
Instructor: Minchen Li

15-769: Physically-based Animation of Solids and Fluids (F23)
Lec 16: Hybrid Lagrangian/Eulerian Methods

Recap: Fluid Simulation Fundamentals
Fluid as a special kind of solid, Eulerian View
Fluid: a special kind of solid whose strain energy only penalizes volume change

Fluid changes topology rapidly:
• Use particles to track/represent fluid regions,
• Use shape functions in world-space (Eulerian View)

xn+1 = arg min
x

1
2

∥x − x̃n∥ + h2 ∑ P(x) e.g. Pfluid(x) = ∑
e

V0
e

κ
2

(det(Fe(x)) − 1)2

Eulerian view:
Quantity measured
at a point in space

World Space Ωt

x

Deformation Map ϕ

Material Space Ω0

X

Recap: Fluid Simulation Fundamentals
Push Forward and Pull Back, Material Derivatives

X = ϕ−1(x, t)

Q(X, t) = Q(ϕ−1(x, t), t) ≡ q(x, t)Push forward: Pull back: q(x, t) = q(ϕ(X, t), t) ≡ Q(X, t)

a(x, t) =
Dv(x, t)

Dt
(Material Derivative)

Recap: Fluid Simulation Fundamentals
Deriving Incompressible Navier-Stoke’s Equation for Newtonian Fluids

Newtonian fluids: σviscosity = 2μD + λtr(D)I
Strain rate tensor: D =

1
2

(∇v + ∇vT)

Bulk modulus → ∞

Adding viscosity for Incompressible
Newtonian fluids

Momentum Equation (Lagrangian View):

ρ(x, t)
Dv
Dt

(x, t) = ∇x ⋅ σ(x, t) + ρ(x, t)gEulerian View:

Navier Stoke’s Equation (Inviscid):

Incompressible Navier-Stoke’s
Equation (Inviscid):

Incompressible Navier-Stoke’s Equation

Push forward on integral form

σ =
1
J

PFT =
∂Ψ
∂J

I = − pI

Lagrange
multiplier
term

W

Discretization using particles:

Recap: Smoothed Particle Hydrodynamics (SPH)
Basic Idea

The kernel needs to involve a large number
of neighbors for accurate estimation!

Given a field and a smoothing kernel function , e.g. GaussianA W

A smoother version of as an approximation of it isA

Favored properties of :W

Recap: SPH Fluid Simulation
Just need to approximate the differential operators,
and relate velocity to pressure via constitutive models
to solve

Direct discretization are not accurate
and can lead to instability:

Difference and symmetric
formula are often used:

Solve (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve (apply external force)ub ←
∂u
∂t

= g

Solve (diffusion)uc ←
∂u
∂t

= ν∇ ⋅ ∇u

Solve (pressure projection)un+1 ← ∇ ⋅ u = 0

For each time step :n Time Splitting

Today:

• Hybrid Lagrangian-Eulerian Methods

‣ Particle Advection

‣ Particle-Grid Transfer

‣ Grid Updates

‣ Boundary Conditions

‣ Sparse Grids

Hybrid Lagrangian/Eulerian Methods
Basic Idea

Introduce a background Eulerian Grid,
and measure quantities on the grid nodes

Transfer information between the particles and grid

Solve (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve (apply external force)ub ←
∂u
∂t

= g

Solve (diffusion)uc ←
∂u
∂t

= ν∇ ⋅ ∇u

Solve (pressure projection)un+1 ← ∇ ⋅ u = 0

For each time step :n Time Splitting

Using particles

Using the grid
— take advantage of
both representations

Particle Advection
Solve ua ←

∂u
∂t

+ u ⋅ ∇u = 0

— derived from
du(ϕ(X, t), t)

dt
= 0

Recall that , so the advection equation becomes
∂V(X, t)

∂t
= 0

Solving advection using particles,
we just need to move the particles based on the current velocity!

— fluids are moving,
resulting in Eulerian velocity changes.

Our particles are Lagrangian particles!
— each particle marks a fixed region in material space
(Forces are evaluated in an Eulerian view)

Forward Euler: xp ← xp + hu(xp, t)

Can use explicit Runge-Kutta, e.g. RK4, for higher accuracy.

Particle-Grid Transfer
Grid to particle is easy, can just use e.g. bilinear interpolation:

 , stores the interpolation weightsxp = Pxi P ∈ ℝdnp×dni

Particle to grid: inverse interpolation?

xi = arg min
x

1
2

∥Px − xp∥2 Too expensive!

