
1

Hekaton: SQL Server’s Memory-Optimized OLTP Engine
Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson,

Pravin Mittal, Ryan Stonecipher, Nitin Verma, Mike Zwilling
Microsoft

{cdiaconu, craigfr, eriki, palarson, pravinm, ryanston, nitinver, mikezw}@microsoft.com

ABSTRACT

Hekaton is a new database engine optimized for memory resident

data and OLTP workloads. Hekaton is fully integrated into SQL

Server; it is not a separate system. To take advantage of Hekaton, a

user simply declares a table memory optimized. Hekaton tables are

fully transactional and durable and accessed using T-SQL in the

same way as regular SQL Server tables. A query can reference both

Hekaton tables and regular tables and a transaction can update data

in both types of tables. T-SQL stored procedures that reference only

Hekaton tables can be compiled into machine code for further per-

formance improvements. The engine is designed for high concur-

rency. To achieve this it uses only latch-free data structures and a

new optimistic, multiversion concurrency control technique. This

paper gives an overview of the design of the Hekaton engine and

reports some experimental results.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems – relational databases,

Microsoft SQL Server

General Terms

Algorithms, Performance, Design

Keywords

Main-memory databases, OLTP, SQL Server, lock-free data struc-

tures, multiversion concurrency control, optimistic concurrency

control, compilation to native code.

1. INTRODUCTION
SQL Server and other major database management systems were

designed assuming that main memory is expensive and data resides

on disk. This assumption is no longer valid; over the last 30 years

memory prices have dropped by a factor of 10 every 5 years. Today,

one can buy a server with 32 cores and 1TB of memory for about

$50K and both core counts and memory sizes are still increasing.

The majority of OLTP databases fit entirely in 1TB and even the

largest OLTP databases can keep the active working set in memory.

Recognizing this trend SQL Server several years ago began build-

ing a database engine optimized for large main memories and

many-core CPUs. The new engine, code named Hekaton, is tar-

geted for OLTP workloads. This paper gives a technical overview

of the Hekaton design and reports a few performance results.

Several main memory database systems already exist, both com-

mercial systems [5][15][18][19][21] and research prototypes

[2][3][7][8] [16]. However, Hekaton has a number of features that

sets it apart from the competition.

Most importantly, the Hekaton engine is integrated into SQL

Server; it is not a separate DBMS. To take advantage of Hekaton,

all a user has to do is declare one or more tables in a database

memory optimized. This approach offers customers major benefits

compared with a separate main-memory DBMS. First, customers

avoid the hassle and expense of another DBMS. Second, only the

most performance-critical tables need to be in main memory; other

tables can be left unchanged. Third, stored procedures accessing

only Hekaton tables can be compiled into native machine code for

further performance gains. Fourth, conversion can be done gradu-

ally, one table and one stored procedure at a time.

Memory optimized tables are managed by Hekaton and stored en-

tirely in main memory. A Hekaton table can have several indexes

and two index types are available: hash indexes and range indexes.

Hekaton tables are fully durable and transactional, though non-du-

rable tables are also supported.

Hekaton tables can be queried and updated using T-SQL in the

same way as regular SQL Server tables. A query can reference both

Hekaton tables and regular tables and a single transaction can up-

date both types of tables. Furthermore, a T-SQL stored procedure

that references only Hekaton tables can be compiled into native ma-

chine code. This is by far the fastest way to query and modify data

in Hekaton tables.

Hekaton is designed for high levels of concurrency but does not

rely on partitioning to achieve this. Any thread can access any row

in a table without acquiring latches or locks. The engine uses latch-

free (lock-free) data structures to avoid physical interference

among threads and a new optimistic, multiversion concurrency

control technique to avoid interference among transactions [9].

The rest of the paper is organized as follows. In section 2 we outline

the considerations and principles behind the design of the engine.

Section 3 provides a high-level overview of the architecture. Sec-

tion 4 covers how data is stored, indexed, and updated. Section 5

describes how stored procedures and table definitions are compiled

into native code. Section 6 covers transaction management and con-

currency control while section 7 outlines how transaction durability

is ensured. Section 8 describes garbage collection, that is, how ver-

sions no longer needed are handled. Section 9 provides some ex-

perimental results.

Terminology: We will use the terms Hekaton table and Hekaton

index to refer to tables and indexes stored in main memory and

managed by Hekaton. Tables and indexes managed by the tradi-

tional SQL Server engine will be called regular tables and regular

indexes. Stored procedures that have been compiled to native ma-

chine code will simply be called compiled stored procedures and

traditional non-compiled stored procedures will be called inter-

preted stored procedures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SIGMOD’13, June 22-27, 2013, New York, New York, USA.
Copyright © ACM 978-1-4503-2037-5/13/06 …$15.00.

2

2. DESIGN CONSIDERATIONS
An analysis done early on in the project drove home the fact that a

10-100X throughput improvement cannot be achieved by optimiz-

ing existing SQL Server mechanisms. Throughput can be increased

in three ways: improving scalability, improving CPI (cycles per in-

struction), and reducing the number of instructions executed per re-

quest. The analysis showed that, even under highly optimistic as-

sumptions, improving scalability and CPI can produce only a 3-4X

improvement. The detailed analysis is included as an appendix.

The only real hope is to reduce the number of instructions executed

but the reduction needs to be dramatic. To go 10X faster, the engine

must execute 90% fewer instructions and yet still get the work

done. To go 100X faster, it must execute 99% fewer instructions.

This level of improvement is not feasible by optimizing existing

storage and execution mechanisms. Reaching the 10-100X goal re-

quires a much more efficient way to store and process data.

2.1 Architectural Principles
So to achieve 10-100X higher throughput, the engine must execute

drastically fewer instructions per transaction, achieve a low CPI,

and have no bottlenecks that limit scalability. This led us to three

architectural principles that guided the design.

2.1.1 Optimize indexes for main memory
Current mainstream database systems use disk-oriented storage

structures where records are stored on disk pages that are brought

into memory as needed. This requires a complex buffer pool where

a page must be protected by latching before it can be accessed. A

simple key lookup in a B-tree index may require thousands of in-

structions even when all pages are in memory.

Hekaton indexes are designed and optimized for memory-resident

data. Durability is ensured by logging and checkpointing records to

external storage; index operations are not logged. During recovery

Hekaton tables and their indexes are rebuilt entirely from the latest

checkpoint and logs.

2.1.2 Eliminate latches and locks
With the growing prevalence of machines with 100’s of CPU cores,

achieving good scaling is critical for high throughput. Scalability

suffers when the systems has shared memory locations that are up-

dated at high rate such as latches and spinlocks and highly con-

tended resources such as the lock manager, the tail of the transac-

tion log, or the last page of a B-tree index [4][6].

All Hekaton’s internal data structures, for example, memory allo-

cators, hash and range indexes, and transaction map, are entirely

latch-free (lock-free). There are no latches or spinlocks on any per-

formance-critical paths in the system. Hekaton uses a new optimis-

tic multiversion concurrency control to provide transaction isola-

tion semantics; there are no locks and no lock table [9]. The com-

bination of optimistic concurrency control, multiversioning and

latch-free data structures results in a system where threads execute

without stalling or waiting.

2.1.3 Compile requests to native code
SQL Server uses interpreter based execution mechanisms in the

same ways as most traditional DBMSs. This provides great flexi-

bility but at a high cost: even a simple transaction performing a few

lookups may require several hundred thousand instructions.

