u r i n g  m a c h i n e  over the alphabet a U [0} in  the fo l lowing  sense: 

i f  the i~'~,itial tape conf igurat ion is  

............ O ~x ~Ox~ . . . x,~_1Ox,~O ¢¢ 

then, i f  f ( z ~  , " • , x~) is  undef ined  the mach ine  wi l l  not  stop; i f  f ( x l  , . . .  , x~) is  

defined i t  wi l l  s top w i th  tape conf igurat ion 

............ Ob~Ox2 ""  Ox,,Of(x~ , . . .  , xn)O< 

[As pointed out in Section 5, this could be replaced by  OJ, f ( x ~ ,  . . .  , x,,)O ~ if 
desired.] 

8o (Kleene [12]) if the natura l  number  n is represented by  1 ~, i.e. 1 . . .  1 
(n l ' s ) ,  then all par t ia l  recursive functions of natural  numbers are computable  
on a Turing machine with a lphabet  [0,1], i.e. "b lank"  and "nmrk . "  Of course 
this is ~m extremely uneconomical  way of representing natural  numbers;  how- 
ever, we can easily obtain a corresponding result, e.g. a decimal representat ion 
in any scale. Consider, for example, the binary decimM represen ta t ion- - to  avoid 
corffusion with the  use of 0 as blank, suppose tha t  the symbols used in this are 
1 and 2. Now the binary representat ion of f ( x ~ ,  . . .  , x,O is clearly ~° a part ial  
recursive function over [1,2} of the words :%, . . . ,  2~, which are the binary 
representation of x~, • . .  , x,~, so tha t  9.1 shows tha t  a Tur ing  machine over  
{0,1,2} could compute  f with respect to the binary representation, i.e. when 
started with 0,L2~0 • ' ' 2,~0 it would finish with Oj.f(x~,  . .  • , x ,O0.  

Moving toward the results of Wang [20] on the computabi l i ty  of all part ial  
recursive functions by T M s  which have no erase operation, the first step is to 
notice tha t  with a very slight change in the meaning of the basic instructions 

~9 This could be achieved, and the ambiguity avoided, if we did not deal with null words 
or if a symbol different from 0 (and distinct from the letters of ~) were used as the comma. 
Notice that the weakening which gave rise to the complexity in 8.2, namely, the omission 
of "jump on comma" is not needed for the result 9.1 about ordinary TMs but only for ob- 
taining the results of Wang for a particular representation using a nonerasing machine. 

~ The simplest way of proving this fully is to show that the functions converting from 
the "tally" representation 1 ~ of n to the binary representation on {1, 2} and vice versa, 
are primitive recursive functions over [1, 2}. 
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the programs just given are applicable to a more general case. Suppose that 
we have  a weak T M  whose Mphabet  55 contains a U {0} and whose operations 
are : 

(i = 1, . . .  , .~) 
(i = 1, . . .  , s) 

Notes. 

L move the head one sqt~are left 
R move the head one square right 
E replace the symbol on the scanned square by a symbol i~z 
p(o print a; on the scanned square provided this is blank 
Jo:)[E1] jump to exit 1 i f  the scanned symbol is a~ 

(1) ~ denotes 55 - ~. 
(2) In E we do not stipulate whether and in what way the symbol from ~ which re. 

places the scanned symbol depends on this or on other factors. All we need to know is that 
the new symbol is in ~. 

(3) As before a~, --. , a, are supposed to be the elements of ~. 
(4) We use instruction P(~) only when scanned square is blank. 

Now let us use g to denote  an unspecified s~nmbol f rom ~ and  agree to rep- 
resent the sequence A1, . . -  , AAr of words over  (% by  the  t ape  configuration 
.......... - g ~ A ~ g A ~  . . -  ~ANO ~. Then  it  is easily seen t h a t  all the subroutines just 
given still funct ion as desired (al though R o ,  L0 should now be described some- 
what  differently, viz. proeeed to next  5 to the right,  left). So we have  

9.2. Eve~v par t ia l  recursive ]~nc t i on  f over O~ is computable  by a weatc T M  over 

any  alphabet  55 con ta in ing  (~ U {0} i n  the f o l l ow ing  sense: i f  the i n i t i a l  tape con. 

f igura t ion  is  ........ d ~ x ~ x 2  . . .  dx,~O ~ then the f i na l  tape conf igurat ion  w h e n  

j ' ( z ~ ,  . . .  , x~)  

is defined is  

. . . . . . . .  a $ x l ~ z 2  . . .  a zn@"(x l  , . . . ,  x,~)O ~ 

[or .... g j . f ( x , ,  . - .  , xn)0 ~ if desired]. 
The  simplest case of this which involves a "non-eras ing"  machine is where 

a is the one-letter a lphabe t  {1}, where ® is {0, 1, 2} and where operat ion E con- 
sists of replacing the scanned symbol  by  2. This  is non-erasing in the following 
sense: the sequence of symbols  appear ing  during the course of computat ion on 
any  given square has no cycle of length greater  than  one (as it may,  e.g. 0 ~ 1 -- 
0, for a normal  T M )  ; once a square has had a 1 printed on it the 0 can never 
be restored; all t ha t  can be done is to "degenera te"  it fur ther  by  replacing the 
1 by  2. Ident i fying the natural  number  n with 1 "~ gives, in a sense, the simplest 
non-erasing T M  for the computa t ion  of all part ial  recursive functions of natural 
numbers.  Wang ' s  result can now be obtained by  mapping  this a lphabe t  {0, 1, 2] 
as follows onto a binary a lphabet  {b,.} (b -- blank) : 0 --) bb, 1 -- ,  ,b,  2 -~ **. 

On this a lphabet  {b,.} the operat ions Wang uses are 

~-: move head one square left 
- , :  move head one square right 
* : mark the scanned square (i.e. print *) 
C: j u m p  to exit 1 i f  scanned square is marked. 
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To obt;ain his result  2~ on the  computab i l i ty  of all part ial  reeursive funct ions 
with this representa t ion  and these basic opera t ions  f rom the {0, 1, 2}-case of 9.2 
ju,~f, discussed, we have only  to show how to obta in  the above operat ions L, R, E,  
P~), ,1 (~). This we do as follows: 

When the  "o ld"  (i.e. {0, 1, 2}-machine) head  is scanning a symbol  0, 1 or  2, 
the new head will scan the lef tmost  of the corresponding pair  of symbols  f rom 
the ~@]mbet {b,,}. Wi th  this convent ion  the subrout ines  are 

p(l) : , 

J(~)[/~'l]: 1. --% C[2], ~--, C[E1], --% 2. 

Wang  says  [20, p.  84] t h a t  he does no t  know whether  C can be replaced by  
C': ju;mp to exit 1 i f  scanned square is blank. The  easiest way  of seeing tha t  it 
can is to change the above  convent ion,  use the r igh tmos t  of the  pair  of symbols  
on {b,,} as the s t anda rd  posit ion of the scanning head, and  change the last three 
subrout ines  above  to :  

,/(~)[E1]: 1 . . - ,  C'[2], -->, C'[E1], ~-- 

The reason for  his d o u b t  was "it  is no t  clear how Crx can enable us to go th rough  
an i~defini~ely long s t r ing of marked  squares or whether  t ha t  is no t  necessary."  
The answer  we have  given is t h a t  it is no t  necessary;  in our  solut ion the  only  
pairs of ad jacen t  squares  which are  bo th  marked are under  or t o  the  left of the  
s tandard  posit ion of the  head;  in o ther  words we have shown tha t  all " rough  
work"  can (a t  the cost  of m a n y  extra pe rmu ta t i on  steps) be done to the left 
of, ~md not  in the middle of, the  main  calculat ion.  

ATolea. 
(1) Lee's result (of. footnote 6) on the adequacy of *, ¢-, --% C' is a little weaker than 

om's in that he uses additional auxiliary squares, 0 being represented by bbbb and 1 by 
,bbb. These new auxiliary squares are kept permanently blank so that with C' a jump can 
always be made from them--another way of avoiding the need to go through an indefinitely 
long string of marked squares. Our treatment above has been complicated by our desire to 
obtain Wang's results using exactly his form of representation. By means of a slight modi- 
fication of t&is, using *b for 1 and b* for the comma (instead of bb), we can write subroutines 
for "jump on cmmna" as well as "jump on 1" (with either C or C ~) and so avoid tile need 
for the more complicated definition of TN given in 8.2. Note that even with Wang's repre- 
sent~tion this is not needed for the elimination of erasing but only for the restriction to 
the single conditional transfer C. 

