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Lec 16: Hybrid Lagrangian/Eulerian Methods
15-769: Physically-based Animation of Solids and Fluids (F23)



Recap: Fluid Simulation Fundamentals

Fluid as a special kind of solid, Eulerian View

Fluid: a special kind of solid whose strain energy only penalizes volume change
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X" =arg mxm > lx—=X"|| + h E P(x) e.g. P, (X) = E V, > (det(F ,(x)) — 1)

 Use particles to track/represent fluid regions,
 Use shape functions in world-space (Eulerian View)

Deformation Map ¢

Eulerian view:
Quantity measured
at a point In space

Material Space Q' World Space
x = x(X,t) = ¢(X, t)



Recap: Fluid Simulation Fundamentals

Push Forward and Pull Back, Material Derivatives
x =x(X,t) = ¢(X,t) X=¢'x0)

Push forward: Q(X,7) = Q(¢~'(x,1),1) = q(x, 1) Pull back: q(X,7) = q(¢(X,1),1) = Q(X, 1)
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A(X: t) = a(q)(x’, t),,t),. ai(x, t) 7 a—t.(xft)o a(x,r) = Dt, (Material Derivative)




Recap: Fluid Simulation Fundamentals

Deriving Incompressible Navier-Stoke’s Equation for Newtonian Fluids

Momentum Equation (Lagrangian View):
oV

R(X,0)—(X,t) = V* - P(X,t) + R(X,0)g
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\ Push forward on integral form
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(x,1) = V*-0(X,1) + p(X,1)g

( Eulerian View: (X, f)
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Navier Stoke’s Equation (Inviscid): 5 |

Newtonian fluids

Adding viscosity for Incompressibler

Incompressible Navier-Stoke’s Equation
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Newtonian fluids: o iscosity
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Strain rate tensor: D = —(Vv + Vv/)
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Recap: Smoothed Particle Hydrodynamics (SPH)

Basic ldea

Given a field A and a smoothing kernel function W, e.g. Gaussian

A; o
A smoother version of A as an approximation of it is a A 0 o
O
A(x) ~ (AxW)( /A W(x—x',h)dv fx) | — o o O
N\ Y,
Favored properties of W: ®
/ /I L. ..
/]Rd W(r',h)dv' =1 (normalization condition) Discretization using particles:
/
lim W(r,h' ) = o(r Dirac-0 condition) A(X ) / / /
h' —0 ( ) (x) ( (A*W)(Xi):/ o(x') W(x—x,h)p(x)dv
W(r,h) >0 (positivity condition) dm’
) ~ XA L w(xi—xj,h) = (A(x0)
W(r,h) = W(—r,h) (symmetry condition) jer  PJ

W(r,h) = 0 for ||r|| > A, (compact support condition)




Just need to approximate the differential operators,
and relate velocity to pressure via constitutive models
to solve Ol
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For each time step n: Time Splitting
ou
u“ < Solve P Fu - Vu = 0 (advection)
[
. ou
u <« Solve 6_ = g2 (apply external force)
[
ou
u¢ < Solve 8_ = vV - Vu (diffusion)
[

ut — Solve V-u=0 (pressure projection)
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Recap: SPH Fluid Simulation

Direct discretization are not accurate
and can lead to instability:
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Difference and symmetric
formula are often used.:
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Today:
e Hybrid Lagrangian-Eulerian Methods

Particle Advection
Particle-Grid Transfer
Grid Updates
Boundary Conditions
Sparse Grids
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Hybrid Lagrangian/Eulerian Methods

Basic ldea

o |@ Introduce a background Eulerian Grid,
o o and measure quantities on the grid nodes
O O 0!|© Transfer information between the particles and grid
O O O

P o o Ol @ For each time step n: Time Splitting

O ou \
© > © | u“ < Solve Fu - Vu = 0 (advection)  Using particles

. ° | e 5 +

U
© O © 1O | u’ — Solve — = 2 (apply external force)

ot

I/t U u ]
C _ . : : sing the grid
— take advantage of u- < Solve =~ = vV - Vu (diffusion)

both representations \

"« Solve V - u = 0 (pressure projection)

)|,




Particle Advection

ou : : :
1% «— Solve Lu-Vu=0 Our particles are Lagrangian particles!

ot — each particle marks a fixed region in material space
— fluids are moving, (Forces are evaluated in an Eulerian view)
resulting in Eulerian velocity changes.

du(¢p(X, 1), t
— derived from CASSIIL) =0
dt
. . oV(X, 1)
Recall that V(X,t) =v($(X,t),t), so the advection equation becomes =(

ot

Solving advection using particles,
we just need to move the particles based on the current velocity!

Forward Euler: X, < X, + hu(x,,, t)

Can use explicit Runge-Kutta, e.g. RK4, for higher accuracy.



Particle-Grid Transfer

Grid to particle is easy, can just use e.g. bilinear interpolation: (X 1 ,yz) (X 2 ,yz)
x,=Px;, P € R4 stores the interpolation weights Q O
@
Particle to grid: inverse interpolation? (X ,)/)
x; = arg min —|| Px — po2
x 2
Instead: ( O ) ( O )
X1,VY1 X2,¥1
x; =N _IPTxp , Where V;; = 51']‘ Z P, is for normalization o4 24
k ®@ =0 Ho +




Grid-based Viscosity (Diffusion)
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Use implicit Euler for stability!