Hekaton maximizes run time performance by converting state-

ments and stored procedures written in T-SQL into customized,

highly efficient machine code. The generated code contains exactly

what is needed to execute the request, nothing more. As many de-

cisions as possible are made at compile time to reduce runtime

overhead. For example, all data types are known at compile time

allowing the generation of efficient code.

2.2 No Partitioning
HyPer [8], Dora [15], H-store [4], and VoltDB [21] are recent sys-

tems designed for OLTP workloads and memory resident data.

They partition the database by core and give one core exclusive ac-

cess to a partition. Hekaton does not partition the database and any

thread can access any part of the database. We carefully evaluated

a partitioned approach but rejected it.

Partitioning works great but only if the workload is also partition-

able. If the workload partitions poorly so that transactions on av-

erage touch several partitions, performance deteriorates quickly. It

is not difficult to see why. Suppose we have a table that is parti-

tioned on column A across 12 cores. The table has two (partitioned)

indexes: an index on column A and a non-unique hash index on

column B.

A query that includes an equality predicate on A (the partitioning

column) can be processed quickly because only one partition needs

to be accessed. However, a query that is not partition aligned can

be very expensive. Consider a query that retrieves all records where

B = 25. Some thread TH1 picks up the query and begins processing

it. As the search predicate is not partition aligned and the index for

B is not unique, all 12 partitions have to be checked. To do so TH1

has to enqueue a lookup request for each partition and wait for the

results to be returned. Each request has to be dequeued by a receiv-

ing thread, processed, and the result returned.

The overhead of constructing, sending and receiving the request

and returning the result is much higher than the actual work of per-

forming a lookup in a hash table. In a non-partitioned system,

thread TH1 would simply do the lookup itself in a single shared

hash table. This is certainly faster and more efficient than sending

12 requests and doing 12 lookups.

After building from scratch and studying closely a prototype parti-

tioned engine, we came to the conclusion that a partitioned ap-

proach is not sufficiently robust for the wide variety of workloads

customers expect SQL Server to handle.

3. HIGH-LEVEL ARCHITECTURE
This section gives a high level overview of the various components

of Hekaton and the integration with SQL Server. Later sections de-

scribe the components in more detail. As illustrated in Figure 1,

Hekaton consists of three major components.

 The Hekaton storage engine manages user data and indexes.

It provides transactional operations on tables of records, hash

and range indexes on the tables, and base mechanisms for stor-

age, checkpointing, recovery and high-availability.

 The Hekaton compiler takes an abstract tree representation of

a T-SQL stored procedure, including the queries within it, plus

table and index metadata and compiles the procedure into na-

tive code designed to execute against tables and indexes man-

aged by the Hekaton storage engine.

 The Hekaton runtime system is a relatively small component

that provides integration with SQL Server resources and

serves as a common library of additional functionality needed

by compiled stored procedures.

3

Hekaton leverages a number of services already available in SQL

Server. The main integration points are illustrated in Figure 1.

 Metadata: Metadata about Hekaton tables, indexes, etc. is

stored in the regular SQL Server catalog. Users view and man-

age them using exactly the same tools as regular tables and

indexes.

 Query optimization: Queries embedded in compiled stored

procedures are optimized using the regular SQL Server opti-

mizer. The Hekaton compiler compiles the query plan into na-

tive code.

 Query interop: Hekaton provides operators for accessing data

in Hekaton tables that can be used in interpreted SQL Server

query plans. There is also an operator for inserting, deleting,

and updating data in Hekaton tables.

 Transactions: A regular SQL Server transaction can access

and update data both in regular tables and Hekaton tables.

Commits and aborts are fully coordinated across the two en-

gines.

 High availability: Hekaton is integrated with AlwaysOn,

SQL Server’s high availability feature. Hekaton tables in a da-

tabase fail over in the same way as other tables and are also

readable on secondary servers.

 Storage, log: Hekaton logs its updates to the regular SQL

Server transaction log. It uses SQL Server file streams for stor-

ing checkpoints. Hekaton tables are automatically recovered

when a database is recovered.

4. STORAGE AND INDEXING
A table created with the new option memory_optimized is managed

by Hekaton and stored entirely in memory. Hekaton supports two

types of indexes: hash indexes which are implemented using lock-

free hash tables [13] and range indexes which are implemented us-

ing Bw-trees, a novel lock-free version of B-trees [10]. A table can

have multiple indexes and records are always accessed via an index

lookup. Hekaton uses multiversioning; an update always creates a

new version.

Figure 2 shows a simple bank account table containing six version

records. Ignore the numbers (100) and text in red for now. The

table has three (user defined) columns: Name, City and Amount. A

version record includes a header and a number of link (pointer)

fields. A version’s valid time is defined by timestamps stored in the

Begin and End fields in the header.

The example table has two indexes; a hash index on Name and a

range index on City. Each index requires a link field in the record.

The first link field is reserved for the Name index and the second

link field for the City index. For illustration purposes we assume

that the hash function just picks the first letter of the name. Versions

that hash to the same bucket are linked together using the first link

field. The leaf nodes of the Bw-tree store pointers to records. If

multiple records have the same key value, the duplicates are linked

together using the second link field in the records and the Bw-tree

points to the first record on the chain.

Hash bucket J contains four records: three versions for John and

one version for Jane. Jane’s single version (Jane, Paris, 150) has a

valid time from 15 to infinity meaning that it was created by a trans-

action that committed at time 15 and it is still valid. John’s oldest

version (John, London, 100) was valid from time 10 to time 20

when it was updated. The update created a new version (John, Lon-

don, 110). We will discuss John’s last version (John, London, 130)

in a moment.

4.1 Reads
Every read operation specifies a logical (as-of) read time and only

versions whose valid time overlaps the read time are visible to the

read; all other versions are ignored. Different versions of a record

always have non-overlapping valid times so at most one version of

a record is visible to a read. A lookup for John with read time 15,

for example, would trigger a scan of bucket J that checks every rec-

ord in the bucket but returns only the one with Name equal to John

and valid time 10 to 20. If the index on Name is declared to be

unique, the scan of the buckets stops as soon as a qualifying record

has been found.

4.2 Updates
Bucket L contains two records that belong to Larry. Transaction 75

is in the process of transferring $20 from Larry’s account to John’s

SQL Components Hekaton

Storage

engine

Compiler

Runtime

SQL Components

Security

Metadata

Query optimizer

Query processor

Storage

Query interop

Storage, log

High availability

Transactions

Query optim.

Metadata

SQL Server

Figure 1: Hekaton’s main components and integration

into SQL Server.

Figure 2: Example account table with two indexes. Trans-

action 75 has transferred $20 from Larry’s account to

John’s account but has not yet committed.

10 John 10020

15 Jane 150inf

30 LarryTx75

20 John 110Tx75

Tx75 Larry 150inf

Tx75 John 130Inf

J

L

Old

New

Old

New

Hash index

on Name

Begin End Name City

Header Payload

Record format

100

100

100

100

Pointer••• Amount

Links

London

Paris

London

London

170Rome

Rome

Ordered index

on City

B
-tre

e

4

account. It has created the new versions for Larry (Larry, Rome,

150) and for John (John, London, 130) and inserted them into the

appropriate buckets in the index.

Note that transaction 75 has stored its transaction Id in the Begin

and End fields of the new and old versions, respectively. (One bit

in the field indicates the field’s content type.) A transaction Id

stored in the End field prevents other transactions from updating

the same version and it also identifies which transaction is updating

the version. A transaction Id stored in the Begin field informs read-

ers that the version may not yet be committed and identifies which

transaction created the version.