(2) Obersehelp [14] remarks that with the type of machine used by Wang it is not pos- 
sible to compute each partial recursive function in such a way that the final tape is of the 
form O':~10x~ . . . .  9x~Of(xl , ""  ,x,~)0 ~. As he points out, only very simple functions f 

~1 Wang actually considers only positive integers. We are able to include 0 without 
the device of using 1 ~+1 to represent n because we can deal with null words, since we always 
know how many words we are dealing with. 
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ca~ be computed in this way (because the machine cannot erase its rough work at all). 
We have shown here, however, that  if one is prepared to tolerate rubbish to the lei't of the 
final position of the head this form can be achieved. With the routines given ~bove the ac- 
tual final form of the b,* tape would be 

b-~ ,2~(,b)xlbb(,b)z2 . . .  (,b)~,~bb(,b)S(~.....x,~)b ~ 

(for some k) so tha t  the rough work takes the simple form of a solid block of completely 
marked tape. As mentioned above, the final form b ~*~:(*by(~. ,~,)b ~ could also be 
achieved if desired. 

10. Reduct ions to Bounded N u m b e r  of Registers Wi thou t  Enlargement  of  Alphabet 

T h e  r e d u c t i o n  to  a s ing le - reg is te r  mach ine  was accompl i shed  in Sect ion 8 
on ly  a t  t he  cos t  of en l a rg ing  the  a l p h a b e t  f rom a to  a U {,}. I t  is in te res t ing  to 
see w h a t  r e d u c t i o n s  in  t he  n u m b e r  of regis ters  a re  poss ib le  w i t h o u t  doing this. 
S t a r t i n g  w i t h  t h e  case of a one - l e t t e r  a l p h a b e t  a = { 1}, i.e. t he  case where  each 
r eg i s t e r  s to res  s i m p l y  a n o n - n e g a t i v e  in teger  n in t he  fo rm 1 • • - (n  t imes)  • - - 1, 
our  r e su l t s  of Sec t ions  3, 4 fo rm a r a t h e r  more  c onve n i e n t  s t a r t i n g  p o i n t  than 
T M s  do  for  e s t a b l i s h i n g  t h e  fo l lowing vers ion  of a resu l t  22 of M i n s k y  [21]: 

10.1. A single register machine working on non-negative integers and with 

operations 

(o~) X k: multiply the number in the register by k, 
(f~) + k: divide the number in the register by k 
(7) Div?k[E1]: test whether the number in the register is divisible by k; if  so take 

exit 1, i f  not proceed normally to next instruction 

can compute  all part ial  recursive func t ions  f i n  the fol lowing sense: i f  the number in 
X l  X2 . Xn  the register is  in i t ia l ly  p~ p2 • • p~ , then it wil l  f inal ly  be p((~"'" '~) 

Notes. 
(1) h is supposed to range over all natural  numbers; it  will be used only for prime k 

and it will be shown later that  (for functions of one variable) i t  is enough to have the opera- 
tions for k = 2, 3, 5 only, or with a more complicated representation of argument and 
value for k = 2, 3 only. 

(2) p~ denotes the i th  prime. 
(3) Operation (f~) is used only when the number in the register is divisible by h. 
(4) We could equally well obtain p~ . . . .  vn~J(z~"'v~+l .,z.) as the number finally in the regis- 

ter. 

PROOF. W e  use t h e  n u m b e  p l  - "  to  r ep re sen t  t he  s t a t e  of the  URM.  

I n  v i ew of t h e  resu l t s  of Sec t ions  3, 4 we have  m e r e l y  to  show how to perform 
o p e r a t i o n s  on  th i s  n u m b e r  co r r e spond ing  to the  ope ra t i ons  a, b, f of the  URM.  

T h e s e  a r e  e v i d e n t l y  o b t a i n a b l e  thus :  

P(n) : XP~ 
D(n) : +P~ 
](n)[E1]: Div?p~[E1] 

~2 Minsky uses a combined multiply and jump operation and a combined /t and T, viz. 
test whether divisible, i f  so divide and take exit 1, i f  not take exit 2. I t  is clear that  the present 
operations can be obtained from these. The results of Appendix C show the adequacy of 
the set consisting of (a) and (7') : Test whether divisible by k, i f  so divide by k and take exit l, 

i f  not take normal exit. 
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10.1 shows tha t  a single register is sufScient if complicated enough opera- 
tions t~,re used-- i f  we want to s tar t  with x~ and finish withf(x~) we must add 
the operations n --~ 2 ~, 2" -+ n. Following Minsky, we proceed to see how 
many additional registers are needed to replace these by the simple operations of 
addition aud subtractior~ of one we have used up to now. Consider then a machine 
with t~ fixed number  N of registers and operations (there is no need for the 
subscript N n o w s i n e e N i s  fixed): ( f o r n  = 1 , . . . ,  N) 

~. P(n): add one to (n) 
b. D(n): subtract one from (n} 
f. J(n)[E1]: jump to exit 1 i f  (n) ~ 0 

We first show tha t  operations a, ~, ~ can be obtained using one extra register. 
L~;M~L~. I f  n < N,  then there are programs which end with ( n + l }  = 0, do 

not disturb any registers except n, n +  l and perform the following operations: 

(~) (n) × k: 
(~) (n) + k: 
@) ])iv? ((n),k) [Eli: 

multiply {n) by k 
divide (n) by k ((n) supposed divisible by k) 
if k I (n) take exit 1, if not take exit O. 

PROOF. In Section 4 we showed how to obtain from a, b ] programs for O(n)  : 
clear register n, J (unconditional j u m p ) ,  J ( n ) ,  j u m p  i f  (n)  ¢ O. In one of 
these, the one for J ,  we disturbed a register other than n. This can be avoided 
by using a compensated subroutine: J[m] -- 1. P (1 ) ,  ] ( 1 ) [ m + l ]  with the 
compensation of replaeing old line m by: m. P(1) ,  m + l .  D(1), m-t-2, old line m. 

So we are at  l iberty to use all of these, hence also the device I (') introduced 
in Section 3. Notice that  if ( n + l }  = 0, then ( P ( n + l ) )  <~> copies (n) into 
register n + l  and clears register n. Our subroutines for a, ¢7, ~ above all s tar t  
with 0 ( n + l ) ,  which clears register n-J-1. They  continue as follows: 

(n} N h: (P(n+l))(,O, (P(n)~)(,~+0 
(n} + k: 1. (P(n~-l))(,O 

2. J(n+l)[3], (D(n+l)) ~, P(n), J[2] 
Div?((n),k)[E1]: 1. (P(n+l))('0 

2. J(n+t)[E1], (D(n+l),  P(n), J(n+l)[3]) ~-~, D(n-t-1), P(n), J[2] 

Together with 10.1, the lemma gives a second result of Minsky: 
10.2. With  the same representation of arguments and values as in 10.1 but with 

operations a, b, ~, two registers are adequate for  the computation of all partial re- 

cursive functions.  

The next question is how many registers are needed if arguments and values 
are required to be given in uneoded form. Tile answer is: 

10.3. A 'machb~.e with operations a, b, f and n + 2  registers is adequate jbr  the 

computation of all partial recursive J~tnctions f of n variables in  the following way: 
start with x~ , • • • , a:~ in registers 1, • . .  , n, f inish with f(x~ , • • • , x,,) in  register 1. 

PROOF. In view of 10.2 we have only to show how to replace the x~, . - .  , x~ 
in registers 1, . . .  , n by p~) . . .  p~2 in register 1 with the others clear, and con- 
versely, how to replace 2 i(~'''''" '~') in register 1 by f ( x ~ ,  - . -  , x~) in register 1. 
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We det:ine for i = t, . . .  , n a subroutine red ( i )  which, if ( i+2}  = 0 places 
1)~:' X (f-d-l} i~ re~gister i and clears registers i + 1 ,  i~-2. 

red(i): ((i+1) X pd ~>, (P(i))< ':+~. 