 , where is for normalizationxi = N−1PTxp Nij = δij ∑
k

Pki

Instead:

Grid-based Viscosity (Diffusion)
Solve uc ←

∂u
∂t

= ν∇ ⋅ ∇u

(i, j) (i + 1,j)(i − 1,j)

(i, j + 1)

(i, j − 1)

— Independent per dimension:
∂uk

∂t
= ν(∇ ⋅ ∇u)k = ν(

∂2uk

∂x2
+

∂2uk

∂y2
)

≈ ν(
uk(i + 1,j) + uk(i − 1,j) − 2uk(i, j)

Δx2
+

uk(i, j + 1) + uk(i, j − 1) − 2uk(i, j)
Δx2

)

Use implicit Euler for stability!

Pressure Projection on Eulerian Grid
Solve s.t. un+1 ←

∂u
∂t

= −
1
ρ

∇p ∇ ⋅ u = 0

After time discretization:
un+1 − un

h
= −

1
ρ

∇p

un+1 = un − h
1
ρ

∇p

We want ,∇ ⋅ un+1 = 0

or equivalently, — a Poisson Equation∇ ⋅ ∇p =
ρ
h

∇ ⋅ un

To avoid non-trivial null space of central difference,
we use MAC grid.

Boundary Conditions (BC)

No-stick BC (for inviscid fluids):

No-slip BC (for viscos fluids):

Free surface:

Solid wall:

For inviscid fluids:
=

0
In Eulerian View: σ ⋅ n = 0

The Particle-In-Cell Method

Solve (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve (apply external force)ub ←
∂u
∂t

= g

Solve (diffusion)uc ←
∂u
∂t

= ν∇ ⋅ ∇u

Solve (pressure projection)un+1 ← ∇ ⋅ u = 0

For each time step :n Time Splitting

Using particles

Using the grid

Transfer velocity from grid to particles

Transfer velocity from particles to grid

Extending to Hybrid Lagrangian/Eulerian Solid Simulation
The Material-Point Method

Solve (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve un+1 ←
∂u
∂t

= ∇ ⋅ σ + g

For each time step :n Time Splitting

Using particles

Using the grid

Transfer information from grid to particles

Transfer information from particles to grid

• Needs to track deformation gradient per particle using updated Lagrangian: Fn+1 ≈ Fn + h
∂F
∂t

The Particle-In-Cell Method

Sparse Grid for Better Efficiency

Z-order indexing with better data locality:

Only place grid cells at region of interests:

Improving Accuracy

• Particle-grid transfer:

• FLIP, APIC, PolyPIC, PowerPIC, …

• Advection:

• BiMocq, Covector Fluids, …

• Pressure Projection:

• Advection-Reflection Solver

• Cut-cell methods

• …

More Fluid Simulation Research
• Vortex methods, e.g. [Selle et al. 2005], [Yin et al. 2023]

• Lattice Boltzmann methods (LBM), e.g. [Li el al. 2020]

• Based on statistical physics

• Well-suited for efficient simulation of turbulent flows

• Monte Carlo methods, e.g. [Rioux-Lavoie et al. 2022]

• Reduction:

• modeling fluids as height fields, e.g. [Su et al. 2023]

• Applying model reduction, e.g. [Panuelos et al. 2023]

• Solid-fluid coupling, e.g. [Batty et al. 2007], [Xie et al. 2023]

• Fluid control, e.g. [Li et al. 2023]

https://physbam.stanford.edu/~fedkiw/papers/stanford2005-01.pdf
https://yhesper.github.io/fc23/fc23.html
https://www.geometry.caltech.edu/pubs/LLDHL20.pdf
https://cs.uwaterloo.ca/~thachisu/mcfluid.pdf
https://kuiwuchn.github.io/rtsw.html
https://dl.acm.org/doi/abs/10.1145/3592146
https://www.cs.ubc.ca/labs/imager/tr/2007/Batty_VariationalFluids/
https://drive.google.com/file/d/1JVbtC3QFmgRS3gHLIw0fxtGClXbUq-rv/preview
https://zhehaoli1999.github.io/DiffFR/

Today:

• Hybrid Lagrangian-Eulerian Methods

‣ Particle Advection

‣ Particle-Grid Transfer

‣ Grid Updates

‣ Boundary Conditions

‣ Sparse Grids

Next Lecture: The Material Point Method

Image Sources

• https://sph-tutorial.physics-simulation.org/

• https://en.wikipedia.org/wiki/Bilinear_interpolation

• https://docs.taichi-lang.org/docs/sparse

• https://orionquest.github.io/papers/SSPGASS/paper.html

• https://dl.acm.org/doi/pdf/10.1145/3130800.3130878

• https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/
CovectorFluids.pdf

https://sph-tutorial.physics-simulation.org/
https://en.wikipedia.org/wiki/Bilinear_interpolation
https://docs.taichi-lang.org/docs/sparse
https://orionquest.github.io/papers/SSPGASS/paper.html
https://dl.acm.org/doi/pdf/10.1145/3130800.3130878
https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/CovectorFluids.pdf
https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/CovectorFluids.pdf