Now suppose transaction 75 commits with end timestamp 100.

(The details of commit processing are covered in section 6.) After

committing, transaction 75 returns to the old and new versions and

sets the Begin and End fields, respectively, to 100. The final values

are shown in red below the old and new versions. The old version

(John, London, 110) now has the valid time 20 to 100 and the new

version (John, London, 130) has a valid time from 100 to infinity.

Larry’s record is updated in the same way.

This example also illustrates how deletes and inserts are handled

because an update is equivalent to a deleting an old version and

inserting a new version.

The system must discard obsolete versions that are no longer

needed to avoid filling up memory. A version can be discarded

when it is no longer visible to any active transaction. Cleaning out

obsolete versions, a.k.a. garbage collection, is handled coopera-

tively by all worker threads. Garbage collection is described in

more detail in section 8.

5. PROGRAMMABILITY AND QUERY

PROCESSING
Hekaton maximizes run time performance by converting SQL

statements and stored procedures into highly customized native

code. Database systems traditionally use interpreter based execu-

tion mechanisms that perform many run time checks during the ex-

ecution of even simple statements.

Our primary goal is to support efficient execution of compile-once-

and-execute-many-times workloads as opposed to optimizing the

execution of ad hoc queries. We also aim for a high level of lan-

guage compatibility to ease the migration of existing SQL Server

applications to Hekaton tables and compiled stored procedures.

Consequently, we chose to leverage and reuse technology wherever

suitable. We reuse much of the SQL Server T-SQL compilation

stack including the metadata, parser, name resolution, type deriva-

tion, and query optimizer. This tight integration helps achieve syn-

tactic and semantic equivalence with the existing SQL Server T-

SQL language. The output of the Hekaton compiler is C code and

we leverage Microsoft’s Visual C/C++ compiler to convert the C

code into machine code.

While it was not a goal to optimize ad hoc queries, we do want to

preserve the ad hoc feel of the SQL language. Thus, a table and

stored procedure is available for use immediately after it has been

created. To create a Hekaton table or a compiled stored procedure,

the user merely needs to add some additional syntax to the CRE-

ATE TABLE or CREATE PROCEDURE statement. Code gener-

ation is completely transparent to the user.

Figure 3 illustrates the overall architecture of the Hekaton compiler.

There are two main points where we invoke the compiler: during

creation of a memory optimized table and during creation of a com-

piled stored procedure.

As noted above, we begin by reusing the existing SQL Server com-

pilation stack. We convert the output of this process into a data

structure called the mixed abstract tree or MAT. This data structure

is a rich abstract syntax tree capable of representing metadata, im-

perative logic, expressions, and query plans. We then transform the

MAT into a second data structure called the pure imperative tree or

PIT. The PIT is a much “simpler” data structure that can be easily

converted to C code (or theoretically directly into the intermediate

representation for a compiler backend such as Phoenix [17] or

LLVM [11]). We discuss the details of the MAT to PIT transfor-

mation further in Section 5.2. Once we have C code, we invoke the

Visual C/C++ compiler and linker to produce a DLL. At this point

it is just a matter of using the OS loader to bring the newly gener-

ated code into the SQL Server address space where it can be exe-

cuted.

5.1 Schema Compilation
It may not be obvious why table creation requires code generation.

The reason is that the Hekaton storage engine treats records as

opaque objects. It has no knowledge of the internal content or for-

mat of records and cannot directly access or process the data in rec-

ords. The Hekaton compiler provides the engine with customized

callback functions for each table. These functions perform tasks

such as computing a hash function on a key or record, comparing

two records, and serializing a record into a log buffer. Since these

functions are compiled into native code, index operations such as

inserts and searches are extremely efficient.

Parser
Name Resolution
Type Derivation

T-SQL Stored Procedure

Query Optimizer

MAT Generator

Table and Index DDL

Catalogs

MAT to PIT Transformation

C Code Generator

Compiler/Linker

DLL

OS Loader

Metadata Mixed Abstract Tree (MAT)

C Code

Tree with Query Plans

Pure Imperative Tree (PIT)

SQ
L

En
gi

n
e

H
ek

at
o

n
 E

n
gi

n
e

Figure 3: Architecture of the Hekaton compiler.

5

5.2 Compiled Stored Procedures
There are numerous challenging problems that we had to address

to translate T-SQL stored procedures into C code. Perhaps the most

obvious challenge is the transformation of query plans into C code

and we will discuss our approach to this problem momentarily.

There are, however, many other noteworthy complications. For ex-

ample, the T-SQL and C type systems and expression semantics are

very different. T-SQL includes many data types such as date/time

types and fixed precision numeric types that have no corresponding

C data types. In addition, T-SQL supports NULLs while C does

not. Finally, T-SQL raises errors for arithmetic expression evalua-

tion failures such as overflow and division by zero while C either

silently returns a wrong result or throws an OS exception that must

be translated into an appropriate T-SQL error.

These complexities were a major factor in our decision to introduce

the intermediate step of converting the MAT into the PIT rather

than directly generating C code. The PIT is a data structure that

can be easily manipulated, transformed, and even generated out of

order in memory. It is much more challenging to work directly with

C code in text form.

The transformation of query plans into C code warrants further dis-

cussion. To aid in this discussion, consider the simple T-SQL ex-

ample in Figure 4. This procedure retrieves a customer name, ad-

dress, and phone number given a customer id. The procedure dec-

laration includes some additional syntax; we will explain below

why this syntax is required.

As with many query execution engines, we begin with a query plan

which is constructed out of operators such as scans, joins, and ag-

gregations. Figure 5 illustrates one possible plan for executing our

sample query. For this example, we are naively assuming that the

DBA has not created an index on Customer.Id and that the predicate

is instead evaluated via a filter operator. In practice, we ordinarily

would push the predicate down to the storage engine via a callback

function. However, we use the filter operator to illustrate a more

interesting outcome.

Each operator implements a common interface so that they can be

composed into arbitrarily complex plans. In our case, this interface

consists of “get first,” “get next,” “return row,” and “return done.”

However, unlike most query execution engines, we do not imple-

ment these interfaces using functions. Instead, we collapse an en-

tire query plan into a single function using labels and gotos to im-

plement and connect these interfaces. Figure 6 illustrates graph-

ically how the operators for our example are interconnected. Each

hollow circle represents a label while each arrow represents a goto

statement. In many cases, we can directly link the code for the var-

ious operators bypassing intermediate operators entirely. The X’s

mark labels and gotos that have been optimized out in just such a

fashion. In conventional implementations, these same scenarios

would result in wasted instructions where one operator merely calls

another without performing any useful work.

Execution of the code represented by Figure 6 begins by transfer-

ring control directly to the GetFirst entry point of the scan operator.

Note already the difference as compared to traditional query pro-

cessors which typically begin execution at the root of the plan and

invoke repeated function calls merely to reach the leaf of the tree

even when the intermediate operators have no work to do. Pre-

suming the Customers table is not empty, the scan operator re-

trieves the first row and transfers control to the filter operator Re-

turnRow entry point. The filter operator evaluates the predicate and

either transfers control back to the scan operator GetNext entry

point if the current row does not qualify or to the output operator

entry point if the row qualifies. The output operator adds the row

to the output result set to be returned to the client and then transfers

control back to the scan operator GetNext entry point again bypass-

ing the filter operator. When the scan operator reaches the end of

the table, execution terminates immediately. Again control by-

passes any intermediate operators.