Now the required initial routine is simply: 

P(n+ l ) ,  red(n), r e d ( n - I ) ,  . . .  , redO) 

For  the fitml conversion from 2 s(~'*''' '~''~ to f ( x t ,  . . .  , x~) in register 1 we 
first clear registers 2, 3, then apply:  

1. (P(2))<~> 
2. Div?((2~,2)[3],J [4] 
3. (2)+2,P (1),J[2] 

A similar t rea tment  shows that  n + 3  registers are adequate  for tim final form 
z ~ ,  . . -  :r~ i~ registers t, . . .  , n; f ( x ~ ,  . . .  , x,~) in register n ÷ l .  

Applyi~g the results of 10.3, 10.2 to the proof of 10.1, we obtain 
10.4. I~  10.1 for the c o m p u t a t i o n  of  f u n c t i o n s  of  n variables the operat ions ~ 

~d, ~. are ~ceded o~.ly / ) r  h ~- p~ , • ; .  , p~+2 . I f  the a rgumen t s  and  value are repre. 

sented i n  tDe fo rms  pf'7'P2"~~',; '~, p~{( ~' .... "), a, B, ~/ are needed on ly  f o r  tc = 2, 3. 

For the ease of a general a lphabet  a = {ao,  • • • , a,_~} there is a result analo- 
gous to 10.3; if s > 1 the n + 2  can be replaced by  n + l .  We shall merely sketch 
dae proof. Let  us use as the Ghdel number of the word a<, - . -  a;, the word 
a~ ~ where ]c = @S~-l@i2Sr-2@ " '"  - F i r .  Using two extra registers, the words 
::c~, . . .  x,~ in each of registers 1, . . .  , n can be replaced by  their GOdel num- 
bers. Now the Ghdel number of f ( x ~ ,  • • • , x~) is a part ial  recursive function of 
the G/ktel number  of x~, . • • , zn ; so by  10.3 it  can be computed and placed in 
register 1. Finally, we can (using the two extra registers) replace this Ghdel 
number  by  the corresponding word. Since the two extt~ registers are used only 
for holding words of the form a~ "~, a (  '~, by the results of Section 8 they can be 
replaced by a single extra register which holds a~maoa~ ~. 

Thus for an alphabet  ~ with two or more letters, each partial  reeursive func- 
t ion f of one variable over a can be computed directly with the operations 
a, b, f by  a machine having 2 registers: i.e. if A is placed initially in register 1 
then f ( A )  appears there finally. Wha t  can be done by  a single register machine? 
Clearly if we are prepared to allow complicated enough operations, sueh as re- 
ptaei~ag A by  its Ghdel number  and vice-versa, then as in 10.1 we can compute 
all part ial  reeursive functions. Bu t  how complicated must  these operations be? 
Ra ther  surprisingly it turns out  tha t  the operations P~t~NT, DEhET~ and se*~ 
are enough provided they can be used at both ends  of the word: 

t0.5. Le t  (t = {a0, " . .  , a~_~} be an  s-letter alphabet  where  s ~ 2. Con.sider 

/.he jT)t~owin9 operat ions  on a word  A over (~ ( i = O, . .  • , s . -1 )  : 

~ L  
~R 

bL 
bR 

fL ~ 

P(~)'L . print ai on the left..hand end of A 
P(~) print a~ on the right-hand end of A R : 
DL : delete the leftmost letter of A 
Di~ : delete the rightrnost letter of A 
J~:)[E11 j u m p  to exit 1 i f  a,: is the teftmost letter of A 
J~[E t ] :  j u m p  to exit 1 i f  ai is the rightmost letter of A 



COMPUTABILITY O[i' t{ECUI¢SIVE FUNCTIONS 24 t 

l~or each part ial  recursive func t ion  f of one variable over (~ there exists a program 
usirq/ only these operations which computes f ,  i.e. started on A will, i f  f (  A ) is  de- 

fined, f in ish  with f (  A ) ; i f  f ( A )  is undefined, will  not stop. 

t)aoo~< We rely on the result of Section 8 that  all partial recursive functions 
over C~ are computable by a single-register machine with alphabet al  = ~ O {,} 
with the operations a, b, f' used previously. We definea mapping¢: 0h -+ (~ by 

cb(aO = a~ao, q)(,) = aoa,. (i = 0 , . . . ,  s - l )  

We have to show how to convert a word d over 8 into ¢(A) ,  how to convert 
¢(A) back into A and how if A, is a word over ~ to perform operations on ¢(A~) 
corresponding to the operations a, b, f '  on A~ . First, consider the conversion of 
A into ~b(A). We have to send A = a~,a~,...a~,, into ¢ ( A )  = a<aoa~,ao...a~,ao. 

At first sight this appears to be impossible; since there are no auxiliary letters 
available there seems to be no way of distinguishing the original A from the 
subsequently added letters. The key is to have the right-hand head 2a print in a 
particular pat tern and to have it constantly go back and re-examine to see 
whether the pat tern has been disturbed by the left-hand head. When it has, 
then the original word has been completely coded, so that  the process must  then 
stop before part  of the word is coded twice. The details are as follows: first, A = 
ag,a~.2 • " • a.,.~ is sent into a~,a~ 2 • . .  a~,,a,a~aoao. Then a loop is entered, the general 
step starting with the partially coded form a~ . • • a~,,a~a~aoaoaqaoa~ao • • • a i i _ x a  o , 

which reads the leftmost letter a ~ ,  stores it, replaces it by a0, and before print- 
i*~g a~ao on the right-hand end checks to make sure that  this a~j replaced by a0 
was a letter of the original word A and not the first of the added a,'s. Routine 
T ( R ,  L )  transfers the word Ai = alaoaoahaoa~=ao'"a~5_,ao (i.e. the word ob- 
tained by going in from the right one letter, then two letters at  a time until  an 
a, is reached) from the right-hand end to the left-hand end, where it reappears 
in the form Aj * = a,aoa~a,:,a,aa:...a~a~;_lao, and then checks the rightmost 
letter to see whether it is a, as it was originally, or a0 as it is when all of A has 
been coded. If  it is a, then Ai ~ is transferred by a routine T ( L ,  R)  from the 
left-hand end, where it is recognizable as the word obtained by going in from 
the left one latter, then two letters at  a time until an a0 is reached, to the right- 
hand end where it reappears in the form Ai ; then a~sao is printed on the right, 
a0 is deleted on the left and the loop is re-entered. If  it is a0, A~ ~ is transferred 
to the right as A~ and the coding is completed by the deletion of aoa~aoao on the 
left. In  other words, the coding routine proceeds thus: 

A = % -. .  a i n .  
print ala~aoao on right 

a l  1 • . "  a i ,~axa laoao  

enter j~r the firs! lime a loop, jth entry of which is from 
a i  d ' ' '  a i u a ~ a l a o a o a q a o  • ' '  a l j _ l a o  

replace a~j by ao 
a o a l ] + l  , , ,  a i n a l a l a o ( t g a i l a o . . ,  a i i _ l a o  

apply T(R, L) 
a l a o a l O l l  • . .  a l a . ~ j _ l a o a o a l j +  1 • . .  a, i n a l  

2a We visualize the operations being carried out by two heads, one at each end of the 
word, 
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check that r.ight-t~and letter is not ao ; i f  not proceed to apply T(L,  J~) 
aoa i ]+l  " ."  a l n a l a l a o a o a i l a  o . , .  ,~ i j_ lao  

print a~fio on right, delete ao on left 

and re-enter loop 

The closing stages are: 

enter loop with 

replace a1 by ao 

apply T()~, L) 

check right-hand letter; it is ao , so apply T(L,  R) 

and delete aoa~aoao on the left, leaving 

a i ]+ l  . , ,  a i n a l a l a o a o ( ~ i l a o . , ,  (~i]_laoaij(t  O 

a l a l a o a o a q a o  ' '  ~ a i f f t o  

a o a l a o a o a i l a O  . , .  a i n a o  

a l a o a l a q  • " "  a ] a i , ~ a o a o  

a o a l a o a o a q a o  . . .  a~,~ao 

O(A) = a i l a o . . ,  a~,~ao 

In terms of the subroutines T ( R ,  L ) ,  T ( L ,  R )  (defined below) the program 
for this is: 

s-1 

P(~') P~),  D L ,  J[2l} 2. ~ L  {DL, p(O)L , T(R,  L), J~)[3], T(L,  R),  --R , 
i--O 

3. T(L ,  R), D 2  

Here we have used the absolute jump J. This can easily be programmed thus: 
~<~ J~) [m+l]  with the compensation of replacing old line m by J im]  = 1. ~ L , 

~<~> m+l .n¢~)  m + 2 .  old linem. 
s--I 

We have also used the notation ~ F (~. This (cf. Appendix B) denotes 
i=0 

subroutine which follows subroutine F (~) if the leftmost letter of the word is 
a~, i = 0, . . - ,  ~ - I ,  and does nothing if the word is null. It is obtainable 
thus: 

1. ]~[2], . . . ,  J~-'[.~+U, 3[z+2] 
2. F (°), J[s+2] 

s ÷ l .  F ('-1), J[s+2]. 

