
Lecture #8: Granularities of Locks and Degrees of
Consistency

15-721 Advanced Database Systems (Fall 2024)
https://www.cs.cmu.edu/˜15721-f24//

Carnegie Mellon University
Author: Daniel Cai (Andrew ID: dcai)

1 Introduction

1.1 Background
In some applications like bank transfer, we want a group of database operations to be executed as a whole:
either all of them succeed, or all of them fail. This feature is called transaction, which is a sequence of
reads and writes we hope to execute atomically. Transaction guarantees the ACID property: which stands
for atomicity, consistency, isolation and durability.

Figure 1: Dependency Graphs can be used to check if the Schedule is serial

This topic of transaction is often discussed together with concurrency control: how to enable multiple
users to read and modify the database at the same time? To study these topics, the concept of a schedule
is introduced, which shows the order of operations each transaction executes. Based on schedules, we can
introduce serializability: if a schedule leaves the database in a state that can be achieved by running the
transaction one by one, we say the schedule is serializable. Note that serializablility does not specify any
ordering of the transactions.
As shown in figure 1, with the dependency graph, we can check if there are conflicts in a schedule and
determine if it is serializable.

1.2 Tradeoffs in Transaction Management
The paper discussed two aspects of transaction management: granularity of lock and transaction isolation
levels. Behind these two topics are two tradeoffs: concurrency and locking overhead; consistency and
locking overhead.

2 Granularity of Lock in Database

https://www.cs.cmu.edu/~15721-f24//
https://www.cs.cmu.edu/~15721-f24//


Fall 2024 – Lecture #8 Granularities of Locks and Degrees of Consistency

Figure 2: Hierarchy of Resources in a Database

As shown by the image, in a database system, there might be resources of different granularity, from entire
database, to tables, to rows and finally each field of a row, forming a tree-like hierarchy. Here, we face the
tradeoff between concurrency and locking overhead: if we only allow coarse-grained locks like locks on the
entire database, the concurrency will be low. On the other end of the spectrum, if we allow only column
level locks, there will be a high overhead maintaining the locks. Therefore, we must allow locks of different
granularity to coexist. This is further complicated by the existence of indices, which make the resource
hierarchy a DAG. Given a tree of resources, how to properly acquire locks at different level?

2.1 Hierarchical Locking
The key observation here is this: if a transaction locks a node of the tree (such as a table), then that implies
all the decedents of that nodes are also locked by that transaction (tuples and fields). Therefore, when
locking a resources, we must make sure no incompatible locks are acquired at high levels. To solve this
problem, the author introduced the concept of intention locks.

2.1.1 Intention Locks: What are the locks

In addition to the shared(S) and exclusive lock(X), the author introduce three intention locks:
1. Intention-Shared (IS) locks, which indicates a S lock is acquired at lower level
2. Intention-Exclusive (IX) locks, which indicates a X lock is acquired at lower level
3. Shared+Intention-Exclusive (SIX) lock: SIX lock is the combination between S and IX lock: The

sub tree at that node is locked in S mode and a X lock is acquired at lower level. For instance, one
example that requires this lock is a query that sets one value to the average value of the table.

The compatibility matrix of locks is given below. The non-trivial thing to notice here is that IX and IX, IX
and IS are actually compatible on a node, because IX only indicates a descendent of that node is locked in
exclusive mode, and two transactions might be holding locks on different descendents.

Figure 3: Lock Compatibility Matrix

2.1.2 Locking Protocol: What locks to acquire?

With intention lock, let’s see how locks are acquired and released for hierarchical resources. Suppose a
transaction want to get a X (S) lock, we start from the root node, and apply a IX (IS) locks for each

15-721 Advanced Database Systems
Page 2 of 6

https://www.cs.cmu.edu/~15721-f24//


Fall 2024 – Lecture #8 Granularities of Locks and Degrees of Consistency

node in a top down manner. When releasing the locks, it is done reversely, starting bottom up. With
this protocol, the locks on leaf nodes must be none-intention lock. Intuitively, when locking, the resource
hierarchy is traversed top-down, and the corresponding intention locks is locked at each level. In this way,
if a transaction has an intention lock, every other transaction will be able to know that a S or X lock is
acquired at a lower level in the resource hierarchy, and will not mistakenly put an incompatible lock on that
resource.