This design is extremely flexible and can support any query opera-

tor including blocking (e.g., sort and group by aggregation) and

non-blocking (e.g., nested loops join) operators. Our control flow

mechanism is also flexible enough to handle operators such as

merge join that alternate between multiple input streams. By keep-

ing all of the generated code in a single function, we avoid costly

argument passing between functions and expensive function calls.

Although the resulting code is often challenging to read due in part

to the large number of goto statements, it is important to keep in

mind that our intent is not to produce code for human consumption.

We rely on the compiler to generate efficient code. We have con-

firmed that the compiler indeed does so through inspection of the

resulting assembly code.

We compared this design to alternatives involving multiple func-

tions and found that the single function design resulted in the fewest

Filter

Scan
Customers

Id = @id

Output

GetFirst

GetNext

ReturnRow

ReturnDone

Filter

GetFirst

GetNext

ReturnRow

ReturnDone

GetFirst

GetNext

ReturnRow

ReturnDone

Scan

GetFirst

GetNext

ReturnRow

ReturnDone

Start

End

CREATE PROCEDURE SP_Example @id INT
WITH NATIVE_COMPILATION, SCHEMABINDING,
 EXECUTE AS OWNER
AS BEGIN ATOMIC
WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT,
 LANGUAGE = 'English')
 SELECT Name, Address, Phone
 FROM dbo.Customers WHERE Id = @id
END

 Figure 4: Sample T-SQL procedure.

Figure 6: Operator interconnections for sample procedure.

Figure 5: Query plan for sample T-SQL procedure

6

number of instructions executed as well as the smallest overall bi-

nary. This result was true even with function inlining. In fact, the

use of gotos allows for code sharing within a single function. For

example, an outer join needs to return two different types of rows:

joined rows and NULL extended rows. Using functions and inlin-

ing with multiple outer joins, there is a risk of an exponential

growth in code size [14]. Using gotos, the code always grows lin-

early with the number of operators.

There are cases where it does not make sense to generate custom

code. For example, the sort operator is best implemented using a

generic sort implementation with a callback function to compare

records. Some functions (e.g., non-trivial math functions) are ei-

ther sufficiently complex or expensive that it makes sense to in-

clude them in a library and call them from the generated code.

5.3 Restrictions
With minor exceptions, compiled stored procedures look and feel

just like any other T-SQL stored procedures. We support most of

the T-SQL imperative surface area including parameter and varia-

ble declaration and assignment as well as control flow and error

handling. The query surface area is a bit more limited but we are

expanding it rapidly. We support SELECT, INSERT, UPDATE,

and DELETE. Queries currently can include inner joins, sort and

top sort, and basic scalar and group by aggregation.

In an effort to minimize the number of run time checks and opera-

tions that must be performed at execution time, we do impose some

limitations. First, compiled stored procedures support a limited set

of options and the options that can be controlled must be set at com-

pile time only. This policy eliminates unnecessary run time checks.

Second, compiled stored procedures must execute in a predefined

security context so that we can run all permission checks once at

creation time. Third, compiled stored procedures must be schema

bound; i.e., once a procedure is created, any tables referenced by

that procedure cannot be dropped without first dropping the proce-

dure. This avoids acquiring costly schema stability locks before

execution. Fourth, compiled stored procedures must execute in the

context of a single transaction. This requirement ensures that a pro-

cedure does not block midway through to wait for commit.

5.4 Query Interop
Compiled stored procedures do have limitations in the current im-

plementation. The available query surface area is not yet complete

and it is not possible to access regular tables from a compiled stored

procedure. Recognizing these limitations, we implemented an ad-

ditional mechanism that enables the conventional query execution

engine to access memory optimized tables. This feature enables

several important scenarios:

 Import and export of data to and from memory optimized ta-

bles using the existing tools and processes that already work

for regular tables.

 Support for ad hoc queries and data repair.

 Feature completeness. E.g., users can leverage interop to ex-

ecute virtually any legal SQL query against memory opti-

mized tables and can use features such as views and cursors

that are not supported in compiled stored procedures.

 Support for transactions that access both memory optimized

and regular tables.

 Ease of app migration. Existing tables can be converted to

memory optimized tables without extensive work to convert

existing stored procedures into compiled stored procedures.

6. TRANSACTION MANAGEMENT
Hekaton utilizes optimistic multiversion concurrency control

(MVCC) to provide snapshot, repeatable read and serializable

transaction isolation without locking. This section summarizes the

core concepts of the optimistic MVCC implemented in Hekaton.

Further details can be found in [9].

A transaction is by definition serializable if its reads and writes log-

ically occur as of the same time. The simplest and most widely used

MVCC method is snapshot isolation (SI). SI does not guarantee se-

rializability because reads and writes logically occur at different

times: reads at the beginning of the transaction and writes at the

end. However, a transaction is serializable if we can guarantee that

it would see exactly the same data if all its reads were repeated at

the end of the transaction.

To ensure that a transaction T is serializable we must ensure that

the following two properties hold.

1. Read stability. If T reads some version V1 during its pro-

cessing, we must ensure that V1 is still the version visible to

T as of the end of the transaction. This is implemented by

validating that V1 has not been updated before T commits.

This ensures that nothing has disappeared from the view.

2. Phantom avoidance. We must also ensure that the transac-

tion’s scans would not return additional new versions. This is

implemented by rescanning to check for new versions before

commit. This ensures that nothing has been added to the view.

Lower isolation levels are easier to support. For repeatable read, we

only need to guarantee read stability. For snapshot isolation or read

committed, no validation at all is required.

The discussion that follows covers only serializable transactions.

For other isolation levels and a lock-based alternative technique,

see [9].

6.1 Timestamps and Version Visibility
Timestamps produced by a monotonically increasing counter are

used to specify the following.

 Logical Read Time: the read time of a transaction can be any

value between the transaction’s begin time and the current

time. Only versions whose valid time overlaps the logical read

time are visible to the transaction. For all supported isolation

levels, the logical read time of a transaction is set to the start

time of the transaction.

 Commit/End Time for a transaction: every transaction that

modifies data commits at a distinct point in time called the

commit or end timestamp of the transaction. The commit time

determines a transaction’s position in the serialization history.

 Valid Time for a version of a record: All records in the data-

base contain two timestamps – begin and end. The begin

timestamp denotes the commit time of the transaction that cre-

ated the version and the end timestamp denotes the commit

timestamp of the transaction that deleted the version (and per-

haps replaced it with a new version). The valid time for a ver-

sion of a record denotes the timestamp range where the version

is visible to other transactions.

The notion of version visibility is fundamental to proper concur-

rency control in Hekaton. A transaction executing with logical read

time RT must only see versions whose begin timestamp is less than

RT and whose end timestamp is greater than RT. A transaction

must of course also see its own updates.

7

6.2 Transaction Commit Processing
Once a transaction has completed its normal processing, it begins

commit processing.

6.2.1 Validation and Dependencies
At the time of commit, a serializable transaction must verify that

the versions it read have not been updated and that no phantoms

have appeared. The validation phase begins with the transaction

obtaining an end timestamp. This end timestamp determines the po-

sition of the transaction within the transaction serialization history.