We use ER similarly. 
The subroutine T ( R ,  L )  must send a word of the form Balaoaoailao...a~.,,ao 

into alaoalaq . . .a la~ ,aoB.  I t  is obtined in the obvious way by repetition of the 
operation Xaao  --~ a l a X ,  X a l  ~ X and stop. 

T ( R ,  L )  is equal to: 

1. P~> 
2. J~)[4] 

3. DR,  ~ R{DR , P(~>L , P~I)L , J[2]} 
i=0 

4. DR 
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The inverse operation T(L,  I~) cam obviously be obtained from this by inter- 
chan,,'im~~ ~ (0), (~) ~nd L, R throughout.  

The deooding procedure which sends qs(A) = ai~ao., .a,~.,~ao into A = ai~. • .a~ 
is much sha~pler; it can be accomplished by the routine: 

1. P'fl ) 
s--1 

/ q)r,,~ 1 

3. 1)1~ 

It, works thus: 

dtsrt wi th  

4~(A) = a ~ l a o ' . ,  a~ao 
pr in t  a~ on left 

alailao " "  ainao 
read r igh t -hand  letter; 4f not a~ , delete it,  t ransfer  next  letter f r o m  r ight -hand to lef t -hand end 

and 7"epeat 

a,lnazailao • ' '  a~n_,ao 

ailai2 • " "  a~nal 
when r igh t -hand  letter is  aj delete i t  and  stop 

ailai2 . . .  ai n = A 

We must  now show how to perform operations on ¢(A1) which correspond to 
the operations a, b, f' performed on A1. 

If we number the letters of the alphabet a~ = a U  {,} 0, 1, . . .  , s - l ,  s in 
the order a0, . . .  , a~_~, {,} then we can obtain the operations thus: 

,~, pu) :  p ~ ) ,  p(o) (i  = O, . . .  s - l )  

b. D : DL 2 
f'. JU>[E1]: J~) [E1]  (i = 1, . . . , s - l )  

J(°)[E1]: 1. J ~ ) [ 2 ] , J [ 4 ]  
2. DL , J~)[3], ~(o) ~L, J[4] 
3. p~O), J[E1] 

J<')[E1]: 1. J ~ ) [ 2 ] , J [ 4 ]  
(i) p~), 2. DL , J L  [3], J[4] 

3. P~), J[E1] 

This completes the proof of 10.5. We show in Appendix E that the set of 
operations used here is minimal, so for the case of an alphabet with at least two 
letters, two registers are certainly necessary (and, as mentioned above, suffi- 
cient) for the computation of all single-argument partial recursive functions if 
the original operations a, b, ( only are allowed. For a one-letter alphabet the 
left- and right-hand operations are the same; so the result of Appendix E shows 
that a single register with operations at both ends is not adequate. In this case 
the best results are 10.1--that a single register is adequate with operations of 
multiplic~tio~, division (plus exponentiation and its inverse if argument and 
value are required in uncoded form);  10.2--that two registers with operations 
a, b, ~ ( + 1, - 1, test whether 0) are adequate with exponential coding of argu- 
meat and value; and 10.3--that with operations a, b, ~ and three registers there 
is no need to code arguments and values. 



244 J .C .  SHEPHERDSON AND H. E. STURGIS 

APPENDIX A. ~,IINIMALITY OF INSTRUCTIONS USED IN 4.1 

COMPARISON WITH S[MILAR SYSTEMS 

The set of instructions in 4.1, viz. 

a: .  PN(n): (n') = <n)+l 
b : .  D~v(n): (n') = ( n ) - i  
f:. ]lv(n)[E1]: jump to exit 1 if (n} ~ 0 

is fairly obviously minimah namely, if the initial configuration was x, 0, 0, . . . ,  
(i.e. x in register 1, all other registers empty),  then with b l ,  ~1 alone the only 
everywhere defined function f(x) whose value could be computed in register 2 
would be the zero function; with a : ,  b: alone, only constant functions; with 
a : ,  ~1 alone, only functions of the form f(x)  = k for x = 0, f(x) = I for x ~ 0, 
where k ~ I. 

Concerning reductions in the range of values of N, n for these instructions, 
it is clear that  if they are available for an infinity of values of n, and for each 
such n an infinity of values of N, we have essentially the same machine. If, 
however, they are available for only a finite number of values of n or N then 
they are clearly inadequate to compute functions of all numbers of variables 
with the method of representation used above, i.e. with the argun:ents placed 
in separate registers. (But see Section 10.) 

I t  is natural to ask whether fx could be used instead of ~:. If by this we mean 
is it possible to write in terms of a : ,  b: ,  f~ a subroutine R for each n-ary partial 
recursive function ~ such that  if x~, • • • , x~ are initially placed (say) in registers 
1, • • • , n then regardless of the contents of the other registers the effect of R will be 
to place the value of ¢(x: ,  . . -  , x~) in register n + l ,  then the answer is nega- 
tive. For if all registers are nonempty there is no way of jumping at  all since 
with f: this would require first clearing a register and this cannot be done with- 
out a jump operation (unless one has an upper bound for the content of some 
register). However, if we agree always to start  with 0 in register 1 then all par 
tial recursive functions can be computed, for we can keep the 0 in register 1 and 
obtain J~ = JN(1). Similarly if we are given e~ : On(n) we can again clear 
suitable register at the beginning of each program and so obtain J,,~. I t  is easily 
verified that  of the set of instructions a: : P~(n), b: : DN(n), c~ : O,v(n), 
d : :  C~(m, n), e: : J r [E l i ,  fl : JN(m)[E1], ~1 : J~(m)[E1], the only 
minimal subsets adequate for the computation of all partial recursive functions 
as above are the ones we have considered, viz. {a:, b l ,  e l ,  f:}, {al, b , ,  ~'~}, {al, 
b: ,  c: ,  fl}, {a:, b : ,  f : ,  fixed 0 register}. For without a conditional jump fl or 
~ the arguments cannot influence the form of the computation at all; without 
b: only their vanishing or nonvanishing can influence it, and without a: no values 
could be written down which were greater than any arguments. 

I t  is interesting to compare the operations used by Kaphengst [8], Ershov [5] and Peter 
[:51. 

KXPH~NOST'S PM (programmgesteuerte Rechenmasehine) has a special calculating 
register "mill", number ~,  and an order register number 0 which contains the address of 
the next order. The orders themselves are stored in the ordinary registers so the machine, 
like an actual computer, is capable of doing arithmetic operations on its own program, 
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However,  K:~phengst shows t h a t  i t  can  ca lcula te  all pa r t i a l  recurs ive funct ions  w i thou t  
using th is  faci l i ty .  I t  is then  essent ia l ly  s imilar  to  a UI~M plus a special register,  n u m b e r  
~ ,  and  the  following in s t ruc t ions  (for m, n = 1, 2 , . . - ) :  

D~ . C(m,~o): copy contents of register m into mill 
D2 • C ( ~ ,  m) : copy contents of mill into register m 
C1 • 0(oo) : clear mill 
A~. P ( ~ ) :  add 1 to number in mill 
F~. J ( ~ ) [ E 1 ] : j u m p  to exit 1 i f  mill is empty 
G~ . 0,~ ( ~ ) : clear mill  i f  its contents coincide with contents of register n, otherwise 

place 1 in it, i.e. ( ~ ' )  = 0 if (¢¢) = (n),  ( ¢ 0 ' ) - -  1 otherwise 
G2 0 ' ( ~ ) :  clear mill i f  not already clear; i f  already clear place 1 in it, i.e. 

