Instructor: Minchen Li

Lec 16: Material Point Methods
15-763: Physics-based Animation of Solids and Fluids (S25)

Recap: Hybrid Lagrangian/Eulerian Methods

Basic ldea

o |@ Introduce a background Eulerian Grid,
o o and measure quantities on the grid nodes
O O 0!|© Transfer information between the particles and grid
O O O

P o o Ol @ For each time step n: Time Splitting

O ou \
© > © | u“ < Solve Fu - Vu = 0 (advection) Using particles

. ° | e 5 +

U
© O © 1O | u’ — Solve — = 2 (apply external force)

ot

I/t U u]
C _ . : : sing the grid
— take advantage of u- < Solve =~ = vV - Vu (diffusion)

both representations

|
"« Solve V - u = 0 (pressure projection)

)|,

Recap: Extending to Solid Simulation
The Material-Point Method

For each time step 7: e For each time st ep 7 Time Splitting
u® < Solve a—L: + u - Vu = 0 (advection) Using particles @u .
a _ - . .
Transfer velocity from particles to grid u“ < Solve F U - V U = O (adveCtlon) USHJQ _33_’*1(:{65

ot

Transfer information from particles to grid

7]
u? « Solve E = g (apply external force)

u - -
u¢ < Solve — = v'V - Vu (diffusion) Using the grid

ot

+

u"t! « Solve V - u = 0 (pressure projection)

Transfer velocity from grid to particles USing the grld
The Particle-In-Cell Method Transfer information from grid to particles
- - - - - +1 aF
. Needs to track deformation gradient per particle using updated Lagrangian: F"'"" ~ F" + hd_
{
0 n+1y __ oV n+1y __ av‘n—H n n
S FOGE™T) = 2 (GE™T) = = (0(X, t)F(X, t7)

Today: The MPM Pipeline
e Particle-Grid Transfer

® Force Calculation

e Grid Updates

e Particle Advection

Today: The MPM Pipeline
e Particle-Grid Transfer

Particle-Grid Transfer
Fluids

Grid to particle is easy, can just use e.g. bilinear interpolation: (X 1,y2) (X 2,y2)
O O

x,=Px;, P € R4 stores the interpolation weights

Particle to grid:

X; = D_lPTxp , where D;; = 0;; Z P, is for normalization
k
O O
L | (X1,y1) (X2,y1)
Observation: 2D weights are areas, or product of 1D weights
Define a general transfer kernel: ® — | O: T
]]] -
Ni(xp) = N (xp =)N (yp —Y)IN G- (2 — 1)) © =0

where N is the 1D weight function.

Particle-Grid Transfer

Kernel and Weight Functions

|] |

Transfer kernel: N;(x,) = N(=(xp —xi))N(=(yp —vi))N(=(zp —zi)) where N is the 1D weight function.

h h h
) 43—1—|X|2 0<|X|<1§ f%|x|3—|x|2—l—% 0< x| <1
T—xl 0<|x[<1 1/3 2 3 1 3
eg N(X)=<O o Nx)=q3(-)" 3<kkI<3 Nx) =12k 1< <2
< [x
) 0 %< X 0 2 < [x
Linear Quadratic Cubic

Figure 3: Cubic (blue) and quadratic (red) splines used for computing interpolation weights.

Particle-Grid Transfer

Particle-to-Grid Mass and Momentum Transfer

Transfer kernel: Nj(x,) = N(l(xp _Xi))N(l(yP —Ui))N(}ll

- - (zp —zi)) where N is the 1D weight function.

Mass: m;=) m,Nj(xp) Momentum: (mv); =) mpv,Ni(x;)
P P

Mass conservation:) mi=)) mpyNixp) =) mp) Nix,)=) m,
i p

' P : P — Partition-of-Unity of N
Momentum conservation: Z (mv); = Z MpVp _ _
i P
I L
i (m")i
Velocity: v; = '
TTLi 1 [

Velocity is averaged, but mass and momentum are accumulated! !