To validate its reads, the transaction checks that the versions it read

are visible as of the transaction’s end time. To check for phantoms,

it repeats all its index scans looking for versions that have become

visible since the transaction began. To enable validation each trans-

action maintains a read set, a list of pointers to the versions it has

read, and a scan set containing information needed to repeat scans.

While validation may sound expensive, keep in mind that most

likely the versions visited during validation remain in the L1 or L2

cache. Furthermore, validation overhead is lower for lower isola-

tion: repeatable read requires only read validation and snapshot iso-

lation and read committed require not validation at all.

The validation phase is a time of uncertainty for a transaction. If

the validation succeeds the transaction is likely to commit and if it

commits its effects must be respected by all other transactions in

the system as if they occurred atomically as of the end timestamp.

If validation fails, then nothing done by the transaction must be vis-

ible to any other transaction.

Any transaction T1 that begins while a transaction T2 is in the val-

idation phase becomes dependent on T2 if it attempts to read a ver-

sion created by T2 or ignores a version deleted by T2. In that case

T1 has two choices: block until T2 either commits or aborts, or pro-

ceed and take a commit dependency on T2. To preserve the non-

blocking nature of Hekaton, we have T1 take a commit dependency

on T2. This means that T1 is allowed to commit only if T2 commits.

If T2 aborts, T1 must also abort so cascading aborts are possible.

Commit dependencies introduce two problems: 1) a transaction

cannot commit until every transaction upon which it is dependent

has committed and 2) commit dependencies imply working with

uncommitted data and such data should not be exposed to users.

When a transaction T1 takes a commit dependency on transaction

T2, T2 is notified of the dependency and T1 increments its depend-

ency count. If T2 commits, it decrements the dependency count in

T1. If T2 rolls back, it notifies T1 that it too must roll back. If T1

attempts to commit and completes its validation phase (which may

itself acquire additional commit dependencies) and it still has out-

standing commit dependencies, it must wait for the commit depend-

encies to clear. If all transactions upon which T1 is dependent com-

mit successfully, then T1 can proceed with logging its changes and

completing post processing.

To solve the second problem we introduced read barriers. This

simply means that a transaction’s result set is held back and not

delivered to the client while the transaction has outstanding commit

dependencies. The results are sent as soon as the dependencies have

cleared.

6.2.2 Commit Logging and Post-processing
A transaction T is committed as soon as its changes to the database

have been hardened to the transaction log. Transaction T writes to

the log the contents of all new versions created by T and the primary

key of all versions deleted by T. More details on logging can be

found in section 7.

Once T’s updates have been successfully logged, it is irreversibly

committed. T then begins a post-processing phase during which the

begin and end timestamps in all versions affected by the transaction

are updated to contain the end timestamp of the transaction. Trans-

actions maintain a write-set, a set of pointers to all inserted and de-

leted versions that is used to perform the timestamp updates and

generate the log content.

6.2.3 Transaction Rollback
Transactions can be rolled back at user request or due to failures in

commit processing. Rollback is achieved by invalidating all ver-

sions created by the transaction and clearing the end-timestamp

field of all versions deleted by the transaction. If there are any other

transactions dependent on the outcome of the rolled-back transac-

tion, they are so notified. Again the write-set of the transaction is

used to perform this operation very efficiently.

7. TRANSACTION DURABILITY
While Hekaton is optimized for main-memory resident data, it must

ensure transaction durability that allows it to recover a memory-

optimized table after a failure. Hekaton achieves this using trans-

action logs and checkpoints to durable storage. Though not covered

in this paper, Hekaton is also integrated with the AlwaysOn com-

ponent that maintains highly available replicas supporting failover.

The design of the logging, checkpointing and recovery components

was guided by the following principles.

 Optimize for sequential access so customers can spend their

money on main memory rather than I/O devices with fast ran-

dom access.

 Push work to recovery time to minimize overhead during nor-

mal transaction execution.

 Eliminate scaling bottlenecks.

 Enable parallelism in I/O and CPU during recovery

The data stored on external storage consists of transaction log

streams and checkpoint streams.

 Log streams contain the effects of committed transactions

logged as insertion and deletion of row versions.

 Checkpoint streams come in two forms: a) data streams which

contain all inserted versions during a timestamp interval, and

b) delta streams, each of which is associated with a particular

data stream and contains a dense list of integers identifying

deleted versions for its corresponding data stream.

The combined contents of the log and checkpoint streams are suf-

ficient to recover the in-memory state of Hekaton tables to a trans-

actionally consistent point in time. Before we discuss the details of

how they are generated and used, we first summarize a few of their

characteristics.

 Log streams are stored in the regular SQL Server transaction

log. Checkpoint streams are stored in SQL Server file streams

which in essence are sequential files fully managed by SQL

Server.

 The log contains the logical effects of committed transactions

sufficient to redo the transaction. The changes are recorded as

insertions and deletions of row versions labeled with the table

they belong to. No undo information is logged.

 Hekaton index operations are not logged. All indexes are re-

constructed on recovery.

8

 Checkpoints are in effect a compressed representation of the

log. Checkpoints allow the log to be truncated and improve

crash recovery performance.

7.1 Transaction Logging
Hekaton’s transaction log is designed for high efficiency and scale.

Each transaction is logged in a single, potentially large, log record.

The log record contains information about all versions inserted and

deleted by the transaction, sufficient to redo them.

Since the tail of the transaction log is typically a bottleneck, reduc-

ing the number of log records appended to the log can improve

scalability and significantly increase efficiency. Furthermore the

content of the log for each transaction requires less space than sys-

tems that generate one log record per operation.

Generating a log record only at transaction commit time is possible

because Hekaton does not use write-ahead logging (WAL) to force

log changes to durable storage before dirty data. Dirty data is never

written to durable storage. Furthermore, Hekaton tries to group

multiple log records into one large I/O; this is the basis for group

commit and also a significant source of efficiency for Hekaton

commit processing.

Hekaton is designed to support multiple concurrently generated log

streams per database to avoid any scaling bottlenecks with the tail

of the log. Multiple log streams can be used because serialization

order is determined solely by transaction end timestamps and not

by ordering in the transaction log. However the integration with

SQL Server leverages only a single log stream per database (since

SQL Server only has one). This has so far proven sufficient because

Hekaton generates much less log data and fewer log writes com-

pared with SQL Server.

7.2 Checkpoints
To reduce recovery time Hekaton also implements checkpointing.

The checkpointing scheme is designed to satisfy two important re-

quirements.

 Continuous checkpointing. Checkpoint related I/O occurs

incrementally and continuously as transactional activity accu-

mulates. Customers complain that hyper-active checkpoint

schemes (defined as checkpoint processes which sleep for a

while after which they wake up and work as hard as possible

to finish up the accumulated work) are disruptive to overall

system performance.

 Streaming I/O. Checkpointing relies on streaming I/O rather

than random I/O for most of its operations. Even on SSD de-

vices random I/O is slower than sequential and can incur more

CPU overhead due to smaller individual I/O requests.

7.2.1 Checkpoint Files
Checkpoint data is stored in two types of checkpoint files: data files

and delta files. A complete checkpoint consists of multiple data and

delta files and a checkpoint file inventory that lists the files com-

prising the checkpoint.

A data file contains only inserted versions (generated by inserts

and updates) covering a specific timestamp range. All versions with

a begin timestamp within the data file’s range are contained in the

file. Data files are append-only while opened and once closed, they

are strictly read-only. At recovery time the versions in data files

are reloaded into memory and re-indexed, subject to filtering by

delta files discussed next.