( ~ ' )  = 0 if (¢~) ~ 0, ( ~ ' }  = 1 if ( ~ )  = 0 
H. stop: slop i f  mil l  is clear (i.e. i f  ( ~ ) = O) 

I t  is easily seen t h a t  opera t ions  C~, G~ are definable u in t e rms  of o ther  orders and  t h a t  
H (the only form of s top which the  P h i  has) can be defined in t e rms  of F1 and  an  ord inary  
absolute  stop.  If  we remove the  mill  and  consider  the  effect of the  orders on registers  1, 2, 
3, • • • we see t h a t  the  r emain ing  orders are equ iva len t  to the  following orders for a U R M  

a. P(n)  
d. C ( m , n )  
f. ,jr (m) [Ell  
g. EL(m, n ) :  (k'} = 0 if ira} = in)  

(k ' )  = 1 if ira) ¢ in)  
which are easily seen to be a min imal  set  and  to be equ iva len t  ~ to our  original  set  a, - . .  , f. 
In t e rms  of the  reduc t ion  to o rd ina ry  comput ing  machines ,  Kaphengs t ' s  reduct ion,  wi th  
all a r i thmet i c  opera t ions  t ak ing  place in only one register,  is more  ap t  t h a n  ours. How- 
ever, our  u l t i m a t e  aim is to reduce  to simple forms of Tur ing  machines  which operate  on one 
bit at  a t ime;  f rom th i s  po in t  of view the  opera t ions  P(n)  and D(n) are simpler t h a n  the  
copy opera t ion .  Similar  remarks  apply  to the  basic sets described below corresponding to 
Ershov ' s  and  P e t e r ' s  t r e a t m e n t .  

ERs lmv ' s  class ~ ( ~  ~, $~) of ope ra to r  a lgor i thms  differs from the  U R M  in i ts  p rogram 
s t ruc ture  and  t r e a t m e n t ,  e.g. l ike the  P M  i ts  p rogram is s tored in the  registers.  B u t  i t  is 
subs tan t i a l ly  e q u i v a l e n t  to a U R M  wi th  the  following ins t ruc t ions  

d. C(m, n) 
cI. Cl(m, n) : copy (m)~-i into n, i.e. in ' )  = ( m } ~ l  
e. J [E1]  
f*. J-(m, n)[E1, E2]: j u m p  to exit 1 i f  @~) =< (n) 

j u m p  to exit 2 i f  (m) > (n) 
together  wi th  the  ab i l i ty  to place any  cons t an t s  in any  registers  a t  the  beginning  of the  
program. Once again  i t  is easy to see by  direct  cons t ruc t ion  of subrou t ines  t h a t  th is  set  of 
ins t ruc t ions  is equ iva l en t  ~ to our  original  set  a, . . .  , f and  to the  set  a,d,f ,g jus t  given. 
e is a special case of f* bu t  is l i s ted  separa te ly  because i t  is an  inseparable  p a r t  of all Er -  
shov's  a lgor i thmic  programs.  A p a r t  from this,  the  set  of ins t ruc t ions  is obviously  minimal  
(a l though f* is necessary  only for one fixed va lue  of m (or n)) .  

PETER'S t~reatment involves  basic opera t ions  such as (xl , " "  , x ,)  --~ (x l ,  " "  , x~ ,  
~ ,  . . .  , x~), b u t  wi th  a s l ight  re - formula t ion  it  could be regarded  as roughly  equ iva len t  

to a U R M  wi th  ins t ruc t ions  
c. O(n) 
d. C(m, n) 
~. C,(m, n) 
f t .  J ( ~ ,  n) [El, E21: j ump  to exit 1 i f  (m) = in) 

j u m p  to exit 2 i f  (m) ~ (n) 

~-~ Using, in the  case of G~, o ther  registers for rough work (holding 0 and 1). 
~ In the  sense of 4.1, i.e. in the i r  effect on the  con ten t s  of any  finite set of registers.  
:G In the  sense of 4.1, i.e. in the i r  effect on the conten ts  of any finite set of registers.  
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These (apart from the f~tct that  by using d, c need be available only for one fixed register, 
number 1 say, a only for m = n = 0, and ft  only for m = 0, n = 1) are also clearly minin~al 
and equivalent  to the o ther  seas. 

To sum up these various minimal systems of instructions one might  stay tha t  a unive~'sal 
computer  working on natural  numbers must  be capable of produci~)g 0, of adding 1 to a 
number (i.e. of performing the operations which generate the natural  numbers) ,  of copying 
a number,  and ei ther  of comparing two numbers for equal i ty  or order, or comparing one 
number with zero and reducing (i.e. by D(n)) a number  step by step to zero, and directly 
(e.g. f*) or indirect ly  (f, g) changing the course of the  computa t ion  depending on the re- 
sul t  of this comparison. The  various minimal systems are very  similar;  from the point of 
view of proving as quickly as possible the computabi l i ty  of all par t ia l  recursive functiol~s 
Peter ' s  is perhaps the best;  for proving their  computabi l i ty  by Tur ing machines a further 
analysis of the copying operat ion is necessary along tile lines we have taken above. 

A P P E N D I X  B.  DETAILS OF SECTION 6. 

COMPUTABILITY OF PARTIAL RECURSIVE FUNCTIONS OVER C~ENEIRAL 

ALPHABET (~ BY THE URM(a) 
We show that all partial recursive functions over a are computable on the 

U R M ( a )  whose instructions are: 

al . P~) (n ) :  place a~ on the (right-hand) end of (n} 
b. D~) :  delete the first (left-most) letter of (n) ((n} ~ A)  
f1'. J~)(n)[E1]: jump to exit 1 i f  (n} begins with ai 

Note that Ershov's class a ( ~ 2 ,  $2) of algorithms of [5] corresponds closely 
to the above instructions together with C(m, n), with all operations taking 
place at the beginning of the word. His class a(Ws, ~z) amounts to using the 
operations 

C(m, n) 
Jxt(m, n, k) : (k'} = (m}(n} ( juxtaposi t ion or concatenat ion of (m) and (n}) 
J*(m, n)[E1, E2]: jump to exit 1 i f  (m} ends (n) 

jump to exit 2 i f  not 

and allowing any constants to be placed in any registers initially. As he says, it is 
easy to see that these two sets of operations are equivalent (and universal) 
either by his proof that a ( ~ 2 ,  $2) is capable of dealing with all Markov al- 
gorithms, or our proof below that the U R M ( a )  is capable of computing all 
partial recursive functions over a. For a further set of universal operations, see 
Appendix (C). 

We first introduce auxiliary subroutines as in Section 4 for the more complex 
operations originally used in Sections 2, 3. Slight changes are necessary in some 
cases due to the fact that there may now be more than one letter in the alphabet. 

(1) SUBROUTINE FOR ]N(n)[E1]: jump to exit 1 i f  (n) ~ f 
1. J~)(n)[E1], - . .  , J~)(n)[E1] 

(2) SUBROUTINE FOR JN[E1]: jump to exit 1 
1. P~)+ i (N+i ) ,  ]~+~(N-C1)[E1] 

(3) SUBROUTINE FOR J~z(n)[E1]: jump to exit 1 i f  (n) = f 
1. J~(n)[2], J~v[E1] 

(4) SUBROUTINE FOR A_~(n): clear regisler n (i.e. place i in it) 
1. JN(n)[2], DAy(n), J~.[1] 
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We now in t roduce  a convenient  abbreviat ion.  Suppose we have subrout ines  
t,'~ ~) (i  = 1, - • - , s) for performing certain operations.  I t  is convenient  to have  a 
subroutk~e which will follow subrout ine  Fir I) if' (n} begins wi th  al, • • • ; will fol- 
low FN (~) if (n} begins wi th  a~ ; and will, say,  do noth ing  if (n} = / ' \ .  We denote  
such a subrout ine  by  ~ = l  ( n ) l e ~  ° and obta in  it thus :  

]. J~) (n)[2], . . .  , J~)(n) [s+lj, Ju(n)[s+2] 
~e(~) JN[.*+2] 2. ~ N ,  

s+ l .  F~ ), Jx[.s+2]. 