Particle-Grid Transfer

Grid-to-Particle Velocity Transfer

Mass: no change, thus conserved

Momentum conservation:

Velocity:

Vp = Z viNi(xp)
1

Z MpVp = Z My ZviNi(xp) = Z"iz mpyNi(Xp) = Z m;iVv;
p P i i p i

 Here, we are focusing on Particle-In-Cell transfer,

other transfer schemes, e.g. FLIP, APIC, etc., are

available for higher accuracy.

S A S
B
ro

Today: The MPM Pipeline

® Force Calculation

Force Calculation

Total Lagrangian and Updated Lagrangian

A Affine transformation
ox 0X [0)'e 0X X, F

FEM: f = oY oF ¢ (B,v)((8,))_ ~ 08 7)(

B —1
OF 0 R o %) m
X — [X2—Xl,Xg—Xl][XQ_X17X3_X1]—1’ X, X,

— Total Lagrangian

For MPM:
 No triangle elements

» To handle large deformation, don’t want to use material space X as reference

oF¥
. Track deformation gradient per particle using updated Lagrangian: F'Hl ~ F” + Ata—
{

0 n+1 oV n—l—] avn—H n n

5 FX A7) = o (X, 7)) = —— —(0(X, t7)JF(X, t7)

| AL i Ata"w (XM = (1 At (“)) F°
p = Tp Ix)iy = Xp

Force Calculation

Deformation Gradient Calculation

+1 n avn—H n\rn avn—l—] n n
n _ —_—
T =F +At ™ (xp)Fy = (I + At w (xp)> F,
if we use the grid based interpolation formula for v**/, i.e.,
vitT(x) =) viFIN;(x),
i
Jyn-+1 o (N T Temporal discretization with backward difference:
0X (X) - Zvi (X (X)> , n-+1 72i — X n+1
t v, = A or Xi =Xi+Atv;
t
: n+1 _ n+1 ON; n ! n\ Fp[sy _Fn -I-AtZ (X)ﬁ XJB) ZNJT P’W
F I+Ath ~ xp)) | T

- J

— a grid-to-particle process

Force Calculation

Using the Derivative of Deformation Gradient

-

Fot! = (1+Ath“+‘(

ON;

T)
‘(xg)))r-;}

0X

J

Temporal discretization with backward difference:

_ XiB — XJ[3
FpﬁY Fn +AtZ()ZNJT PT‘y

1st Piola- Particle

Kirchoff Stress volume
OF

=2 D Per(Fo®) 5 X R

P By

0
aXux Z Pocy Ni,’r (x;})vp .

— a particle-to-grid process

Today: The MPM Pipeline

e Grid Updates
® Particle Advection

Grid Update (Time Integration)

Recap: Euler Methods

Problem Setup

xn—l—l — T + At’l}n, xn+1 — " + At’l)n+1

"t ="+ AtM T " =" 4 AtM T

4 Forward Euler _ 1000 15 Symplectic Euler

lgoo 1]

S 054
S, . ¢
u*'\}:"', TN "“15}_;1 N P
' S B, 5, O, g

A & 2 b R
& & ‘f?),’ Ao =
A G B T
& ’»S' E%;.; ©® B
= 5 ER:R

1400 \ i B

4 2 0 2 1 0 :
Unconditionally Conditionally
unstable stable

1000
1800

. 1600

400

200

" = g™ o Atv"“,

,Un—l—l — ,Un i AtM—lfn—l—l

. Impligi‘t Euler

0.5;

— 1000

1800

> 14600

A 0
Unconditionally
stable

1 400

200

Grid Update (Time Integration) T I B
Symplectic vs Implicit Euler I RS e

: n n olf W 1 | ‘____.’ :l .. |l
» Symplectic Euler i =filx;) :—gvp (ﬁ(Fp)) (F5) ' Vwi, AR

o |+]|: efficient, easy to implement, plasticity is straightforward

. stable time step size is often small and hard to predict

e |mplicit Euler —fi(X) = :xe (&) = ZVS‘Z—\]}:(R(@)KFQ)TVW{;
! p

* [+]: time step size only restricted by grid-CFL

. needs to implement Hessian (not as sparse as FEM), plasticity is non-
trivial, numerical dissipation

