
Instructor: Minchen Li

15-763: Physics-based Animation of Solids and Fluids (S25)
Lec 16: Material Point Methods

Recap: Hybrid Lagrangian/Eulerian Methods
Basic Idea

Introduce a background Eulerian Grid,
and measure quantities on the grid nodes

Transfer information between the particles and grid

Solve (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve (apply external force)ub ←
∂u
∂t

= g

Solve (diffusion)uc ←
∂u
∂t

= ν∇ ⋅ ∇u

Solve (pressure projection)un+1 ← ∇ ⋅ u = 0

For each time step :n Time Splitting

Using particles

Using the grid
— take advantage of
both representations

Recap: Extending to Solid Simulation
The Material-Point Method

Solve (advection)ua ←
∂u
∂t

+ u ⋅ ∇u = 0

Solve un+1 ←
∂u
∂t

= ∇ ⋅ σ + g

For each time step :n Time Splitting

Using particles

Using the grid

Transfer information from grid to particles

Transfer information from particles to grid

• Needs to track deformation gradient per particle using updated Lagrangian: Fn+1 ≈ Fn + h
∂F
∂t

The Particle-In-Cell Method

Today: The MPM Pipeline

• Particle-Grid Transfer

• Force Calculation

• Grid Updates

• Particle Advection

Today: The MPM Pipeline

• Particle-Grid Transfer

• Force Calculation

• Grid Updates

• Particle Advection

Particle-Grid Transfer
Fluids
Grid to particle is easy, can just use e.g. bilinear interpolation:

 , stores the interpolation weightsxp = Pxi P ∈ ℝdnp×dni

Particle to grid:

 , where is for normalizationxi = D−1PTxp Dij = δij ∑
k

Pki

Observation: 2D weights are areas, or product of 1D weights

Define a general transfer kernel:

where is the 1D weight function.N

Particle-Grid Transfer
Kernel and Weight Functions
Transfer kernel: where is the 1D weight function.N

eg.

Linear Quadratic Cubic

Particle-Grid Transfer
Particle-to-Grid Mass and Momentum Transfer

Mass: Momentum:

Transfer kernel: where is the 1D weight function.N

Mass conservation:

Momentum conservation:
— Partition-of-Unity of N

Velocity:

Velocity is averaged, but mass and momentum are accumulated!

Particle-Grid Transfer
Grid-to-Particle Velocity Transfer
Mass: no change, thus conserved

Momentum conservation:

Velocity:

• Here, we are focusing on Particle-In-Cell transfer,
other transfer schemes, e.g. FLIP, APIC, etc., are
available for higher accuracy.

Today: The MPM Pipeline

• Particle-Grid Transfer

• Force Calculation

• Grid Updates

• Particle Advection

Force Calculation
Total Lagrangian and Updated Lagrangian

FEM: f =
∂Ψ
∂F

∂F
∂x

• To handle large deformation, don’t want to use material space as referenceX

• Track deformation gradient per particle using updated Lagrangian: Fn+1 ≈ Fn + Δt
∂F
∂t

• No triangle elements
For MPM: — Total Lagrangian

Force Calculation
Deformation Gradient Calculation

Temporal discretization with backward difference:

— a grid-to-particle process

Force Calculation
Using the Derivative of Deformation Gradient

Temporal discretization with backward difference:

1st Piola-
Kirchoff Stress

Particle
volume

— a particle-to-grid process

Today: The MPM Pipeline

• Particle-Grid Transfer

• Force Calculation

• Grid Updates

• Particle Advection

Grid Update (Time Integration)
Recap: Euler Methods

x0 = (1,0)

v0 = (0,1)

Problem Setup

f

Unconditionally
unstable

Conditionally
stable

Unconditionally
stable

Grid Update (Time Integration)
Symplectic vs Implicit Euler

• Symplectic Euler

• [+]: efficient, easy to implement, plasticity is straightforward

• [-]: stable time step size is often small and hard to predict

• Implicit Euler

• [+]: time step size only restricted by grid-CFL

• [-]: needs to implement Hessian (not as sparse as FEM), plasticity is non-
trivial, numerical dissipation

Different Same

Particle Advection
Solve ua ←

∂u
∂t

+ u ⋅ ∇u = 0

— derived from
du(ϕ(X, t), t)

dt
= 0

Recall that , so the advection equation becomes
∂V(X, t)

∂t
= 0

Solving advection using particles,
we just need to move the particles based on the current velocity!

— objects are moving,
resulting in Eulerian velocity changes.

Our particles are Lagrangian particles!
— each particle marks a fixed region in material space
(Forces are evaluated in an Eulerian view)

Forward Euler: xp ← xp + Δtu(xp, t)

Can use explicit Runge-Kutta, e.g. RK4, for higher accuracy.
These are popular in fluids, but not often used in MPM.

The MPM Pipeline (w. PIC transfer)
For each time step with particle states , , :n xn

p vn
p Fn

p

// Grid Update:

Solve {v̂i = vn
i + Δtfi

x̂i = xn
i + Δtv̂i

// Particle Advection:
xn+1

p = xn
p + Δtvn+1

p

// Grid-to-Particle Transfer:

vn+1
p = ∑

i

v̂iNi(xn
p) Fn+1

p = (I + Δt∑
i

v̂i(
∂Ni

∂x
(xn

p))T)

// Particle-to-Grid Transfer:
mn

i = ∑
p

mpNi(xn
p) (mn

i vn
i) = ∑

p

mpvn
pNi(xn

p)

or

MPM Open-Source Projects
• C++:

• Ziran: ductile fracture, viscoelastic solids, fluids, etc.

• Ziran2019 [Wolper et al. 2019] [Fang et al. 2019]

• Ziran2020 [Wolper et al. 2020] [Fang et al. 2020]

• HOT: Hierarchical Optimization Time Integration for Implicit MPM [Wang et al. 2020]

• CUDA-based GPU explicit MPM:

• Single-GPU: https://github.com/kuiwuchn/GPUMPM [Gao et al. 2018]

• Multi-GPU: https://github.com/penn-graphics-research/claymore [Wang et al. 2020]

• Python-based differentiable explicit MPM: Taichi MPM, Warp MPM

https://github.com/penn-graphics-research/ziran2019
https://github.com/penn-graphics-research/ziran2020
https://github.com/penn-graphics-research/HOT
https://github.com/kuiwuchn/GPUMPM
https://github.com/penn-graphics-research/claymore
https://github.com/taichi-dev/taichi_elements
https://github.com/zeshunzong/warp-mpm

This is the last lecture

Image Sources

• https://www.math.ucla.edu/~cffjiang/research/mpmcourse/mpmcourse.pdf

• https://sph-tutorial.physics-simulation.org/

• https://nheri-simcenter.github.io/Hydro-Documentation/common/
technical_manual/desktop/hydro/mpm/mpm.html

• https://en.wikipedia.org/wiki/Bilinear_interpolation

https://www.math.ucla.edu/~cffjiang/research/mpmcourse/mpmcourse.pdf
https://sph-tutorial.physics-simulation.org/
https://nheri-simcenter.github.io/Hydro-Documentation/common/technical_manual/desktop/hydro/mpm/mpm.html
https://nheri-simcenter.github.io/Hydro-Documentation/common/technical_manual/desktop/hydro/mpm/mpm.html
https://en.wikipedia.org/wiki/Bilinear_interpolation