Str ict ly speaking the ~ should have a subscript  N to denote  tha t  the addit ional  
J ,  J ( n )  ins t ruct ions  it involves have subscr ipt  N.  Since we use it only when all 
the F (~) have  the same subscr ipt  N we omi t  this subscript  on the ~. We have 
followed the same procedure  wi th  the I<~) subrout ine  given in Section 3 above.  

iT( i ) / (n)  The analogue of this la t ter  operat ion,  which we denote  by  (*ee ,~ has the fol- 
lowing effect:  if (n} = a~ . . .  a~  then  it performs the sequence of operat ions 
1~ **>, . . .  , I ~  *~) (if (n} = A ,  does nothing)  and  reduces (n) to A ,  possibly dis- 
turbing the  contents  of registers N + i ,  N + 2 , . . . .  

Here  I ~  *), . . -  , I~  *) is a given sequence of instruct ions or  subroutines which 
are supposed no t  to affect register  n. Using the  above I - n o t a t i o n  we can obtain  
{I~°} ~ thus :  

1. ~ (n ) { IN%DN(n) , JN[1]}  
i = l  

Now we can define 

(5) SUB~OU~'INE ~'OR C N ( m ,  n )  : c o p y  ( m )  i n t o  r e g i s t e r  n 

1. A~(n),  AN+i(N+I) 
2. {PN+I(N+I), Ply_hi(n)}, 
3. /--N'+I k':~] )* 

We now proceed to give subrout ines  for  schemata  I * - V I *  of Section 5: 

I*, SUBROUTINE RN(y = S a i ( x ) )  

1. CN(X,  y) 
(~) 

2. P~v (Y) 
I I* .  SUBROUTINE R x ( y  = / ~ ' ~ ( x l  , " "  , x ~ ) )  

1. AN(Y) 
III*. SUBROUTINE I ~ N ( y  = V i ' ~ ( x l  , " ' "  , X n ) )  

1. Cze(x~ , y) 
IV*. SUBROUTIN~Z R . v ( y  = f ( x l  , " '" , x~)) USING SUBROUTINES FOR g, h WHERE f IS DE- 

FINED tRY SCHEMA IV@~ THUS: 
f ( x l  , " ' "  , X~ )  = h ( g l ( x l  , " ' "  , x ,~) ,  " ' "  , g~n(x l  , " ' "  , x ~ ) )  

1. R,v+I(N+I = g l ( x l  , "'" , x , ) )  

m .  R N + , , ( N + m  = g ,~ (x l ,  " "  , x,O) 

m-F1. R,v+.,(y ~- h ( N + l , . . . , N + m ) )  
V*. SUBROUTINE R N ( y  = f ( x ,  , " '" , X , ) )  USING SUBROUTINES FOR g, h, WrHERE f IS I)E- 

FINED BY SCHEMA V* THUS: f(A,  X~ , "'" , X,,) = g(xe , " '" , X,O, trod 
f ( z a g , x e ,  . . "  , x , , )  = h d z ,  f ( z ,  z i ,  " "  , x , ~ ) , x ~ , " "  , x , , )  (i = 1 , . . .  , s )  

1. R . v ( y  = g ( x ~ ,  ' "  , x,0), ~x+~(N÷l)  ~(o ~ T ± ~ < ~ }  
2. {/RN+~(N+2 = h~(N+l, y, x~ , . . "  , x,~), CN+~(N+2, y), --~+~, ~w,~ 
3. Cx+~(N+I, x~), 
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V i i * .  S U B R O U T I N E  FOR R N ( y  = f ( x t  , ' ' "  , X n ) )  U S I N G  S U B R O U T I N E  g ~VttER.E f IS  DEFINEI) 

RYVL*, THUS: f ( X l , ' ' ' , X , d  = ~iyIg(x~ , ' ' '  , :~,~ , Y) = Ad 

1. A N ( Y )  
2. R~-+~(N+I = g(x~ , " "  , x ~ ,  y))  

P~-~-1 (y), Jv+l[2]  3. d~v+~(iV+l)[4], (1) 

This completes the proof that  all partial recursive functions are computable 
by the U R M ( a ) .  

A P P E N D I X  C. ALTERNATIVE SET OF BASIC INSTi~UCTIONS 

"SCAN AND D E L E T E "  INSTEAD OF "SEPARATE ~QCAN, DELETE" 

There is an alternative set of basic instructions which could have been used 
in Section 6 instead of a~, b t ,  f( ,  viz.  

a ~ .  P ~ ) ( n ) :  
s i .  S c d ~ ( n ) [ E 1 , . . .  

place a¢ on end  of  (n)  
, Es]: scan  t h e f i r s t  letter of  (n);  i f  <n} = /'~ take n o r m a l  exit, 

i f  f i r s t  letter of  {n) i s  a¢ delete this  and  proceed to 
ex i t  i (i = 1, . - .  , s) 

Here sl,  "scan and delete" is an ( s+ l ) - ex i t  instruction. This set seems to be of 
some interest in that  it shows that  there is never any need to scan a symbol 
twice, that  a general-purpose computer can be built using only scanning devices 
which destroy the symbol scanned. To see that  the new set of instructions is 
adequate one could write the above programs using s~ instead of b~, f~% 
the resulting programs are perhaps slightly simpler since it will be observed 
tha t  in nearly every case we did delete after scanning. However, one can show 
that  the new set of instructions is actually equivalent to the old. 0 n  the one 
hand, si can easily be obtained using b~, fl', viz. S c d . ~ - ( n ) [ E 1 , . . . ,  Es]  = 

~ = 1  ( n ) { D ~ : ( n ) ,  J~-[E~]}. To obtain a l ,  f (  from a~, s~ is a little more com- 
plicated; we first define 

D ~ . ( n )  = 1. Scd~v(n)[2 ,  . . .  ,2]  and / i N ( n ) =  1. S c d . v ( n ) [ 1 ,  . . .  ,1]. 

Then we define S c d ~ ' ( n ) [ E 1 , . . . ,  E ( s + l ) ] ,  an (s+2)-exit  instructio~ which 
differs from S c d ( n ) [ E 1 ,  . . .  , Es]  in that  when (n} = A exit s + l  is taken in- 
stead of exit 0 (i.e. which provides a jump on fl, as well as the other jumps): 

Scdze ' (n)[E1,  . . .  , E ( s + l ) ]  

= 1. SCdN(n)[E1,  , Es] ,  a) "'" P N  (n) ,  S c d z e ( n ) [ E ( s + l ) ,  . . .  , E ( s+I ) ]  

Now construct a subroutine C P N ( m :  n , ,  n 2 , . . . ,  nr)[E1] which copies (m} 
onto the end of each of (nl}, .-- , (n,} (we actually need this only for ~' = l, 2) 
and proceeds to exit 1, (m) being replaced by A,. 

1. Scd~ / (m)[2 ,  3, . . -  , s + l ,  E l i  
• -- , P N  (n~), {1} 

s + l .  P'~)(n~),  . . .  P(;) , ,v (n~), {1} 
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Here the {1} :is s imply used as an abbreviat ion for the instructions of line 1, viz. 
S c d , v ' ( m )  [2, 3, . . .  , s + l ,  El] .  We can now obtain J ~ ) ( n ) [ E l l  by  copying <n) 
out into (cleared) registers N- t - l ,  Nq-2,  copying one of them back again into 
register n and operat ing with S c d  on the other:  

1. /~v+~(N+l), A~v+2(N+2), CPN+2(n; N-}- i ,  N-+-2)[2] 
2. CP~c+~(N-]-I; n)[3] 
3. SCdN+~[4, . . .  , E1,  . . .  , 4]  

where, in line 3, the E1 is in the i th  place. 
For the single-register machine of Section 8 also the instructions a. P(~), 

b. D, f ' .  J(~)[E1] can be replaced by  a and s: 

s. Scd[E1,  . . .  , Es ,  E(s+i)]:  scan the f irst  letter of  A ; i f  A = /~ take normal exit, 
i f  f irst  letter of  A is a~ delete this and take exit 
i + l ( i  = O, . . .  , s) 

