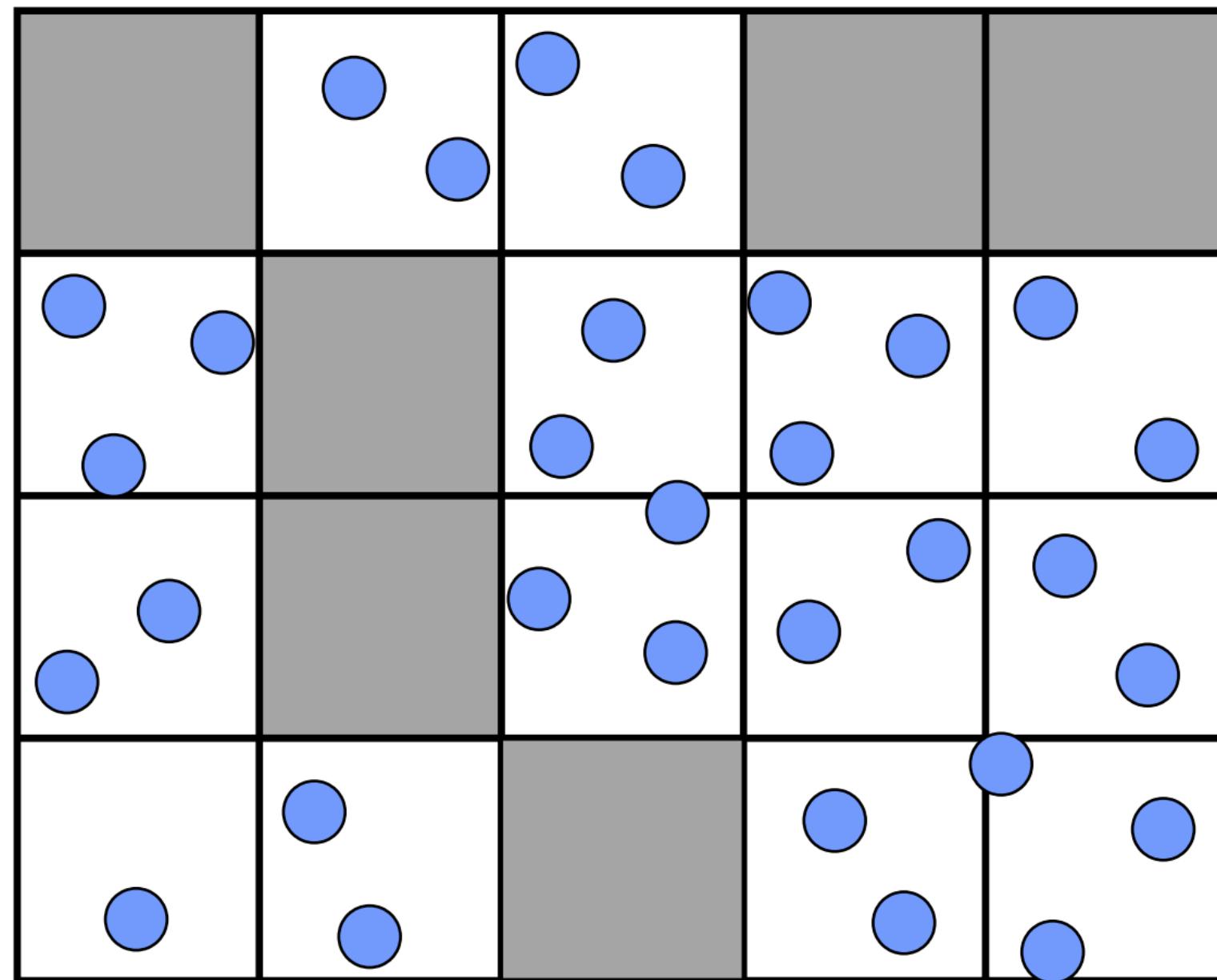


Instructor: Minchen Li

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u},$$
$$\nabla \cdot \vec{u} = 0.$$



Lec 16: Hybrid Lagrangian/Eulerian Methods

15-769: Physically-based Animation of Solids and Fluids (F23)

Recap: Fluid Simulation Fundamentals

Fluid as a special kind of solid, Eulerian View

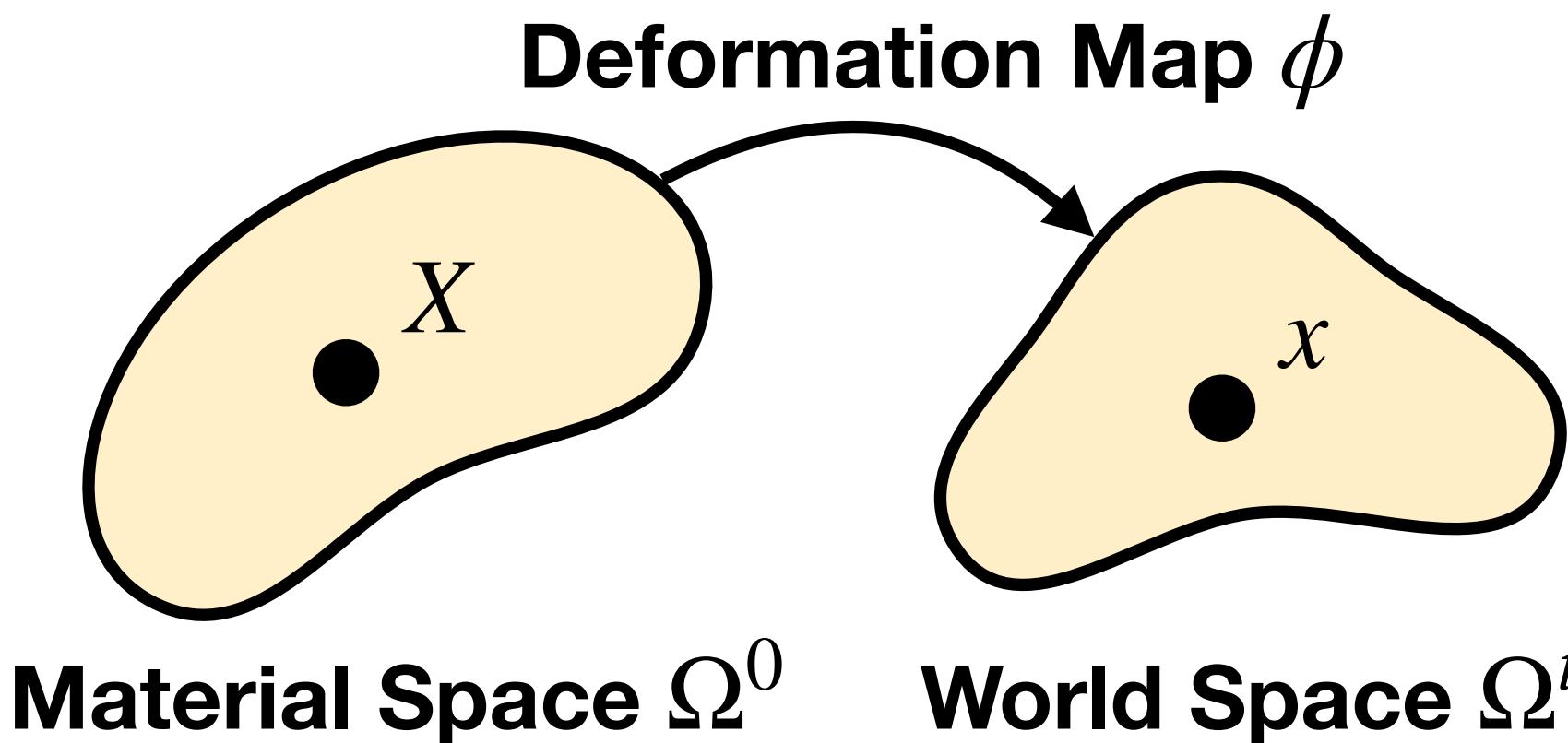
Fluid: a special kind of solid whose strain energy only penalizes volume change