A delta file stores information about which versions contained in a

data file have been subsequently deleted. There is a 1:1 correspond-

ence between a delta file and a data file. Delta files are append-only

for the lifetime of the data file they correspond to. At recovery

time, the delta file is used as a filter to avoid reloading deleted ver-

sions into memory. The choice to pair one delta file with each data

file means that the smallest unit of work for recovery is a data/delta

file pair leading to a recovery process that is highly parallelizable.

A checkpoint file inventory tracks references to all the data and

delta files that make up a complete checkpoint. The inventory is

stored in a system table.

A complete checkpoint combined with the tail of the transaction log

enable Hekaton tables to be recovered. A checkpoint has a

timestamp which indicates that the effects of all transactions before

the checkpoint timestamp are recorded in the checkpoint and thus

the transaction log is not needed to recover them.

7.2.2 Checkpoint Process
A checkpoint task takes a section of the transaction log not covered

by a previous checkpoint and converts the log contents into one or

more data files and updates to delta files. New versions are ap-

pended to either the most recent data file or into a new data file and

the IDs of deleted versions are appended to the delta files corre-

sponding to where the original inserted versions are stored. Both

operations are append-only and can be done buffered to allow for

large I/Os. Once the checkpoint task finishes processing the log,

the checkpoint is completed with the following steps.

1. Flush all buffered writes to the data and delta files and wait for

them to complete.

2. Construct a checkpoint inventory that includes all files from

the previous checkpoint plus any files added by this check-

point. Harden the inventory to durable storage.

3. Store the location of the inventory in a durable location avail-

able at recovery time. We record it both in the SQL Server log

and the root page of the database.

The set of files involved in a checkpoint grows with each check-

point. However the active content of a data file degrades as more

and more of its versions are marked deleted in its delta file. Since

crash recovery will read the contents of all data and delta files in

the checkpoint, performance of crash recovery degrades as the util-

ity of each data file drops.

The solution to this problem is to merge temporally adjacent data

files when their active content (the percentage of undeleted versions

in a data file) drops below a threshold. Merging two data files DF1

and DF2 results in a new data file DF3 covering the combined range

of DF1 and DF2. All deleted versions, that is, versions identified

in the DF1 and DF2’s delta files, are dropped during the merge.

The delta file for DF3 is empty immediately after the merge.

7.3 Recovery
Hekaton recovery starts after the location of the most recent check-

point inventory has been recovered during a scan of the tail of the

log. Once the SQL Server host has communicated the location of

the checkpoint inventory to the Hekaton engine, SQL Server and

Hekaton recovery proceed in parallel.

Hekaton recovery itself is parallelized. Each delta file represents in

effect a filter for rows that need not be loaded from the correspond-

ing data file. This data/delta file pair arrangement means that check-

point load can proceed in parallel across multiple IO streams at file

pair granularity. The Hekaton engine takes advantage of parallel

9

streams for load I/O, but also creates one thread per core to handle

parallel insertion of the data produced by the I/O streams. The insert

threads in effect replay the transactions saved in the checkpoint

files. The choice of one thread per core means that the load process

is performed as efficiently as possible.

Finally, once the checkpoint load process completes, the tail of the

transaction log is replayed from the timestamp of the checkpoint,

with the goal of bringing the database back to the state that existed

at the time of the crash.

8. GARBAGE COLLECTION
Multiversioning systems inevitably face the question of how to

cleanup versions that are no longer visible to running transactions.

We refer to this activity as garbage collection. While the term gar-

bage collection can conjure visions of poor performance, lengthy

pause times, blocking, and other scaling problems often seen in the

virtual machines for managed languages, Hekaton avoids these

problems. Unlike a programming language runtime where the no-

tion of garbage is defined by the "reachability" of a pointer from

any location in the process address space, in Hekaton, garbage is

defined by a version's "visibility" – that is, a version of a record is

garbage if it is no longer visible to any active transaction.

The design of the Hekaton garbage collection (GC) subsystem has

the following desirable properties.

• Hekaton GC is non-blocking. Garbage collection runs con-

currently with the regular transaction workload, and never

stalls processing of any active transaction.

• The GC subsystem is cooperative. Worker threads running

the transaction workload can remove garbage when they en-

counter it. This can save processing time as garbage is re-

moved proactively whenever it is “in the way” of a scan.

• Processing is incremental. Garbage collection may easily

be throttled and can be started and stopped to avoid consum-

ing excessive CPU resources.

• Garbage collection is parallelizable and scalable. Multiple

threads can work in parallel on various phases of garbage

collection and in isolation with little to no cross-thread syn-

chronization.

8.1 Garbage Collection Details
The garbage collection process is described in this section to illus-

trate how these properties are achieved.

8.1.1 GC Correctness
First, care must be taken to identify which versions might be gar-

bage. Potential garbage versions may be created by one of two pro-

cesses. First, a version becomes garbage if a) it was deleted (via

explicit DELETE or through an UPDATE operation) by a commit-

ted transaction and b) the version cannot be read or otherwise acted

upon by any transaction in the system. A second, and less common

way for versions to become garbage is if they were created by a

transaction that subsequently rolls back.

The first and most important property of the GC is that it correctly

determines which versions are actually garbage. The visibility of a

version is determined by its begin and end timestamps. Any ver-

sion whose end timestamp is less than the current oldest active

transaction in the system is not visible to any transaction and can

be safely discarded.

A GC thread periodically scans the global transaction map to deter-

mine the begin timestamp of the oldest active transaction in the sys-

tem. When the GC process is notified that it should begin collec-

tion, transactions committed or aborted since the last GC cycle are

ordered by their end timestamps. Any transaction T in the system

whose end timestamp is older than the oldest transaction watermark

is ready for collection. More precisely, the versions deleted or up-

dated by T can be garbage collected because they are invisible to

all current and future transactions.

8.1.2 Garbage Removal
In order for a garbage version to be removed it must first be un-

linked from all indexes in which it participates. The GC subsystem

collects these versions in two ways: (1) a cooperative mechanism

used by threads running the transaction workload, and (2) a parallel,

background collection process.

Since regular index scanners may encounter garbage versions as

they scan indexes, index operations are empowered to unlink gar-

bage versions when they encounter them. If this unlinks a version

from its last index, the scanner may also reclaim it. This coopera-

tive mechanism is important in two dimensions. First, it naturally

parallelizes garbage collection in the system, and makes collection

efficient since it piggybacks on work the scanner already did to lo-

cate the version. Second, it ensures that old versions will not slow

down future scanners by forcing them to skip over old versions en-

countered, for example, in hash index bucket chains.

This cooperative process naturally ensures that 'hot' regions of an

index are constantly maintained to ensure they are free of obsolete

versions. However, this process is insufficient to ensure that either

(1) 'cold' areas of an index which are not traversed by scanners are

free of garbage, or that (2) a garbage version is removed from other

indexes that it might participate in. Versions in these “dusty cor-

ners” (infrequently visited index regions) do not need to be col-

lected for performance reasons, but they needlessly consume

memory and, as such, should be removed as promptly as possible.

Since reclamation of these versions is not time critical, the work to

collect these versions is offloaded to a background GC process.

Each version examined by the background collection process may

potentially be removed immediately. If the version no longer par-

ticipates in any index (because cooperative scanners have removed

it) it can be reclaimed immediately. However, if GC finds a version

that is still linked in one or more indexes, it cannot immediately

unlink the version since it has no information about the row's pre-

decessor. In order to remove such versions, GC first scans the ap-

propriate part of each index and unlinks the version, after which it

can be removed. While scanning, it of course unlinks any other gar-

bage versions encountered.