However, just  as in Section 7 (cf. footnote 12), these two sets of instructions 
are not completely equ iva len t - - fo r  example, an unconditional jump can be ob- 
tained from a, s but  not f rom a, b, fP. The simplest way to show the adequacy 
of a, s is to repeat  the t r ea tment  of Section 8 and show how to obtain the L R M  
operations a~, b~, s~, h~, i~ in terms of a, s. The program for T is now: 

1. p(0) 
2. Scd[s+3,  3, " "  , s+2] 
3. P(~), {2} 
: 

s+2. P<'), {2} 

The programs for a~, h~ are the same as before. For the others we write 

i i .  N - - ) N - 1  = 1. T -~-i,Scd[2, " .  ,2]  
Sl • SCdN(n)[ml , . . .  , m~] = 1. T "-l,  Scd[2, (ma+l)', -.- , (m~+l)'] 

2. p(o), TN-,~ 

with the "compensa t ion"  (see footnote 12) 57 of replacing each line m~ (i = 1, 
• . . ,  s) by  two lines m i .  T N-l, m , + l .  T N-~+I, old line m i ,  renumbering all 
lines and jumps  as necessary ( ( m ~ + l ) '  refers to the final number  of the new 

line m e + l ) .  
Similarly, the instructions a~. P ~ ) ,  b~. D ~ ,  fl'. J~)[E1] of 8.2 can be 

replaced by  a~ and 

s. Scdt¢[E1, . . "  , Es]: scan the f irst  letter of  A ;  i f  i t  is a~ delete i t  and take exit  i 
(i = 0, . . .  , s)2S; i f  A is nul l  do nothing and take the normal 
exit  (i.e. exit  number O--this can occur only i f  N = 1) 

27 This use of compensating subroutines can actually be avoided here by the use of more 
complex programs which first duplicate the initial letter of A, ; see the treatment below 
in terms of tlle weaker form of Scd. 

28 Note that this means that if A begins with a comma, i.e. with a0, then there is no jmnp 
but simply the normal exit to the next line of the program. 
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The t reatment  is very similar to that  of 8.2. T x ( S )  is obtained thus: 

1. Scd~-[2, . . .  , s+l], S 

: : 

-~v, {i} 

Next, by induction on r, a subroutine R~v'(r) [El] is defined which sends A~, . . .  
A ,  , a~A~+,  , . . .  , A i r  into A~+~ , • • . .  A ~  , A 1 ,  • "" , A ~  told jumps to exit 1: 

(1) r = 0. R~v'(0)[E1] = ScdN[E1 ,  . . .  , Ell 
: o (0 )  (2) r > 0. R ~ v ' ( r + l ) [ E 1 ]  = 1. --z¢ , Tzc+~(RN'( 'r)[E1]) 

Then an unconditional jump 

J~v[E1] = 1. 

and 

p(O) pa) T~+i(R~-'(N-I)[EI]) N ~ N + I  

T,v = 1. P~), T,v+l(Jx[2]). 

Finally, we show how to program the operations a~, s~, h~, i~ of the LRM(a)  
(which in Section 7 were shown to be adequate for the computat ion of all par- 
tial recursive functions), a~, h~ are dealt with exactly as above and we define: 

i l .  N ~ N - 1  = 1. T~r -1, Scd~[2 ,  . . .  , 2 ]  
n - 1  

sl  • Scdze (n ) [E1 ,  . . .  , Es]  = 1. Tic , ScdN[2,  3, ..- , s÷l],  pr0)~v_l , T~ -'~, J¥[s+2] 
N - - n + l  2. Tz¢ , J~v[E1] 

: 

s+l.  T i t  -'~+1, JN[Es] .  

A P P E N D I X  D. NEED FOR " A u x I L I A R Y "  SQUARES IN NON-ERASING TMS 

Wang [20] says " i t  is an open question whether we can dispense with auxiliary 
squares and still be able to compute all recursive functions by programs con- 
sisting of only basic steps -% ~---, ,, C x .  Of course it is not necessary to use every 
other square as the auxiliary square. If  we do not  mind complications, we can 
take any fixed n and use every n th  scluare as the auxiliary square." Oberschelp 
[14] shows tha t  with the representation of n by , "  only a very  restricted class of 
"semiperiodic" functions are computable--because once the head gets into a 
long block of marked squares it cannot alter these in any way so tha t  it has only 
its finite internal memory to tell it how far  it has gone; as a result the actual 
number of marked squares passed over leaves no trace, only its residue class 
modulo something. In  a sense this shows that ,  for this particular " ta l ly"  repre- 
sentation auxiliary squares a r e  necessary. A similar argument shows that  very 
few partial recursive functions over a are computable by a T M  with alphabet 
aU {0} which is not allowed to change any of the symbols from a into anything 
else but  only to print  them on blank squares. However, if one goes back from 
words on an alphabet to the actual natural numbers it is rather difficult to de- 
fine what is meant by saying that  auxiliary squares are used in a particular 
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representation. Both tile representation of n by (*b) ~ and the tally representa- 
tion (*) '~ itself "use auxiliary squares" in that  they are much longer than the 
irredundant binary representation of n of length log2 n. I t  looks as though all 
that one can define precisely is the degree of redundancy of the coding--the 
function f (n)  giving the length of the representation of n. From this point of 
view it is difficult to distinguish between the erasing and nonerasing machines. 
Both require auxiliary squares for punctuation; if x1, " . .  , x~ is a sequence of 
natural numbers you cannot simply take the binary representations of x l ,  -. • , 
z~, and place them end to end, since there would then be no way of telling where 
one number stopped and another began, nor of recognizing the end of x~. I t  
seems to be impossible to avoid having regularly oeeurring "auxiliary" squares 
to deal with this punctuation problem so tha t  the ideal coding of length log2 n 
is not attainable even asymptotically. By taking blocks of length k sufficiently 
large, representing a binary word u l , - . ,  uk by u l . . - u ~ ,  and leaving bk+! 
to represent the comma, we can achieve a length of (1-be) log2 n for any e > 0. 
However we shall now show that  the same condensation can be achieved with 
the nonerasing machine. 

First we observe that  if we take the binary representation of a number x 
and, starting from the left, mark it off into blocks of ~ so that  it appears as u~, 

• • • u~,v, where each of ul, • • •,  u, is of length k and v is of length greater than 0 
and less than/~, then we may regard this as a word on a new alphabet a ~ with 
2k+~-2 letters, viz. the 2 k "ful l"  blocks of length k, and the 2k-~+2~-%i--.. + 2  
ir~eomplete blocks of l eng ths /c -1 ,  - . .  , 1. Writing x' to denote the word of a ~ 
corresponding to x in this way, it is clear tha t  x ~ is computable from x and vice 
versa, so that  if f is a partial reeursive function of x~, .. • , x~ then f ( x ~ ,  • • • 

I • I '  
X ~ ) '  g ( x l ' ,  " ' '  , X~,'), where g is a partial reeursive function of x~, • • , x~. 
Hence by 9.2 there is a program on a weak T M  over a '  U {0} which computes g. 
Let us use an alphabet a ' U  {0, e} for this machine, the operation E being the 
replacement of the scanned symbol by e. We now map the 2 ~+~ symbols of 
a ' U  {0, e} back onto the binary alphabet {b, .}, using the blocks of length 
k + l ,  with 0 mapped onto the block b k+' and e mapped onto .k+~, the mapping 
being otherwise arbitrary. In this way we have taken the original binary ex- 
pression for x and replaced each block of k symbols (and the incomplete block 
at the end) by one of k +  1 symbols, so that  we have achieved the same degree 
of condensation as before. To complete the proof that  the operations of a non- 
erasing TM are adequate to compute all partial recursive functions with this 
representation we now show tha t  this last mapping of a ' U  {0, e} onto {b, .} 
is such that  a nonerasing TiN[ on {b, *} with operations +-, --~,., C (or C C-  
this can be dealt with similarly) can carry out the operations of a weak TM on 
alphabet a ' U  {0, e}. We need a subroutine R ( k + I ) [ E 1 ,  . . . ,  E(2~+~-l ) ]  
with 2 k+~ exits, which will examine the ]c-t--1 squares to the right of the head and 
take exit t if they  contain the binary expansion of t (b = 0, • = 1, most signifi- 
cant place on the left), with the position of the head on exit being on the furthest  
1 to the right in this block of k + l  if t ¢ 0, on the original square if t = 0 (i.e. 
is k + l  - p ( k ~ - l ,  t )  places to the right of the initial position, where p(k--t-1, t) 
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equals the greatest r less than or equal to k + l  such that  2' I t). Tl~is ca~ be 
defined inductively as follows: 