$$x^{n+1} = \arg \min_x \frac{1}{2} \|x - \tilde{x}^n\|^2 + h^2 \sum P(x)$$

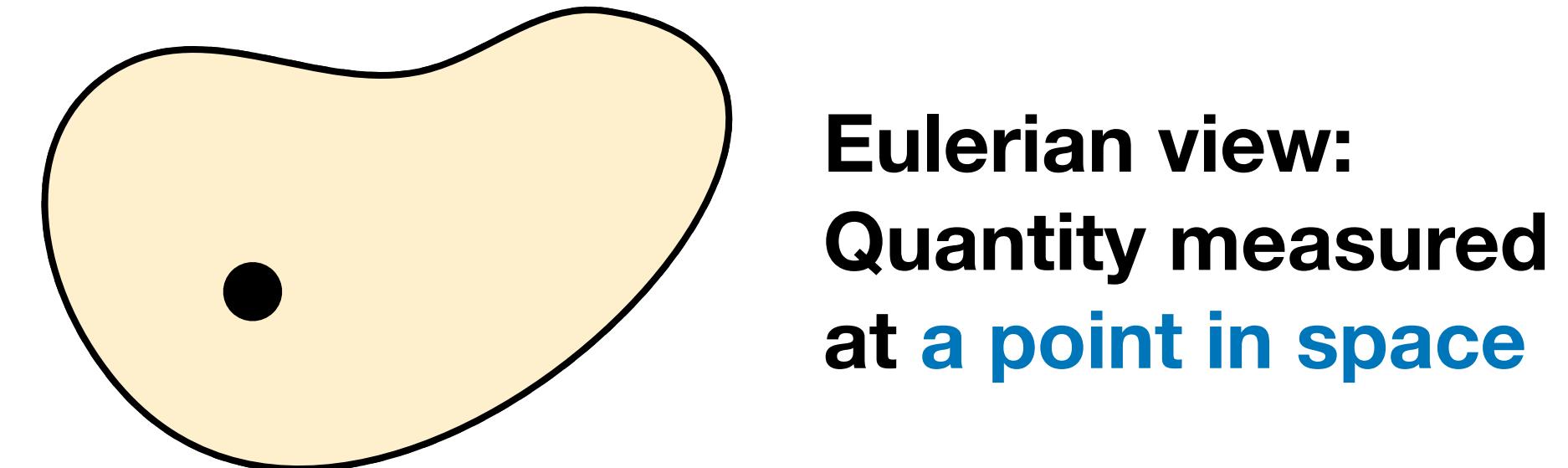
e.g. $P_{fluid}(x) = \sum_e V_e^0 \frac{\kappa}{2} (\det(\mathbf{F}_e(x)) - 1)^2$

Fluid changes topology rapidly:

- Use particles to track/represent fluid regions,
- Use shape functions in world-space (Eulerian View)



$$\mathbf{x} = \mathbf{x}(\mathbf{X}, t) = \phi(\mathbf{X}, t)$$



Recap: Fluid Simulation Fundamentals

Push Forward and Pull Back, Material Derivatives

$$\mathbf{x} = \mathbf{x}(\mathbf{X}, t) = \phi(\mathbf{X}, t) \quad \mathbf{X} = \phi^{-1}(\mathbf{x}, t)$$

Push forward: $\mathbf{Q}(\mathbf{X}, t) = \mathbf{Q}(\phi^{-1}(\mathbf{x}, t), t) \equiv \mathbf{q}(\mathbf{x}, t)$

Pull back: $\mathbf{q}(\mathbf{x}, t) = \mathbf{q}(\phi(\mathbf{X}, t), t) \equiv \mathbf{Q}(\mathbf{X}, t)$

$$\mathbf{V}(\mathbf{X}, t) = \frac{\partial \phi}{\partial t}(\mathbf{X}, t)$$

$$\mathbf{A}(\mathbf{X}, t) = \frac{\partial^2 \phi}{\partial t^2}(\mathbf{X}, t) = \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t).$$

$$\mathbf{v}(\mathbf{x}, t) = \mathbf{V}(\phi^{-1}(\mathbf{x}, t), t),$$

$$\mathbf{a}(\mathbf{x}, t) = \mathbf{A}(\phi^{-1}(\mathbf{x}, t), t).$$

$$\mathbf{V}(\mathbf{X}, t) = \mathbf{v}(\phi(\mathbf{X}, t), t),$$

$$\mathbf{A}(\mathbf{X}, t) = \mathbf{a}(\phi(\mathbf{X}, t), t).$$

$$\mathbf{A}(\mathbf{X}, t) = \frac{\partial}{\partial t} \mathbf{V}(\mathbf{X}, t) = \frac{\partial \mathbf{v}}{\partial t}(\phi(\mathbf{X}, t), t) + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}(\phi(\mathbf{X}, t), t) \frac{\partial \phi}{\partial t}(\mathbf{X}, t).$$

$$A_i(\mathbf{X}, t) = \frac{\partial}{\partial t} V_i(\mathbf{X}, t) = \frac{\partial v_i}{\partial t}(\phi(\mathbf{X}, t), t) + \frac{\partial v_i}{\partial x_j}(\phi(\mathbf{X}, t), t) \frac{\partial \phi_j}{\partial t}(\mathbf{X}, t).$$

$$a_i(\mathbf{x}, t) = A_i(\phi^{-1}(\mathbf{x}, t), t) = \frac{\partial v_i}{\partial t}(\mathbf{x}, t) + \frac{\partial v_i}{\partial x_j}(\mathbf{x}, t) v_j(\mathbf{x}, t)$$

$$a_i(\mathbf{x}, t) \neq \frac{\partial v_i}{\partial t}(\mathbf{x}, t).$$

$$\mathbf{a}(\mathbf{x}, t) = \frac{D\mathbf{v}(\mathbf{x}, t)}{Dt} \quad (\text{Material Derivative})$$

Recap: Fluid Simulation Fundamentals

Deriving Incompressible Navier-Stoke's Equation for Newtonian Fluids

Momentum Equation (Lagrangian View):

$$R(\mathbf{X}, 0) \frac{\partial \mathbf{V}}{\partial t}(\mathbf{X}, t) = \nabla^{\mathbf{X}} \cdot \mathbf{P}(\mathbf{X}, t) + R(\mathbf{X}, 0) \mathbf{g}$$

Push forward on integral form

$$\sigma = \frac{1}{J} \mathbf{P} \mathbf{F}^T = \frac{\partial \Psi}{\partial J} \mathbf{I} = -p \mathbf{I}$$

Eulerian View: $\rho(\mathbf{x}, t) \frac{D \mathbf{v}}{D t}(\mathbf{x}, t) = \nabla^{\mathbf{x}} \cdot \sigma(\mathbf{x}, t) + \rho(\mathbf{x}, t) \mathbf{g}$

Navier Stoke's Equation (Inviscid):

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g}$$

Bulk modulus $\rightarrow \infty$

Adding viscosity for Incompressible Newtonian fluids

Incompressible Navier-Stoke's Equation (Inviscid):

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g}$$
$$\nabla \cdot \vec{u} = 0.$$

Lagrange multiplier term

Incompressible Navier-Stoke's Equation

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u},$$

$$\nabla \cdot \vec{u} = 0.$$

Strain rate tensor: $\mathbf{D} = \frac{1}{2} (\nabla \mathbf{v} + \nabla \mathbf{v}^T)$

Newtonian fluids: $\sigma_{viscosity} = 2\mu \mathbf{D} + \lambda \text{tr}(\mathbf{D}) \mathbf{I}$

Recap: Smoothed Particle Hydrodynamics (SPH)

Basic Idea

Given a field A and a smoothing kernel function W , e.g. Gaussian

A smoother version of A as an approximation of it is

$$A(\mathbf{x}) \approx (A * W)(\mathbf{x}) = \int A(\mathbf{x}') W(\mathbf{x} - \mathbf{x}', h) d\mathbf{x}'$$

Favored properties of W :