Particle Advection

ou

1% «— Solve Lu-Vu=0 Our particles are Lagrangian particles!
ot — each particle marks a fixed region in material space
— objects are moving, (Forces are evaluated in an Eulerian view)

resulting in Eulerian velocity changes.

du(¢p(X, 1), 1) 0

— derived from

dt
. . V(X 1)
Recall that V(X,t) =v($(X,t),t), so the advection equation becomes p = (
[

Solving advection using particles, o * s
we just need to move the particles based on the current velocity! ° | \S {

B .\ | .‘r_ i
Forward Euler: (X, < X+ Aru(X,, ?) . . |?

»n - l? =
Can use explicit Runge-Kutta, e.g. RK4, for higher accuracy.

These are popular in fluids, but not often used in MPM. ¥ 4 o 0

The MPM Pipeline (w. PIC transfer)

For each time step n with particle states Xp, v F”

// Particle-to-Grid Transfer: _’* N Ny

m" = Zm NAXD) (mV?) = Zm VIN(XD)

// Grid Update: fi Z Vi () (Fp) . e e e
V. = v+ Atf. T
Solve { l l l oaqj T - . . -
& N & _f V]’-‘) VW nodal solution
X, =X, + AZ‘VZ aX1 Z 1% a]: _ _ _ . NN
_ _ — \\ .‘ .\ .¥ ‘ .
// Grid-to-Particle Transfer: . o g . \.\ /\ -
n+1 __ A n n . A I /.1 o ® ‘ °
Vit= 2NN F = (M A Y S (=) A R P RS N
// Particle Advection: = o VA N

~
See .’
- -
-

n+l _ on n+1
X, =X,+ Ath

R EEEEEEEEEEE—————————————=mmemmma

MPM Open-Source Projects

o C++:
e Ziran: ductile fracture, viscoelastic solids, fluids, etc.

o Ziran2019 [Wolper et al. 2019] [Fang et al. 2019]

e Ziran2020 [Wolper et al. 2020] [Fang et al. 2020]

 HOT: Hierarchical Optimization Time Integration for Implicit MPM [Wang et al. 2020]

» CUDA-based GPU explicit MPM:
* Single-GPU: https://github.com/kuiwuchn/GPUMPM [Gao et al. 2018]

* Multi-GPU: https://github.com/penn-graphics-research/claymore [Wang et al. 2020]

* Python-based differentiable explicit MPM: Taichi MPM, Warp MPM

https://github.com/penn-graphics-research/ziran2019
https://github.com/penn-graphics-research/ziran2020
https://github.com/penn-graphics-research/HOT
https://github.com/kuiwuchn/GPUMPM
https://github.com/penn-graphics-research/claymore
https://github.com/taichi-dev/taichi_elements
https://github.com/zeshunzong/warp-mpm

This Is the last lect

Image Sources

e https://www.math.ucla.edu/~cffjiang/research/mpmcourse/mpmcourse.pdf

o https://sph-tutorial.physics-simulation.org/

» https://nheri-simcenter.github.io/Hydro-Documentation/common/
technical manual/desktop/hydro/mpm/mpm.html

o https:.//en.wikipedia.org/wiki/Bilinear interpolation

https://www.math.ucla.edu/~cffjiang/research/mpmcourse/mpmcourse.pdf
https://sph-tutorial.physics-simulation.org/
https://nheri-simcenter.github.io/Hydro-Documentation/common/technical_manual/desktop/hydro/mpm/mpm.html
https://nheri-simcenter.github.io/Hydro-Documentation/common/technical_manual/desktop/hydro/mpm/mpm.html
https://en.wikipedia.org/wiki/Bilinear_interpolation