R(1)[EI] = 1. -~,C[E1],*- 
R(k+I)[E1, . . .  ,E(2~+1-1)] = 1. R(k)[t-+t+l],--~k+',C[E1],e -~+~ 

2. --~ ,C[E3],~--,C[E2] 

t+ l. ---~P(k't)+~,C[E(2t-~ l ) ],~.-~(~'t> %C[E(2t)] 
: 

2 ~. -~(~.~-~),C[E(2~+~-I)],~-~I~.~-~),C[E(2k~-~-2)I 

The notation R ( k ) [ t - - > t - ~ l ]  here means that ,  for t = 1, - . - ,  2 k - 1 ,  exit t 
of R(k)[E1, . . .  , E(2k--1)]  is connected to line t + l ,  i.e. stands for R(k)[2, 
• . .  , 2k]. If  we now number the blocks of k +  1 squares according to the binary 
number they represent, as above, then the weak T M  operations on these blocks 
are: L = 4--J¢+i; R = __..,~-~-I E = ('--:~', .)/z-D1, <_____k+l p ( i ) - - ~ ,  . i l  -~, 

,12, . . .  , _% .~+~, ~_ k+l, where il . - .  i~+1 is the binary expansion of i (i  = 1, 
• - .  , 2 k + l - 1 ) .  

J(i)[m] = 1. R(k+l)[2, 3, . . .  , (m+l)', . . .  , 2k+1],--~ k+~ 
2. ._+P (~+1,1) + ) (,~+1,2) 
3, -.->P(k÷l,2) ~__p(k-~l,3) 

2k+l. __.~p (}+1,2k÷l-l))<__k+l 

with the compensation: replace old line m by 

m.._~}+1-p(k+~,{), m + I.+ -}+I-p(}+I'{), old line m. 

Here the (m + I) ~ in line I is connected to exit i and, as before, stands for the 
final number of the added line m+ i. 

A P P E N D I X  E. PROOF TttAT ALL OPERATIONS AT BOTH ENDS ARE 
NECESSARY FOR COMPUTING ALL RECURSIVE FUNCTIONS WITH A 

SINGLE t~EGISTER ~ A C H I N E  WORKING ON THE SAME ALPHABET 

THEORE~I. A n  S R M  on alphabet (~ = [a, , -" " , a,} with heads operating at the 
two ends of the word is not capable of computing all one-place recursive functions 
over • unless both heads are capable of printing, dekt ing and "reading" (i.e. malting 
the letter which is scanned influence the fu ture  computation in  some way such as a 
conditional transfer). 

PROOF. Let  (P be a given program of l - 1  lines for an SRM whose r.h.h. 
(right-hand head) is capable of all three types of operation but  whose 1.h.h. 
(left-hand head) is not. We shall show tha t  if (P computes a function which 
takes infinitely many values, then there exist words U, V, U', V' such that,  for 
every word X, e sends U X V  into U r X V  '. This proves the theorem since it 
shows that  the function f defined by f ( W )  = W W  is not computable by  such a 
machine. 

In  order to define U, V, we take a word W0 with the proper ty  tha t  when 
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(t) is applied with W0 as initial word, then at no stage of tile computation will 
the register contain a word with less titan max{l, 2} letters. Such a ~% certainly 
exists for there are only finitely many (skl) different possible final outcomes from a 
position where the word in the register has only k letters, and we are supposing 
that (P computes a function with infinitely many values. In defining U it is con- 
venient to imagine that  the word which is the content of the register at  any time 
is printed on a doubly infinite tape divided into squares (all of which are blank 
except those occupied by this word) with the square originally occupied by the 
first letter of W0 numbered 0 and the squares to the right of this numbered 1, 2, 
3: • " " . Tim 1.h.h. starts on square number 0 and, in the course of the application 
of 6 ) to W0, passes over only a finite number of squares. Let no be the number 
of the furthest  square to the right reached by the 1.h.h., so that  the 1.h.h. passes 
at some time over squares 0, 1, - •. , no (and possibly over squares with negative 
numbers, i.e. to the left of square number 0). Now U is defined as the (no+ 1)- 
letter word whose first letter is the first letter of W0 and, generally, whose rth 
letter is the letter which was on square number r when the 1.h.h. reached this 
square Jbr the first time. V is defined in a symmetrical way with respect to the 
right hand end of the word I:V0. I f  we can show that  the program • applied to 
the word U X V  produces the same succession of steps as when it is applied to 
Wo, then the result of (P must be to leave the X unseanned, i.e. to produce a 
word U'XV' ,  where U', V' are independent of X. I t  is clear therefore that  the 
desired result will follow from the following lemma: 

LnM~,a A. I f  the right-hand head scans a certain square, moves off this square 
to the right 29 and later returns to read this square, then the letter printed on that square 
will be unchanged (i.e. cannot have been changed by the left-hand head), and sir~d- 
larly for' the leJ't-hand head. 

We derive this from another lemma: 
L~M~IA B. I f  the left-hand head cannot read and the right-hand head moves at 

least l - 1  squares to the right of the present square before returning to scan it, then 
it never returr~s. 

PI~OOF OF ImMM~t B. Let  the squares be numbered 0, 1, 2, . . .  to the right, 
starting from the present square. Consider, for each of the 1 squares 0, 1, • • • 
l -  1 the number of the line of the program in which that  square is left by the 
r.hh. for the last time on its way out to square l-- 1. Since there are only l lines 
in the program there must exist i~, i~, 0 N i~ < i2 N l--1, which are left 
in the same program line, 10, say. This means that  after leaving square /1 in 
line 10 the r.h.h., before returning to this square, arrives at square i2 in line 10. 
In other words, when started with the r.h.h, on square i~ in line 10, facing blank 
squares to the right, the computation proceeds, without the r.h.h, scanning 
squa.re i~ or any square to the left of it, through steps which bring the r.h.h, to 
square i~ with the progi~.~m again on line 10. Since the 1.h.h. cannot read, it 
cannot cause any change in procedure, so the conditions are now effectively 
the same as before, i.e. the r.h.h, must now go on to the square i~+(i2-i~),  

~9 Remai~ing on the square is considered to fall under this description also. 
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leave this in the same line l0 of the program and so on, i.e. the motion of the 
machine will consist in the r.h.h, moving cyclically and endlessly to the right 

PROOF OF LEMMA A. We are supposing the 1.h.h. is not capable of all three 
operations. There are thus three cases to be considered: 

(1) The l.h.h, cannot read. In  this case Lemma B immediately gives the result 
of Lemma A for the r.h.h., since we are supposing that  the word in the register is 
never reduced to fewer than 1 letters, so tha t  the 1.h.h. could only arrive at and 
alter a certain square if the r.h.h, had proceeded at  least l - 1  squares to the 
right, in which case Lemma B shows that  the r.h.h, never returns to scan the 
altered square. For the 1.h.h. Lemma A is vacuously true, since the 1.h.h. is 
supposed to be unable to read. 

(2) The l.h.h, cannot print.  In  this case the 1.h.h. certainly cannot alter a 
square between scannings by the r .h .h . - -nor  can it delete it since this would 
imply the word was at  some stage reduced to null. Nor can the r.h.h, alter a 
square scanned by the 1.h.h., for since the 1.h.h. cannot move left it, could only 
satisfy the conditions of lemma A by remaining on the square and then the 
r.h.h, could only alter this square by  reducing the word to length 1, contrary to 
hypothesis. 

(3) The l.h.h, cannot delete. Then the 1.h.h. cannot move right so it could only 
alter a square which had been occupied by the r.h.h, if it was present on this 
square when the r.h.h, was, i.e. if the word was at  some time reduced to one 
letter, contrary to hypothesis. Also, since the 1.h.h. cannot move right, it can 
only satisfy the conditions of Lemma A itself by staying still, in which case the 
r.h.h, cannot alter the square it ( the 1.h.h.) is occupying without reducing the 
word to length one, contrary to hypothesis. 
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