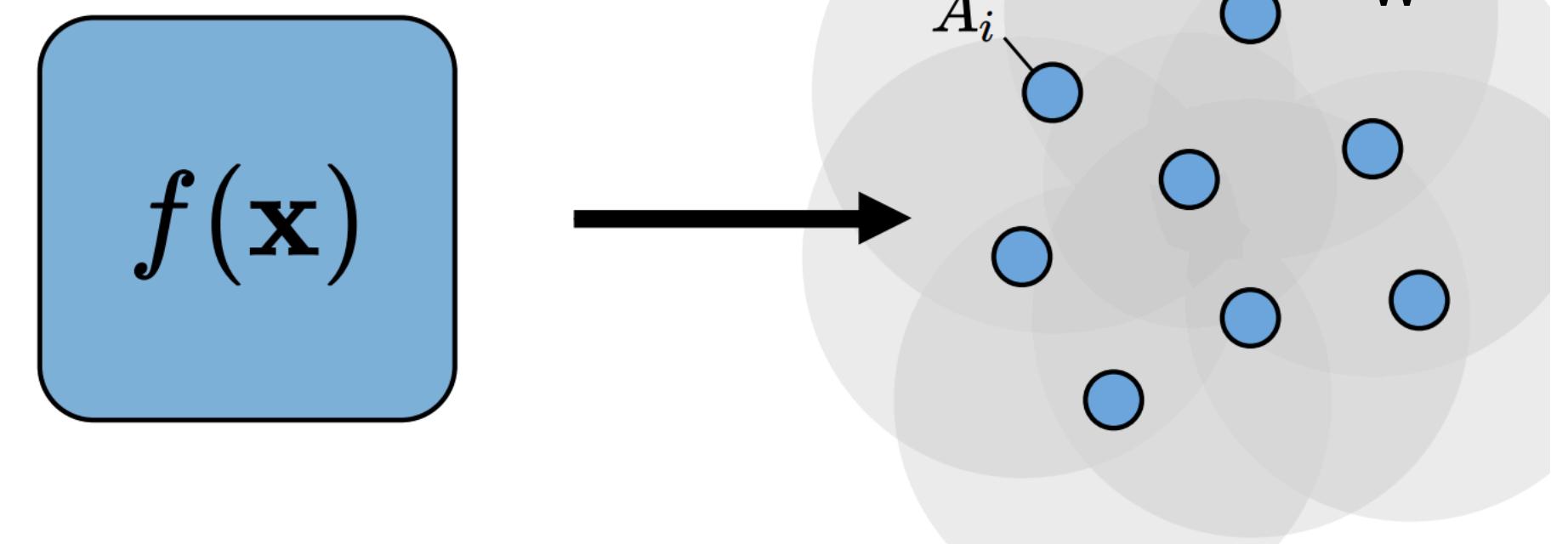
$$\int_{\mathbb{R}^d} W(\mathbf{r}', h) d\mathbf{r}' = 1 \quad (\text{normalization condition})$$

$$\lim_{h' \rightarrow 0} W(\mathbf{r}, h') = \delta(\mathbf{r}) \quad (\text{Dirac-}\delta \text{ condition})$$

$$W(\mathbf{r}, h) \geq 0 \quad (\text{positivity condition})$$

$$W(\mathbf{r}, h) = W(-\mathbf{r}, h) \quad (\text{symmetry condition})$$

$$W(\mathbf{r}, h) = 0 \text{ for } \|\mathbf{r}\| \geq h, \quad (\text{compact support condition})$$



Discretization using particles:

$$\begin{aligned} (A * W)(\mathbf{x}_i) &= \int \frac{A(\mathbf{x}')}{\rho(\mathbf{x}')} W(\mathbf{x} - \mathbf{x}', h) \underbrace{\rho(\mathbf{x}') d\mathbf{x}'}_{dm'} \\ &\approx \sum_{j \in \mathcal{F}} A_j \frac{m_j}{\rho_j} W(\mathbf{x}_i - \mathbf{x}_j, h) =: \langle A(\mathbf{x}_i) \rangle \end{aligned}$$

The kernel needs to involve a large number of neighbors for accurate estimation!

Recap: SPH Fluid Simulation

Just need to approximate the differential operators, and relate velocity to pressure via constitutive models to solve

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u},$$
$$\nabla \cdot \vec{u} = 0.$$

For each time step n :

$$u^a \leftarrow \text{Solve } \frac{\partial u}{\partial t} + u \cdot \nabla u = 0 \text{ (advection)}$$

$$u^b \leftarrow \text{Solve } \frac{\partial u}{\partial t} = g \text{ (apply external force)}$$

$$u^c \leftarrow \text{Solve } \frac{\partial u}{\partial t} = \nu \nabla \cdot \nabla u \text{ (diffusion)}$$

$$u^{n+1} \leftarrow \text{Solve } \nabla \cdot u = 0 \text{ (pressure projection)}$$

Time Splitting

Direct discretization are not accurate and can lead to instability:

$$\nabla \mathbf{A}_i \approx \sum_j \frac{m_j}{\rho_j} \mathbf{A}_j \otimes \nabla W_{ij} \quad \nabla \cdot \mathbf{A}_i \approx \sum_j \frac{m_j}{\rho_j} \mathbf{A}_j \cdot \nabla W_{ij}$$

Difference and symmetric formula are often used:

$$\nabla A_i \approx \langle \nabla A_i \rangle - A_i \langle \nabla 1 \rangle$$
$$= \sum_j \frac{m_j}{\rho_j} (A_j - A_i) \nabla_i W_{ij}.$$

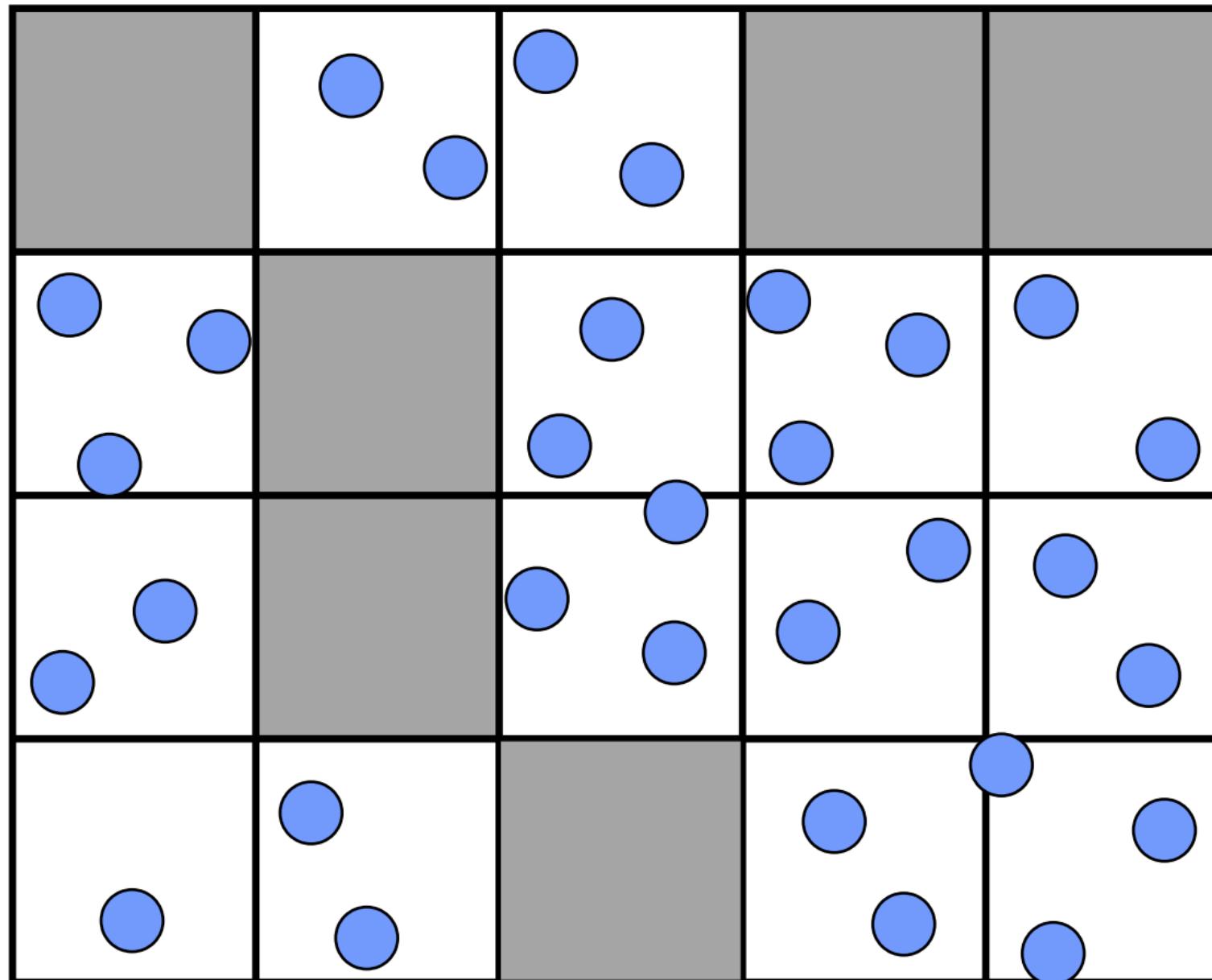
$$\nabla A_i \approx \rho_i \left(\frac{A_i}{\rho_i^2} \langle \nabla \rho \rangle + \langle \nabla \left(\frac{A_i}{\rho_i} \right) \rangle \right)$$
$$= \rho_i \sum_j m_j \left(\frac{A_i}{\rho_i^2} + \frac{A_j}{\rho_j^2} \right) \nabla_i W_{ij}.$$