Figure 4: Example

To better understanding this protocol, consider the example shown in figure 4: Suppose the transaction T1
wants to acquire an S lock on Tuple 1. To do so, it starts from the top of the resource hierarchy, first placing
an intention-shared lock on Table R, then places the S lock on tuple 1. The second transaction T2 wants to
acquire a write lock on Tuple n. It first check Table R: since the existing IS lock of T1 is compatible with
IX lock, T2 places an IX lock. Then, it descends to Tuple n and place an X lock. When unlocking, both
transaction release locks from bottom up.

2.2 Locking Schedule and Update
Another aspect of this protocol is locking schedules and updates: suppose a particular resource has already
been locked by several transactions and there are some other transactions are pending on the resource.
Which transaction should be allowed next? One simple solution is to use a first-come-first-serve policy:
granting lock to the first transactions whose lock is compatible with existing locks. Here, the author used
lock upgrade instead: giving priority to a transaction if it is already part of the granted group. In this
way, the transaction is able to finish quicker and free up the resource sooner.

2.3 Deadlocks

Figure 5: Two transaction waiting for each other, causing deadlock

The problem of deadlock (conflicting locks) is almost unavoidable in any lock-based concurrency control
protocols. Consider the figure above, with two resources and two transactions. T1 has acquired shared
lock on R1 and is pending for R2. T2 has acquired shared lock for R2 is requesting exclusive lock on R1.

15-721 Advanced Database Systems
Page 3 of 6

https://www.cs.cmu.edu/~15721-f24//


Fall 2024 – Lecture #8 Granularities of Locks and Degrees of Consistency

Essentially, each transaction is waiting for the other to release the resource and neither can move forward,
forming a cycle in the wait-for graph.
Two approaches based on the wait-for graph can be used to solve the problem of deadlock: Deadlock
prevention aborts the conflicting transaction (the one causing cycle in wait-for graph) immediately and
restarts it. Deadlock prevention constructs and periodically examines cycles in the wait for graph, picking
one transaction to abort when a cycle is formed.

2.4 Two Phase Locking
Up to this points, it is fairly clear how to acquire and release locks in a database system with resources
of different granularity. However, the hows are not sufficient to get conflict serializability guarantee in this
system and the problem of when to acquire and release locks is equally important, which leads us to Two
Phase Locking.

Figure 6: Lock count in transaction lifetime with 2 Phase Locking

As shown in the diagram above, with two-phase locking (2PL), for each transaction, its locking behaviors
are divided into two phrases, the growing phase when it acquires locks, and the shrinking phase when it
releases lock. In other words, when the transaction finished a read or write operation on a record, it does
not release the lock immediately. Instead, it wait until the moment when all operations requiring lock have
finished. Only until then does it start releasing locks. With two phase locking protocol, the transactions are
conflict-serializable.

Figure 7: Example Cascading Abort Schedule

Nevertheless, this method still suffers from the problem of cascading abort. Consider the schedule above
in figure above: The unlocking of A in T1 caused T2 to read the modified version of A. As a result, when T1
aborts, since T2 has read the value modified by A, T2 also has to abort. If some transaction T3 also read the
A modified by T2, it will also need to abort, causing a cascade of failed transactions. To solve this problem,
strict two-phase commit is proposed: only releasing locks when at the end of a transaction (commit or
abort).