Pressure Projection on Eulerian Grid
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To avoid non-trivial null space of central difference, T ’ p Az
we use MAC grid. _— Atlpi’j—l—l — p;
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Boundary Conditions (BC)

Solid wall:

A

No-stick BC (for inviscid fluids): U - 7. = Usoliqg * T

No-slip BC (for viscos fluids): U = Usolid -

Free surface:
Q

xZIA' (x Z’ 1 —I—th” 1)
M, o bl LA Na(X)T X t")ds(X / Na.i(X
At? 500 Q0

In Eulerian View: -1 =0

For inviscid fluids: p = 0

(X, tm)dX



The Particle-In-Cell Method

For each time step n: VILHE IR
a al/l -
u“ < Solve — + u - Vu = 0 (advection) Using particles
ot
Transfer velocity from particles to grid

ou
u” < Solve 6_ = g2 (apply external force)
[

ou Using the grid

u¢ < Solve E =vV-:-Vu (diffusion)

u"t! « Solve V - u = 0 (pressure projection)

Transfer velocity from grid to particles




Extending to Hybrid Lagrangian/Eulerian Solid Simulation
The Material-Point Method

For each time step n: Time Splitting For each time st ep 7 Time Splitting
u® < Solve e + u - Vu = 0 (advection) Using particles :
ot ) ou
a _ - . .
Transfer velocity from particles to grid u“ < Solve F U - V U = O (adveCtlon) USHJQ _33_’*1(:{65

ot

Transfer information from particles to grid

7]
u? « Solve E = g (apply external force)

u - -
u¢ < Solve — = v'V - Vu (diffusion) Using the grid

ot

+

u"t! « Solve V - u = 0 (pressure projection)

Using the grid

Transfer velocity from grid to particles

S

The Particle-In-Cell Method Transfer information from grid to particles

oK
. Needs to track deformation gradient per particle using updated Lagrangian: Ftl ~ F* + hd_
t

0 n+1y __ oV n+1y __ av‘n—H n n

5 FX ) = o (X, 7)) = — —(®(X, tT))F(X, t7)



Sparse Grid for Better Efficiency

Only place gr

d cells at region of interests:
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Improving Accuracy

* Particle-grid transfer: FLIFQ APIY PobPIg

FLIP APIC PolyPIC' ¥

 FLIP, APIC, PolyPIC, PowerPIC, ... .=

FLIP APIC PolyPIC

e Advection:

 BiMocq, Covector Fluids, ...

* Pressure Projection:
* Advection-Reflection Solver

e Cut-cell methods

L)

.

" En (a) MC+R [Zehnder et al. 2018] (b) BiMocq [Qu et al. 2019] (c) CF (Covector Fluids)+MCM (Ours)



More Fluid Simulation Research

* Vortex methods, e.g. [Selle et al. 2005], [Yin et al. 2023]

* Lattice Boltzmann methods (LBM), e.g. [Li el al. 2020]
 Based on statistical physics

 Well-suited for efficient simulation of turbulent flows

 Monte Carlo methods, e.g. [Rioux-Lavoie et al. 2022]

e Reduction:

* modeling fluids as height fields, e.g. [Su et al. 2023]

* Applying model reduction, e.qg. [Panuelos et al. 2023]

* Solid-fluid coupling, e.g. [Batty et al. 2007], [Xie et al. 2023]

* Fluid control, e.g. [Li et al. 2023]



https://physbam.stanford.edu/~fedkiw/papers/stanford2005-01.pdf
https://yhesper.github.io/fc23/fc23.html
https://www.geometry.caltech.edu/pubs/LLDHL20.pdf
https://cs.uwaterloo.ca/~thachisu/mcfluid.pdf
https://kuiwuchn.github.io/rtsw.html
https://dl.acm.org/doi/abs/10.1145/3592146
https://www.cs.ubc.ca/labs/imager/tr/2007/Batty_VariationalFluids/
https://drive.google.com/file/d/1JVbtC3QFmgRS3gHLIw0fxtGClXbUq-rv/preview
https://zhehaoli1999.github.io/DiffFR/
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Next Lecture: The Maternial Point Method

Particle Domain (Lagrangian)
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Image Sources

e https://sph-tutorial.physics-simulation.org/

o https://en.wikipedia.org/wiki/Bilinear interpolation

» https://docs.taichi-lang.org/docs/sparse

» https://orionquest.qithub.io/papers/SSPGASS/paper.html

e https://dl.acm.org/doi/pdf/10.1145/3130800.3130878

e https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/
CovectorFluids.pdf



https://sph-tutorial.physics-simulation.org/
https://en.wikipedia.org/wiki/Bilinear_interpolation
https://docs.taichi-lang.org/docs/sparse
https://orionquest.github.io/papers/SSPGASS/paper.html
https://dl.acm.org/doi/pdf/10.1145/3130800.3130878
https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/CovectorFluids.pdf
https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/CovectorFluids.pdf