Today:

- **Hybrid Lagrangian-Eulerian Methods**
 - ▶ Particle Advection
 - ▶ Particle-Grid Transfer
 - ▶ Grid Updates
 - ▶ Boundary Conditions
 - ▶ Sparse Grids

Hybrid Lagrangian/Eulerian Methods

Basic Idea



– take advantage of both representations

Introduce a background Eulerian Grid, and measure quantities on the grid nodes

Transfer information between the particles and grid

For each time step n :

Time Splitting

$u^a \leftarrow \text{Solve } \frac{\partial u}{\partial t} + u \cdot \nabla u = 0 \text{ (advection)}$ **Using particles**

$u^b \leftarrow \text{Solve } \frac{\partial u}{\partial t} = g \text{ (apply external force)}$

$u^c \leftarrow \text{Solve } \frac{\partial u}{\partial t} = \nu \nabla \cdot \nabla u \text{ (diffusion)}$

$u^{n+1} \leftarrow \text{Solve } \nabla \cdot u = 0 \text{ (pressure projection)}$

Using the grid

Particle Advection

$$u^a \leftarrow \text{Solve } \frac{\partial u}{\partial t} + u \cdot \nabla u = 0$$

– fluids are moving,
resulting in Eulerian velocity changes.

– derived from $\frac{du(\phi(\mathbf{X}, t), t)}{dt} = 0$

Recall that $\mathbf{V}(\mathbf{X}, t) = \mathbf{v}(\phi(\mathbf{X}, t), t)$, so the advection equation becomes $\frac{\partial \mathbf{V}(\mathbf{X}, t)}{\partial t} = 0$

**Solving advection using particles,
we just need to move the particles based on the current velocity!**

Forward Euler: $\mathbf{x}_p \leftarrow \mathbf{x}_p + h\mathbf{u}(\mathbf{x}_p, t)$

Can use explicit Runge-Kutta, e.g. RK4, for higher accuracy.

Our particles are Lagrangian particles!

– each particle marks a fixed region in material space
(Forces are evaluated in an Eulerian view)

Particle-Grid Transfer

Grid to particle is easy, can just use e.g. bilinear interpolation:

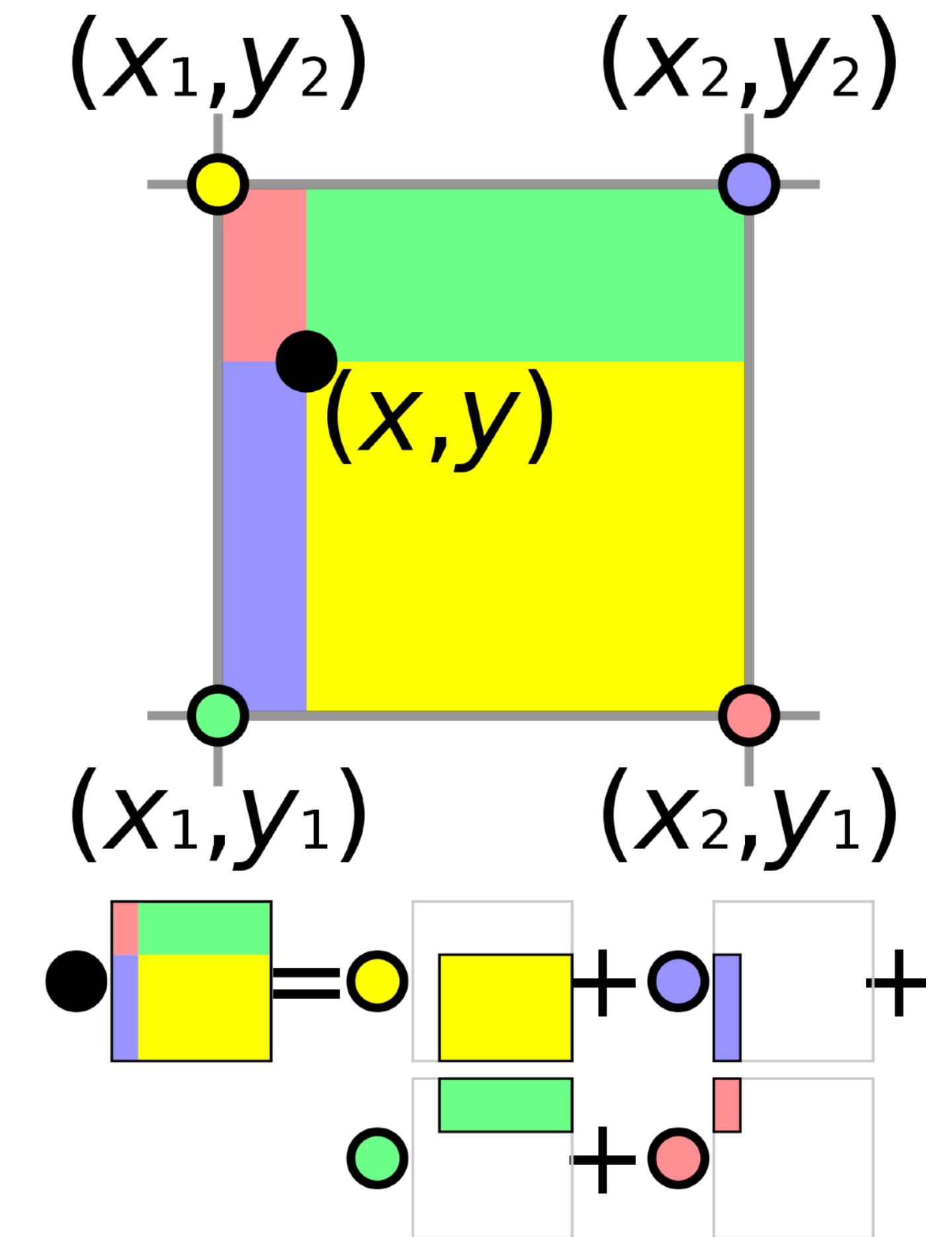
$x_p = Px_i$, $P \in \mathbb{R}^{dn_p \times dn_i}$ stores the interpolation weights

Particle to grid: inverse interpolation?

$$x_i = \arg \min_x \frac{1}{2} \|Px - x_p\|^2 \quad \text{Too expensive!}$$

Instead:

$$x_i = N^{-1}P^T x_p, \text{ where } N_{ij} = \delta_{ij} \sum_k P_{ki} \text{ is for normalization}$$