8.1.3 Scalability
Early versions of the Hekaton GC used a fixed set of threads for

collection. A main GC thread was responsible for processing gar-

bage versions and attempting to directly unlink those that it could,

while two auxiliary threads were used to perform the 'dusty corner'

scans to remove versions that needed additional work. However,

under high transaction loads, we found that it was difficult to ensure

that a single GC thread could maintain the necessary rate of collec-

tion for a high number of incoming transactions, especially for

those workloads that were more update/delete heavy. In order to

address this problem, the garbage collection has been parallelized

across all worker threads in the system.

A single GC process is still responsible for periodically recalculat-

ing the oldest transaction watermark and partitioning completed

transactions accordingly. However, once this work has been done,

10

transactions that are ready for collection are then distributed to a set

of work queues. After a Hekaton worker has acknowledged its com-

mit or abort to the user, it then picks up a small set of garbage col-

lection work from its CPU-local queue, and completes that work.

This serves two scalability benefits. First, it naturally parallelizes

the work across CPU cores, without the additional overhead and

complexity of maintaining dedicated worker threads, and second, it

allows the system to self-throttle. By ensuring that each thread in

the system that is responsible for user work is also responsible for

GC work, and by preventing a user thread from accepting more

transactional work until a bit of garbage has been collected, this

scheme introduces a small delay in the processing of transactions

in the system, making sure that the system does not generate more

garbage versions than the GC subsystem can retire.

9. EXPERIMENTAL RESULTS

9.1 CPU Efficiency
The Hekaton engine is significantly more efficient than the regular

SQL Server engine; it processes a request using far fewer instruc-

tions and CPU cycles. The goal of our first experiments is to quan-

tify the improvement in CPU efficiency of the core engine and how

this depends on request size. The experiments in this section were

run on a workstation with a 2.67GHz Intel Xeon W3520 processor,

6 GB of memory and an 8 MB L2 cache.

For the experiments we created two identical tables, T1 and T2,

with schema (c1 int, c2 int, c3 varchar(32)), each containing 1M

rows. Column c1 is the primary key. T1 was a Hekaton table with

a hash index on c1 and T2 was a regular table with a B-tree index

on c1. Both tables resided entirely in memory.

9.1.1 Lookup Efficiency
We created a T-SQL procedure RandomLookups that does N ran-

dom lookups on the primary key (column c1) and computes the av-

erage, min, and max of column c2. The key values are randomly

generated using the T-SQL function RAND(). There are two ver-

sions of the procedure, one doing lookups in T1 and compiled into

native code and one doing lookups in T2 using the regular SQL

Server engine.

As the goal was to measure and compare CPU efficiency of the core

engines, we used another (regular) stored procedure as the driver

for RandomLookups. The driver calls RandomLookups in a loop

and computes the average CPU cycles consumed per call. The re-

sults are shown in Table 1 for different numbers of lookups per call.

The speedup is 20X when doing 10 or more lookups per call. Ex-

pressed differently, the Hekaton engine completed the same work

using 5% of the CPU cycles used by the regular SQL Server engine.

The fixed overhead of the stored procedure (call and return, create

and destroy transaction, etc.) dilutes the speedup for few lookups.

For a single lookup the speedup is 10.8X.

The absolute lookup performance is very high. Finishing 100,000

lookups in 98.1 million cycles on a 2.67GHz core equals 2.7M

lookups per second per core.

9.1.2 Update Efficiency
To measure the CPU efficiency of updates we wrote another T-SQL

procedure RandomUpdates that updates the c2 column of N ran-

domly selected rows. Again, there are two versions of the proce-

dure, one compiled into native code and updating T1, and one reg-

ular procedure updating T2. We varied the number of updates per

transaction from 1 to 10,000. The results are shown in Table 2.

As the goal was to measure CPU efficiency and not transaction la-

tency, we enabled write caching on the disk used for the transaction

log. With write caching disabled, we would essentially have meas-

ured the write latency of the disk which is not the information we

were after. CPU efficiency is largely independent of the type of

logging device.

The speedup is even higher than for lookups, reaching around 30X

for transactions updating 100 or more records. Even for transac-

tions consisting of a single updated, the speedup was around 20X.

In other words, Hekaton got the work done using between 3% and

5% of the cycles used by the regular engine.

Again, the absolute performance is very high.10,000 updates in

14.4 million cycles equals about 1.9M updates per second using a

single core.

As mentioned earlier, Hekaton generally logs less data than the reg-

ular SQL Server engine. In this particular case, it reduced log out-

put by 57%. However, how much Hekaton logs depends on the rec-

ord size; for large records the relative gain would be smaller.

9.2 Scaling Under Contention
Scalability of database systems is often limited by contention on

locks and latches [5]. The system is simply not able to take ad-

vantage of additional processor cores so throughput levels off or

even decreases. When SQL Server customers experience scalability

limitations, the root cause is frequently contention.

Hekaton is designed to eliminate lock and latch contention, allow-

ing it to continue to scale with the number of processor cores. The

next experiment illustrates this behavior. This experiment simulates

an order entry system for, say, a large online retailer. The load on

the system is highly variable and during peak periods throughput is

limited by latch contention.

Transac-

tion size in

#lookups

CPU cycles (in millions) Speedup

Interpreted Compiled

1 0.734 0.040 10.8X

10 0.937 0.051 18.4X

100 2.72 0.150 18.1X

1,000 20.1 1.063 18.9X

10,000 201 9.85 20.4X

Transac-

tion size in

#updates

CPU cycles (in millions) Speedup

Interpreted Compiled

1 0.910 0.045 20.2X

10 1.38 0.059 23.4X

100 8.17 0.260 31.4X

1,000 41.9 1.50 27.9X

10,000 439 14.4 30.5X

Table 1: Comparison of CPU efficiency for lookups. Table 2: Comparison of CPU efficiency for updates.

11

The problem is caused by a SalesOrderDetails

table that stores data about each item ordered.

The table has a unique index on the primary key

which is a clustered B-tree index if the table is a

regular SQL Server table and a hash index if it is

Hekaton table. The workload in the experiment

consists of 60 input streams, each a mix of 50%

update transactions and 50% read-only transac-

tions. Each update transaction acquires a unique

sequence number, which is used as the order

number, and then inserts 100 rows in the

SalesOrderDetails table. A read-only transaction

retrieves the order details for the latest order.

This experiment was run on a machine with 2

sockets, 12 cores (Xeon X5650, 2.67GHz),

144GB of memory, and Gigabit Ethernet net-

work cards. External storage consisted of four

64GB Intel SSDs for data and three 80GB Fu-

sion-IO SSDs for logs.

Figure 7 shows the throughput as the number of

cores used varies. The regular SQL Server en-

gine shows limited scalability as we increase the

number of cores used. Going from 2 core to 12

cores throughput increases from 984 to 2,312

transactions per second, only 2.3X. Latch contention limits the

CPU utilization to just 40% for more than 6 cores.

Converting the table to a Hekaton table and accessing it through

interop already improves throughput to 7,709 transactions per sec-

ond for 12 cores, a 3.3X increase over plain SQL Server. Accessing

the table through compiled stored procedures improves throughput

further to 36,375 transactions per second at 12 cores, a total in-

crease of 15.7X.