3 Isolation Level

Just like the trade of between locking cost and concurrency, which motivates the study of the granularity of
locks, there is also the tradeoff between locking cost and consistency, leading us to the topic of isolation
levels
Isolation levels are different degree of consistency in a system, which is the result of different lock techniques.
For some workload, it might be acceptable with lower level of consistency. Consider the example of online

15-721 Advanced Database Systems
Page 4 of 6

https://www.cs.cmu.edu/~15721-f24//


Fall 2024 – Lecture #8 Granularities of Locks and Degrees of Consistency

shopping cart update versus bank transfers. For the former, it is acceptable to exchange consistency for
better performance.

3.1 Four Isolation Levels
The author proposes four isolation levels. Below, we discuss their characteristic and locking patterns.

1. Read Uncommitted: The is the lowest isolation level, where a transaction can read uncommitted
writes of another transaction. In this mode, no read locks are used (only write locks).

2. Read Committed: A transaction can read the committed writes of another transaction (which also
violates Isolation in ACID). In this mode, S and X locks are used are released immediately (no two
phase locking).

3. Repeatable Reads: In a transaction, all the reads on the same values will return same value, meaning
that the reads are no longer interfered by writes of another transaction, despite committed or not. In
this mode, two phase locking is used. However, it is still susceptible to Phantoms (reading records
created by other transactions), which will be discussed in the next section.

4. Serializable This is the highest isolation level, only allow serializable schedules. This is the result of
predicating locking (rule out Phantoms) and strict two phase locking.

Support for different isolation levels in each transaction has already been in the SQL standard: with ”BEGIN
TRANSACTION ISOLATION LEVEL” statement, one can specify the isolation level that a transaction runs
in, giving great flexibility for handling the tradeoff between consistency and performance. It is also worth
noting that different databases have different default isolation level: for instance, the default isolation level
in MySQL is Repeatable Read and the maximum it can support is serializable.

3.2 Phantoms
Phantom is a type of violation of isolation caused by reading a record created by another transaction.

Figure 8: Example Cascading Abort Schedule

As shown in the example schedule, due to the newly inserted record by T2, the count statement now return
100 instead of 99. Solving this problem requires predicate locking: checking if the newly inserted record
falls into the predicate specified in the read statements. In systems with B-tree index, this can be done using
the index: For instance, if there is a statement in the transaction counting the number of records larger than
5, then inserting a record in this range will not be allowed.

4 Conclusion

This lecture focuses on two topics: granularity of locks and different isolation levels. These topics arise for
tradeoffs that transaction management has to handle, namely the tradeoff between concurrency and locking
overhead, and between consistency and locking overhead.
Nowadays, aside from lock-based concurrency control, other techniques without locks have been developed,
such as optimistic concurrency control. For isolation levels, more finer-grained isolation levels have also been
proposed.

15-721 Advanced Database Systems
Page 5 of 6

https://www.cs.cmu.edu/~15721-f24//


Fall 2024 – Lecture #8 Granularities of Locks and Degrees of Consistency

5 Additional Materials

There are unofficial materials (not required by the course) that I think might be relevant. For many concepts
covered in undergraduate database courses, I do not go into too much detail in this note and these two courses
might be helpful

1. CMU Database Course: https://15445.courses.cs.cmu.edu/fall2022/schedule.html
2. Berkeley Database Course: https://cs186berkeley.net/

In addition, another good material is the documentation of MySQL on transaction isolation levels. It covers
the characteristics and locking techniques (combination of locking and MVCC) used to achieve these levels
of consistency and provides insight into how these features are implemented in real-life databases.

15-721 Advanced Database Systems
Page 6 of 6

https://dev.mysql.com/doc/refman/8.4/en/innodb-transaction-isolation-levels.html
https://www.cs.cmu.edu/~15721-f24//

	Introduction
	Background
	Tradeoffs in Transaction Management

	Granularity of Lock in Database
	Hierarchical Locking
	Intention Locks: What are the locks
	Locking Protocol: What locks to acquire?

	Locking Schedule and Update
	Deadlocks
	Two Phase Locking

	Isolation Level
	Four Isolation Levels
	Phantoms

	Conclusion
	Additional Materials