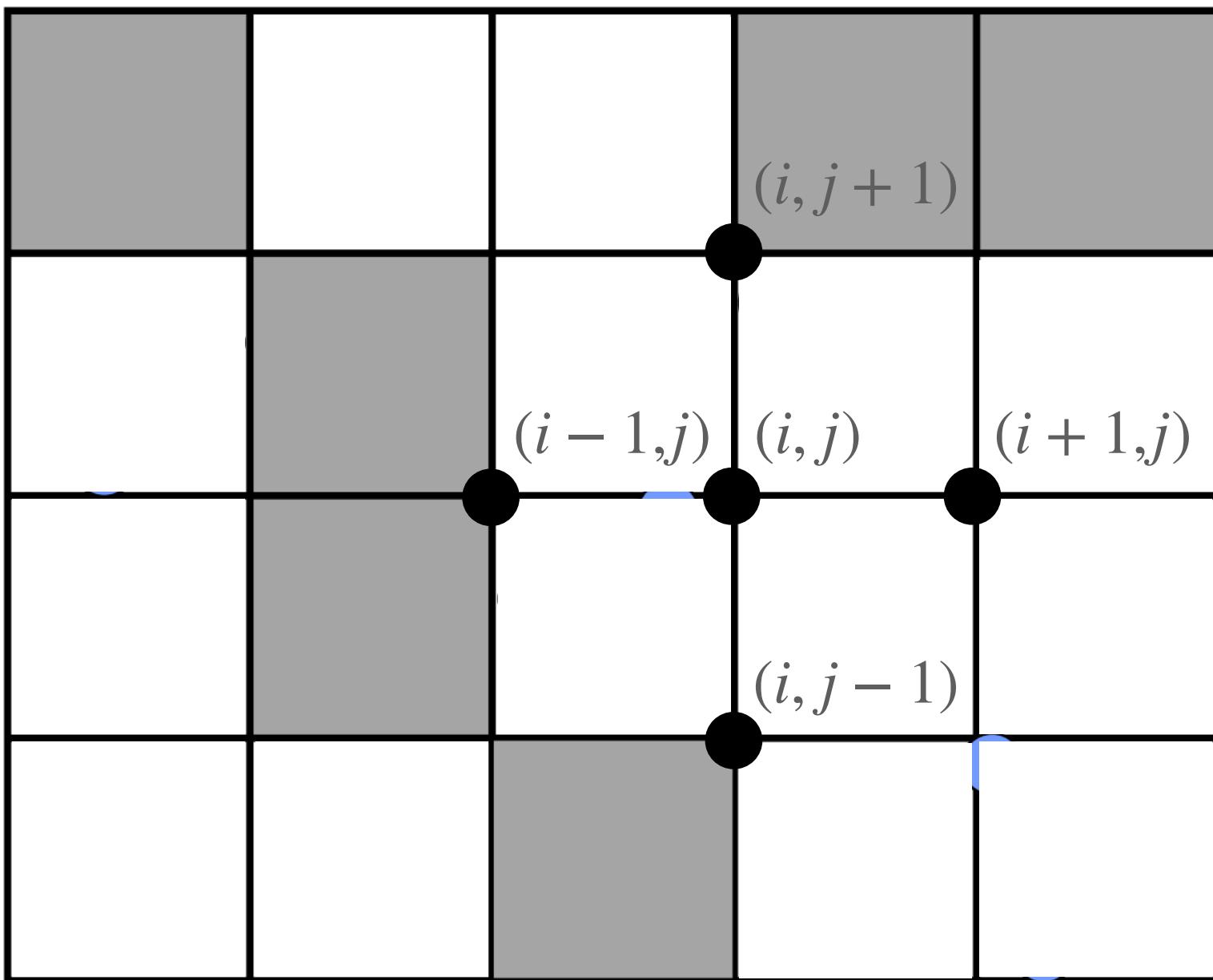
Grid-based Viscosity (Diffusion)

$$u^c \leftarrow \text{Solve} \frac{\partial u}{\partial t} = \nu \nabla \cdot \nabla u$$

– Independent per dimension:

$$\frac{\partial u_k}{\partial t} = \nu (\nabla \cdot \nabla u)_k = \nu \left(\frac{\partial^2 u_k}{\partial x^2} + \frac{\partial^2 u_k}{\partial y^2} \right)$$

$$\approx \nu \left(\frac{u_k(i+1,j) + u_k(i-1,j) - 2u_k(i,j)}{\Delta x^2} + \frac{u_k(i,j+1) + u_k(i,j-1) - 2u_k(i,j)}{\Delta x^2} \right)$$



Use implicit Euler for stability!

Pressure Projection on Eulerian Grid

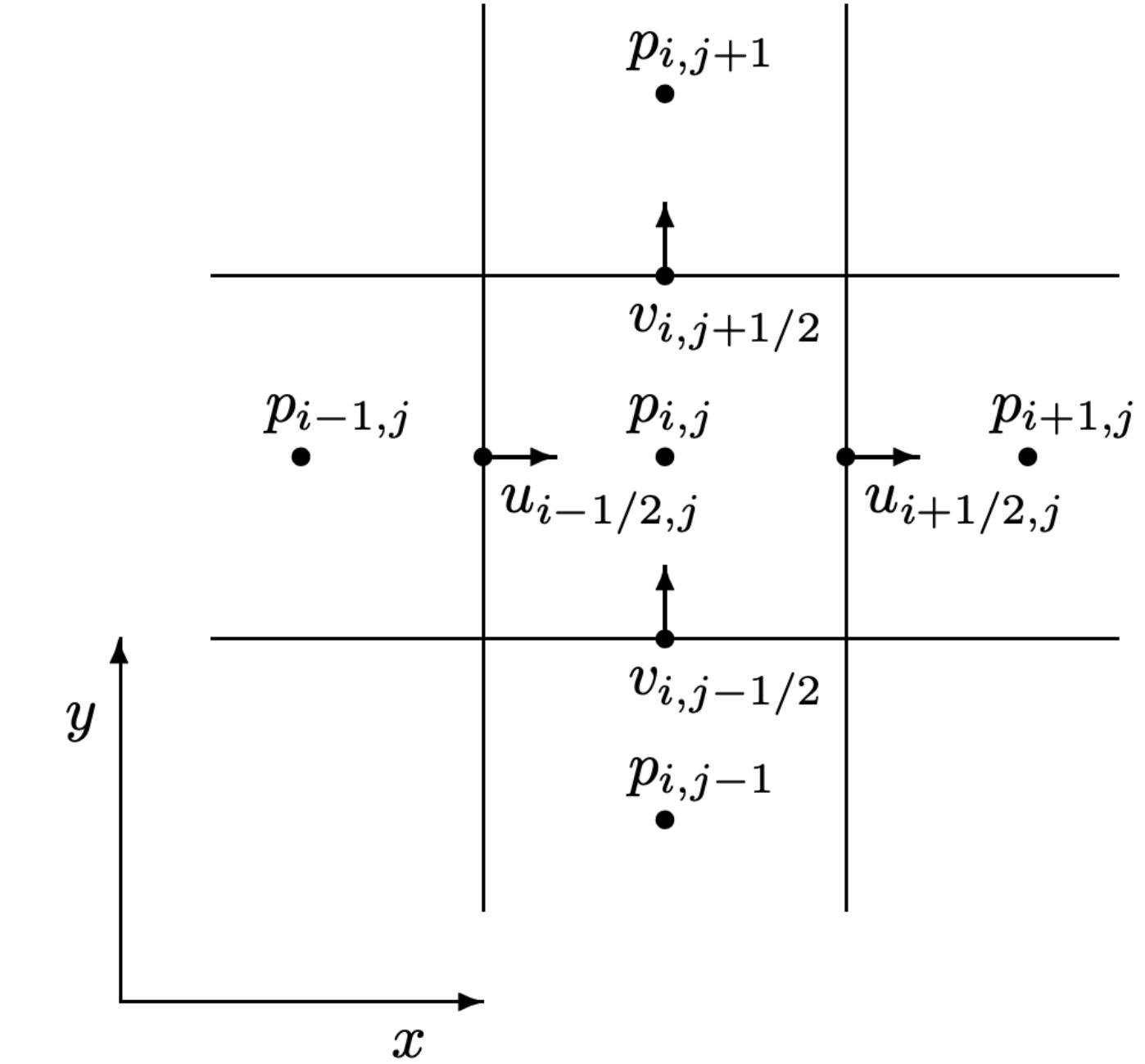
$$u^{n+1} \leftarrow \text{Solve } \frac{\partial u}{\partial t} = -\frac{1}{\rho} \nabla p \text{ s.t. } \nabla \cdot u = 0$$