The Hekaton engine shows excellent scaling. Going from 2 to 12

cores, throughput improves by 5.1X for the interop case (1,518 to

7,709 transactions per second). If the stored procedures are com-

piled, throughput also improves by 5.1X (7,078 to 36,375 transac-

tions per second).

We were wondering what the performance of the regular SQL

Server engine would be if there were no contention. We partitioned

the database and rewrote the stored procedure so that different

transactions did not interfere with each other. The results are shown

in the row labeled “SQL with no contention”. Removing contention

increased maximum throughput to 5,834 transaction/sec which is

still lower than the throughput achieved through interop. Removing

contention improved scaling significantly from 2.3X to 5.1X going

from 2 cores to 12 cores.

10. Concluding Remarks
Hekaton is a new database engine targeted for OLTP workloads

under development at Microsoft. It is optimized for large main

memories and many-core processors. It is fully integrated into SQL

Server, which allows customers to gradually convert their most per-

formance-critical tables and applications to take advantage of the

very substantial performance improvements offered by Hekaton.

Hekaton achieves its high performance and scalability by using

very efficient latch-free data structures, multiversioning, a new op-

timistic concurrency control scheme, and by compiling T-SQL

stored procedure into efficient machine code. Transaction durabil-

ity is ensured by logging and checkpointing to durable storage.

High availability and transparent failover is provided by integration

with SQL Server’s AlwaysOn feature.

As evidenced by our experiments, the Hekaton engine delivers

more than an order of magnitude improvement in efficiency and

scalability with minimal and incremental changes to user applica-

tions or tools.

11. REFERENCES
[1] Florian Funke, Alfons Kemper, Thomas Neumann: HyPer-

sonic Combined Transaction AND Query Processing.

PVLDB 4(12): 1367-1370 (2011)

[2] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier,

Philippe Cudré-Mauroux, Samuel Madden: HYRISE - A

Main Memory Hybrid Storage Engine. PVLDB 4(2): 105-

116 (2010)

[3] Martin Grund, Philippe Cudré-Mauroux, Jens Krüger, Sam-

uel Madden, Hasso Plattner: An overview of HYRISE - a

Main Memory Hybrid Storage Engine. IEEE Data Eng. Bull.

35(1): 52-57 (2012)

[4] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, Mi-

chael Stonebraker: OLTP through the looking glass, and

what we found there. SIGMOD 2008: 981-992

[5] IBM SolidDB, http://www.ibm.com/software/data/soliddb

[6] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anasta-

sia Ailamaki, Babak Falsafi: Shore-MT: a scalable storage

manager for the multicore era. EDBT 2009: 24-35

[7] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew

Pavlo, Alex Rasin, Stanley B. Zdonik, Evan P. C. Jones,

Samuel Madden, Michael Stonebraker, Yang Zhang, John

Hugg, Daniel J. Abadi: H-store: a high-performance, distrib-

uted main memory transaction processing system. PVLDB

1(2): 1496-1499 (2008)

Figure 7: Experiment illustrating the scalability of the Hekaton engine. Through-

put for the regular SQL Server engine is limited by latch contention.

1 2 3 4 5 6

Number of cores 2 4 6 8 10 12

SQL with contention 984 1,363 1,645 1,876 2,118 2,312

SQL without contention 1,153 2,157 3,161 4,211 5,093 5,834

Interop 1,518 2,936 4,273 5,459 6,701 7,709

Native 7,078 13,892 20,919 26,721 32,507 36,375

 -

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

 35,000

 40,000

Tr
an

sa
ct

io
n

s
P

e
r

Se
co

n
d

System throughput

12

[8] Alfons Kemper, Thomas Neumann: HyPer: A hybrid

OLTP&OLAP main memory database system based on vir-

tual memory snapshots. ICDE 2011: 195-206

[9] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig

Freedman, Jignesh M. Patel, Mike Zwilling: High-Perfor-

mance Concurrency Control Mechanisms for Main-Memory

Databases. PVLDB 5(4): 298-309 (2011)

[10] Justin J. Levandoski, David B. Lomet, Sudipta Sengupta,

The Bw-Tree: A B-tree for New Hardware Platforms, ICDE

2013 (to appear).

[11] The LLVM Compiler Infrastructure, http://llvm.org/

[12] Maged M. Michael. 2004. Hazard Pointers: Safe Memory

Reclamation for Lock-Free Objects. IEEE Trans. Parallel

Distrib. Syst. 15, 6 (June 2004), 491-504.

[13] Maged M. Michael. 2002. High performance dynamic lock-

free hash tables and list-based sets. In Proceedings of the

fourteenth annual ACM symposium on Parallel algorithms

and architectures (SPAA '02): 73-82.

[14] Thomas Neumann: Efficiently Compiling Efficient Query

Plans for Modern Hardware. PVLDB 4(9): 539-550 (2011)

[15] Oracle TimesTen, http://www.oracle.com/technetwork/prod-

ucts/timesten/overview/index.html

[16] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, Anasta-

sia Ailamaki: Data-Oriented Transaction Execution. PVLDB

3(1): 928-939 (2010)

[17] Phoenix compiler framework, http://en.wikipe-

dia.org/wiki/Phoenix_(compiler_framework)

[18] SAP In-Memory Computing, http://www.sap.com/solu-

tions/technology/in-memory-computing-platform/hana/over-

view/index.epx

[19] Sybase In-Memory Databases, http://www.sybase.com/man-

age/in-memory-databases

[20] Håkan Sundell, Philippas Tsiga, Lock-free deques and dou-

bly linked lists, Journal of Parallel and Distributed Compu-

ting - JPDC , 68(7): 1008-1020, (2008)

[21] VoltDB, http://voltdb.com

12. Appendix
Building an engine that is 10 to 100 times faster than SQL Server

today required development of fundamentally new techniques. The

analysis below shows why the goal cannot be achieved by optimiz-

ing existing mechanisms.

The performance of any OLTP system can be broken down into

base performance and a scalability factor as follows.

SP = BP*SF^lg(N)

where

BP = performance of a single core in business transactions,

SF = scalability factor,

lg(N) = log base two of the number of cores in the system, and

SP = system performance in business transactions.

BP can be expressed as the product of CPI (cycles per instruction)

and instructions retired, IR. The equation can then be expressed as

SP = IR*CPI *SF ^ lg(N).

With a CPI of less than 1.6 achieved on some common OLTP

benchmarks, SQL Server’s runtime efficiency is fairly high for a

commercial software system. More importantly, however, it means

that CPI improvements alone cannot deliver dramatic performance

gains. Even an outstanding CPI of 0.8, for instance, would barely

double the server’s runtime performance, leaving us still far short

of the 10-100X goal.

SQL Server also scales quite well. On the TPC-E benchmark it has

a scalability factor of 1.89 up to 256 cores; that is, for every dou-

bling of cores, throughput increases by a factor of 1.89. This again

implies that limited performance gains can be achieved by improv-

ing scalability. At 256 cores, SQL Server throughput increases to

(1.89)^8 = 162.8. With perfect scaling the throughput increase

would be 256 but that would only improve throughput over SQL

Server by a factor of 256/162.8 = 1.57.

Combining the best case CPI and scalability gains improves perfor-

mance at most by a factor of 2*1.57 = 3.14. So even under the most

optimistic assumptions, improving CPI and scalability cannot yield

orders-of-magnitude speedup. The only real hope is to drastically

reduce the number of instructions executed.