After time discretization: $\frac{u^{n+1} - u^n}{h} = -\frac{1}{\rho} \nabla p$

$$u^{n+1} = u^n - h \frac{1}{\rho} \nabla p$$

We want $\nabla \cdot u^{n+1} = 0$,

or equivalently, $\nabla \cdot \nabla p = \frac{\rho}{h} \nabla \cdot u^n$ — a Poisson Equation



To avoid non-trivial null space of central difference,
we use MAC grid.

$$u_{i+1/2,j}^{n+1} = u_{i+1/2,j} - \Delta t \frac{1}{\rho} \frac{p_{i+1,j} - p_{i,j}}{\Delta x},$$

$$v_{i,j+1/2}^{n+1} = v_{i,j+1/2} - \Delta t \frac{1}{\rho} \frac{p_{i,j+1} - p_{i,j}}{\Delta x},$$

Boundary Conditions (BC)

Solid wall:

No-stick BC (for inviscid fluids): $\vec{u} \cdot \hat{n} = \vec{u}_{\text{solid}} \cdot \hat{n}.$

No-slip BC (for viscous fluids): $\vec{u} = \vec{u}_{\text{solid}}.$

Free surface:

$$M_{\hat{a}b} \frac{x_{b|\hat{i}}^n - (x_{b|\hat{i}}^{n-1} + hV_{b|\hat{i}}^{n-1})}{\Delta t^2} = \int_{\partial\Omega^0} N_{\hat{a}}(\mathbf{X}) T_{\hat{i}}^{\mathcal{O}}(\mathbf{X}, t^n) ds(\mathbf{X}) - \int_{\Omega^0} N_{\hat{a},j}(\mathbf{X}) P_{\hat{i}j}(\mathbf{X}, t^n) d\mathbf{X}$$

In Eulerian View: $\sigma \cdot n = 0$

For inviscid fluids: $p = 0$

The Particle-In-Cell Method

For each time step n :

Time Splitting

$$u^a \leftarrow \text{Solve } \frac{\partial u}{\partial t} + u \cdot \nabla u = 0 \text{ (advection)}$$

Using particles

Transfer velocity from particles to grid

$$u^b \leftarrow \text{Solve } \frac{\partial u}{\partial t} = g \text{ (apply external force)}$$

$$u^c \leftarrow \text{Solve } \frac{\partial u}{\partial t} = \nu \nabla \cdot \nabla u \text{ (diffusion)}$$

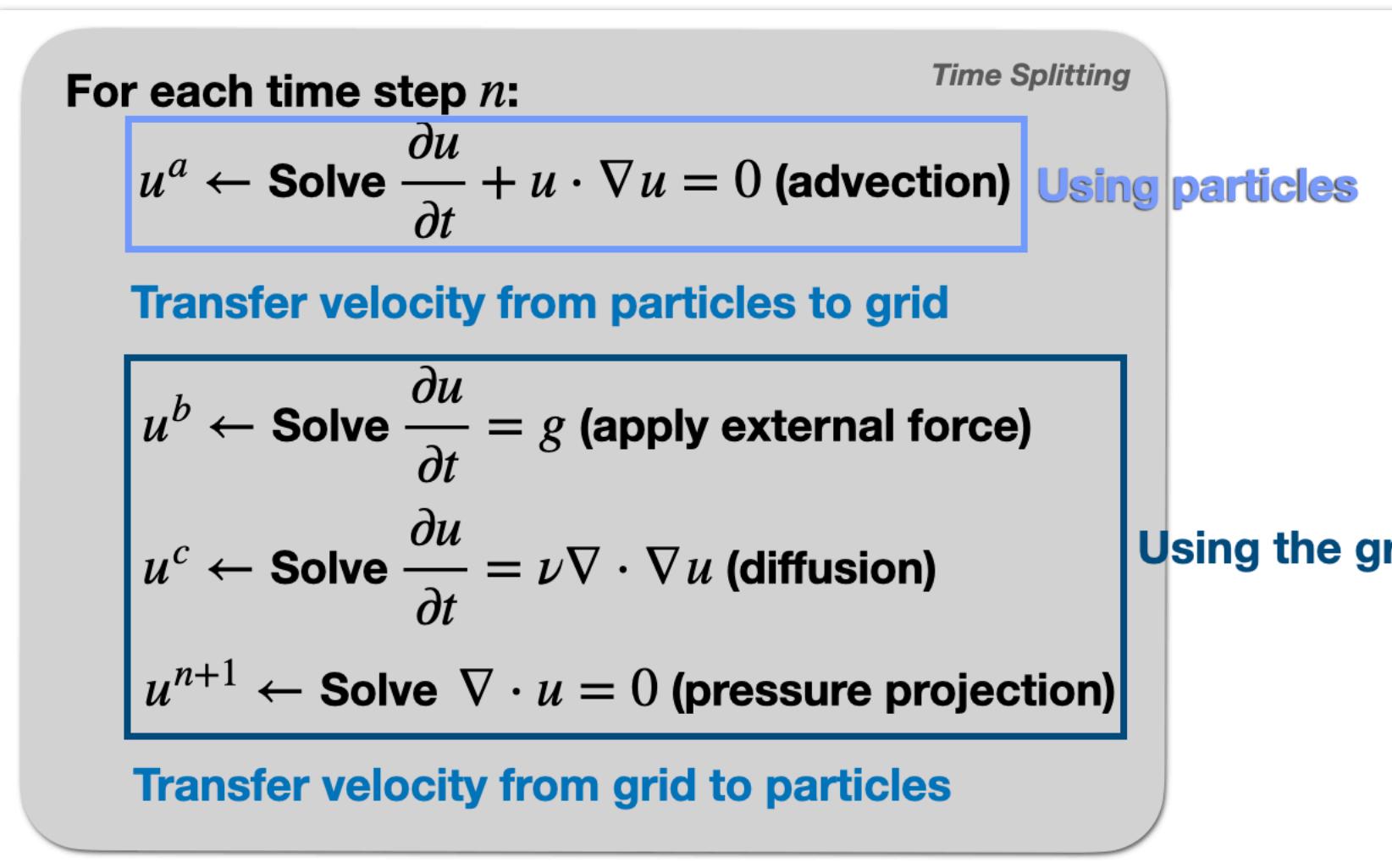
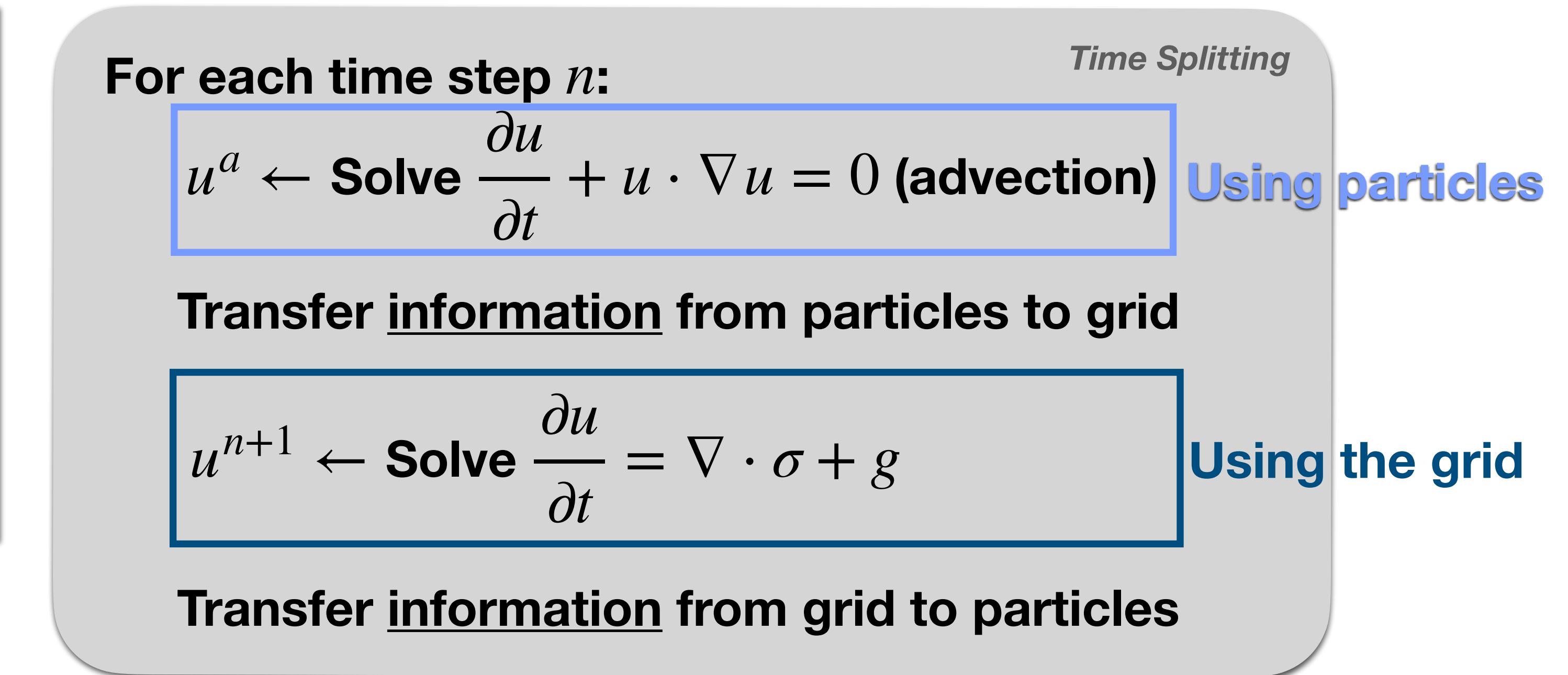
$$u^{n+1} \leftarrow \text{Solve } \nabla \cdot u = 0 \text{ (pressure projection)}$$

Using the grid

Transfer velocity from grid to particles

Extending to Hybrid Lagrangian/Eulerian Solid Simulation

The Material-Point Method



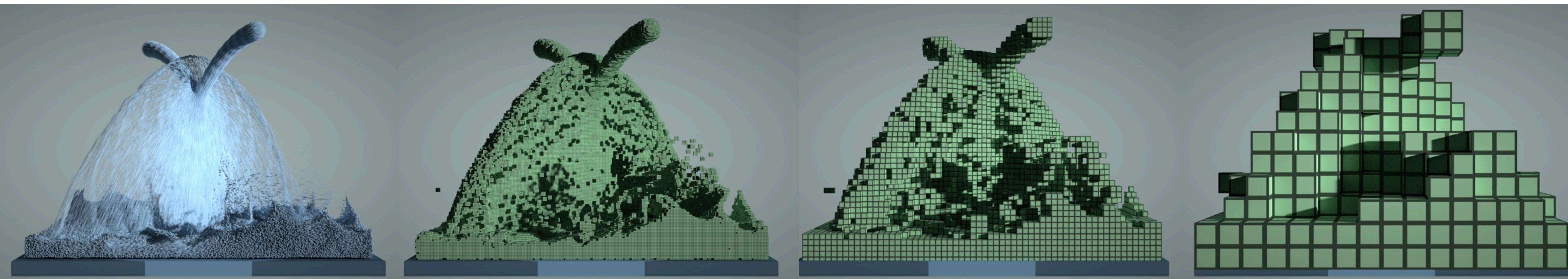
The Particle-In-Cell Method

- Needs to track deformation gradient per particle using updated Lagrangian: $\mathbf{F}^{n+1} \approx \mathbf{F}^n + h \frac{\partial \mathbf{F}}{\partial t}$

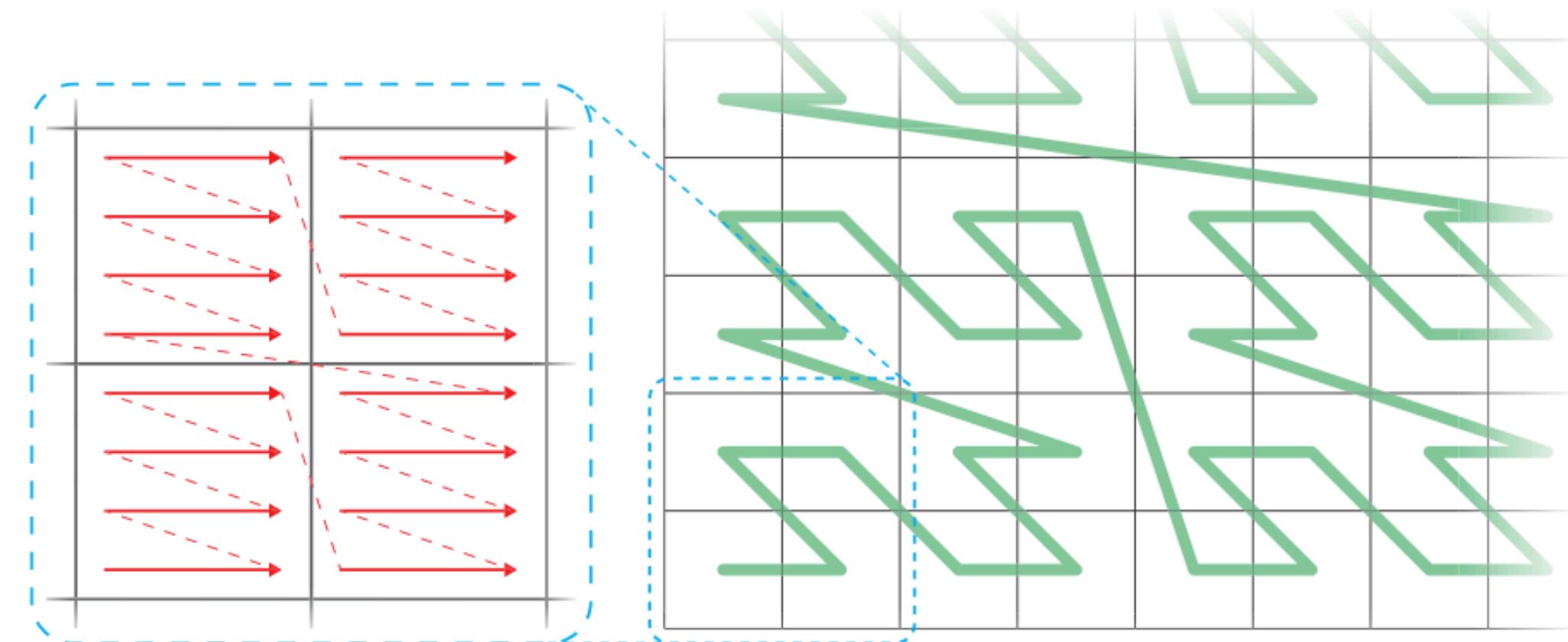
$$\frac{\partial}{\partial t} \mathbf{F}(\mathbf{X}, t^{n+1}) = \frac{\partial \mathbf{V}}{\partial \mathbf{X}}(\mathbf{X}, t^{n+1}) = \frac{\partial \mathbf{v}^{n+1}}{\partial \mathbf{x}}(\phi(\mathbf{X}, t^n)) \mathbf{F}(\mathbf{X}, t^n)$$

Sparse Grid for Better Efficiency

Only place grid cells at region of interests:

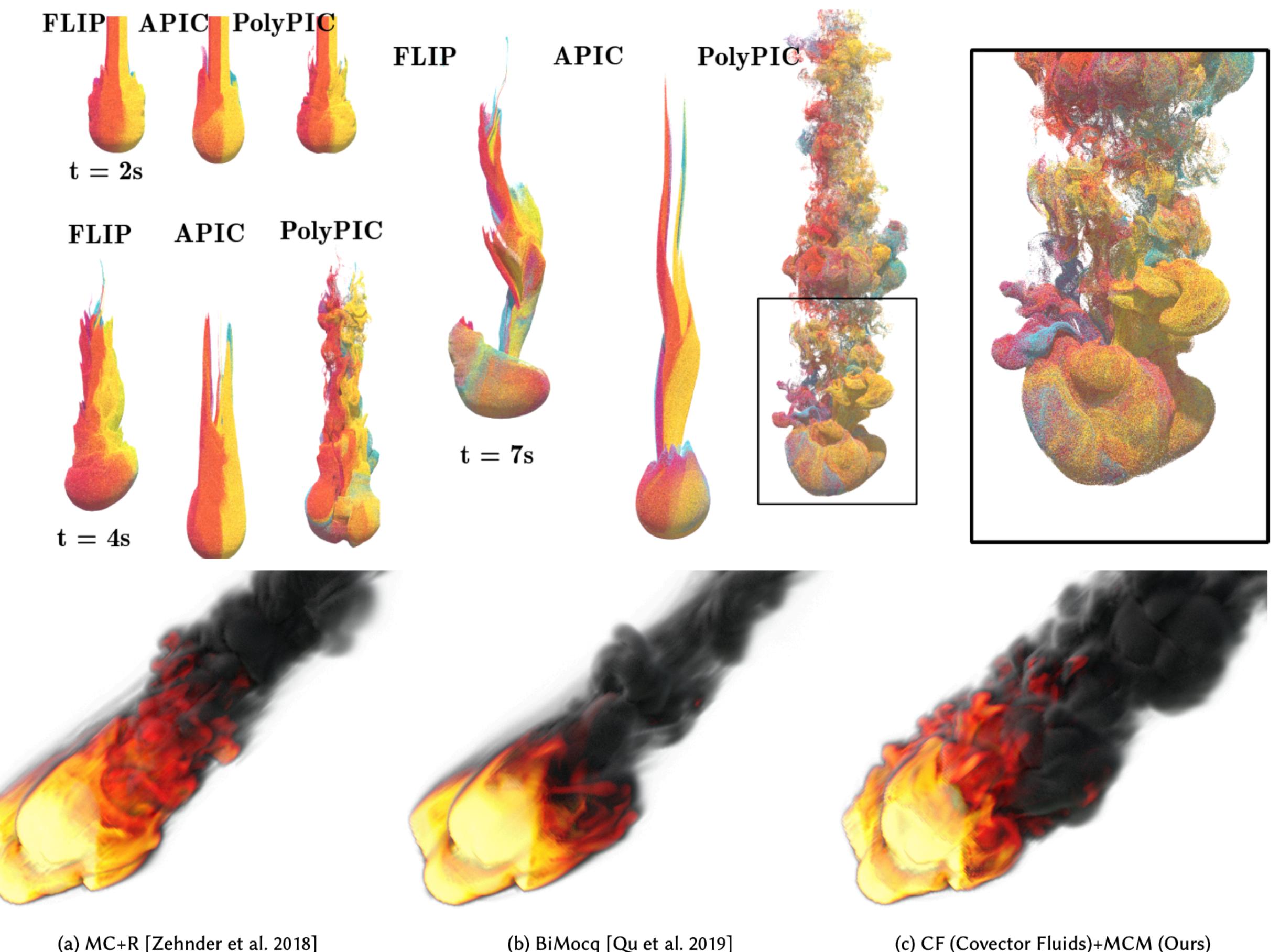


Z-order indexing with better data locality:



Improving Accuracy

- Particle-grid transfer:
 - FLIP, APIC, PolyPIC, PowerPIC, ...
- Advection:
 - BiMocq, Covector Fluids, ...
- Pressure Projection:
 - Advection-Reflection Solver
 - Cut-cell methods
- ...



More Fluid Simulation Research

- Vortex methods, e.g. [\[Selle et al. 2005\]](#), [\[Yin et al. 2023\]](#)
- Lattice Boltzmann methods (LBM), e.g. [\[Li et al. 2020\]](#)
 - Based on statistical physics
 - Well-suited for efficient simulation of turbulent flows
- Monte Carlo methods, e.g. [\[Rioux-Lavoie et al. 2022\]](#)
- Reduction:
 - modeling fluids as height fields, e.g. [\[Su et al. 2023\]](#)
 - Applying model reduction, e.g. [\[Panuelos et al. 2023\]](#)
- Solid-fluid coupling, e.g. [\[Batty et al. 2007\]](#), [\[Xie et al. 2023\]](#)
- Fluid control, e.g. [\[Li et al. 2023\]](#)

Today:

- **Hybrid Lagrangian-Eulerian Methods**
 - ▶ Particle Advection
 - ▶ Particle-Grid Transfer
 - ▶ Grid Updates
 - ▶ Boundary Conditions
 - ▶ Sparse Grids

Next Lecture: The Material Point Method

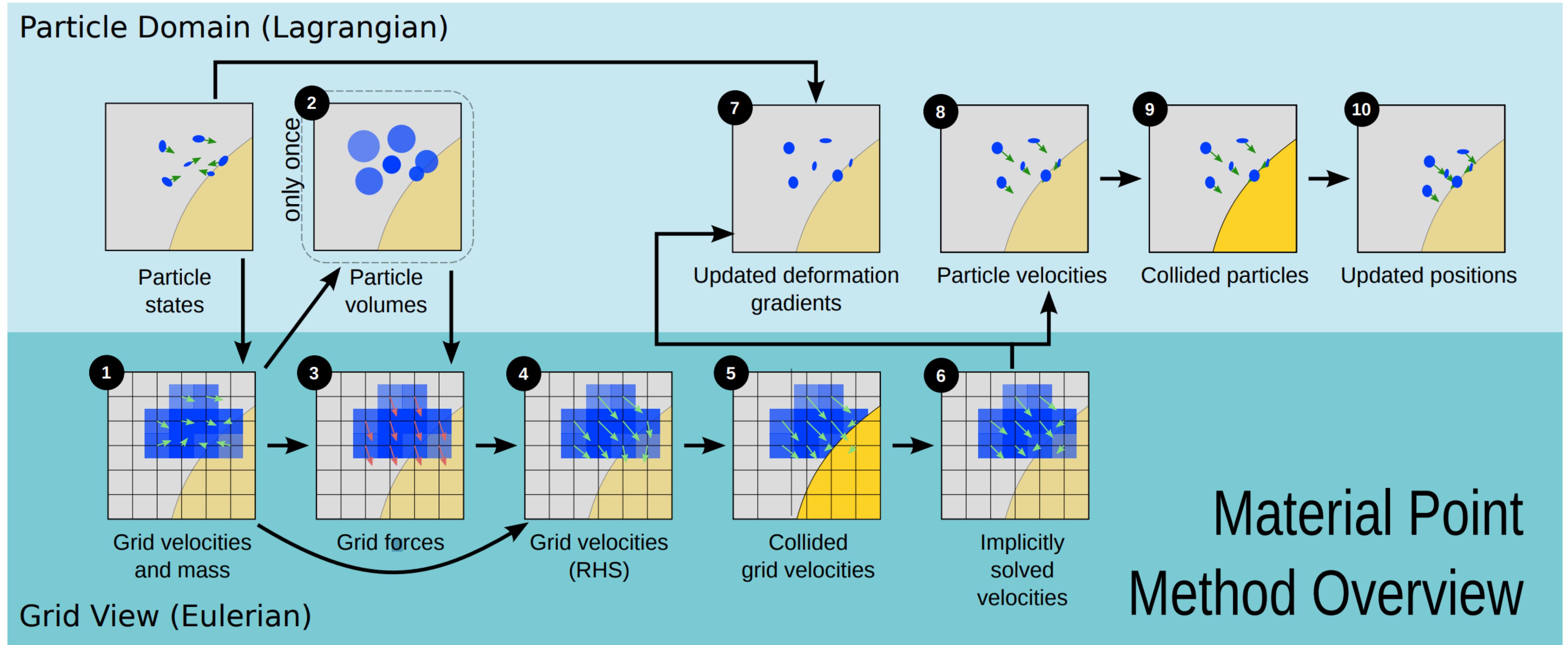


Image Sources

- <https://sph-tutorial.physics-simulation.org/>
- https://en.wikipedia.org/wiki/Bilinear_interpolation
- <https://docs.taichi-lang.org/docs/sparse>
- <https://orionquest.github.io/papers/SSPGASS/paper.html>
- <https://dl.acm.org/doi/pdf/10.1145/3130800.3130878>
- <https://cseweb.ucsd.edu/~viscomp/projects/SIG22CovectorFluids/paper/CovectorFluids.pdf>