
CSD 15-784 - Cooperative AI (Fall 2022) Released on: Nov. 3rd, 2022

Homework 2

Maximum: 200 points. Due on: Nov. 16th, 2022, by 11:59 PM US Eastern time

Instructions
Show all your work. You may work alone or discuss with one other person, but you must follow the following
rules or it will be considered cheating. If you discuss with another person, you must explicitly acknowledge
that specific person on your write-up. Also, the only way in which you may work with another person is to
work on a whiteboard together, and then when you are done discussing, to erase the whiteboard, without
taking any notes or other record with you, other than what you remember. (Using the zoom whiteboard is
allowed if you want to meet remotely.) You should write up your code and your write-up alone.

Please submit the homework on Gradescope!

1 Selfish Procrastination? (50 points)
Researchers A and B are working on a paper together. They have T = 50 days left to complete it. They live
on opposite sides of the world, so when one is working, one is sleeping. So in fact, there are 2T = 100 time
periods left, with A working in the odd-numbered periods, B working in the even-numbered periods, and the
deadline being directly after period 100. There are K units of work left to do on the paper, where K = 20.
Either researcher can do any unit of work. In any given period, the researcher that is working can choose to
do 0 units of work, 1 unit of work, or 2 units of work. Doing one unit of work costs that researcher 1 unit of
utility; doing two units of work costs the researcher 2 + ϵ utility, where ϵ = 1/100. However, each researcher
will receive H = 50 units of utility from all the work for the paper being completed before the deadline (but
if the paper is not done by the deadline, all the work is for nothing).

The following is a list of claims about the existence of various kinds of subgame-perfect equilibria. For
each, state whether the claim is true or false. If it is true, prove it by carefully describing the claimed
equilibrium. Note that you need to describe the relevant strategies both on and off the equilibrium path of
play. (Of course, the game is too large to list all information sets explicitly, but still you can give a complete
description of the strategies.) If it is false, prove that such subgame-perfect equilibria cannot exist.

Beware: Some of the answers are not immediately intuitive. (At least, on some of the below questions,
our own initial inclinations were wrong and careful thinking was required to arrive at the right answer.) We
highly recommend writing a dynamic program that helps you find subgame-perfect equilibria of the game.
This dynamic program should compute, for increasing values of K and T left, equilibrium strategies and their
values to the players. You can potentially compute different equilibria by changing how ties are broken in this
dynamic program. (You don’t have to write any code, though, and in particular you don’t have to submit
your code.) Please don’t rely on code to justify your answers! For example, “There is no such equilibrium,
because my code didn’t find any.” is not a valid answer. It may also help to consider the game for much
smaller values of K, T where you can solve it by hand. The below questions are for the above, fixed values of
K, T, H, ϵ.

1. There is a subgame-perfect equilibrium in which the paper is not completed.

1

2. There is a subgame-perfect equilibrium in which (on the equilibrium path of play) neither researcher
ever does 2 units of work in one time period.

3. There is a subgame-perfect equilibrium in which (on the equilibrium path of play) there are at most 3
time periods in which exactly 1 unit of work is done.

4. There is a subgame-perfect equilibrium in which Researcher A does more work than Researcher B.

5. There is a subgame-perfect equilibrium in which some 2s come before some 1s, i.e., there is a subgame-
perfect equilibrium in which at some time t, the relevant player does 2 units of work and at some later
time t′ > t the relevant player does 1 unit of work.

2 Sleeping Beauty and Dutch Books (50 points)
Recall the Sleeping Beauty scenario from class. (For the below, Vince’s tutorial may also be helpful – in
particular, starting at slide 63 / 6:55 in part 4 of the recording on YouTube Vince’s explains gives an example
of a Dutch book from the literature.)

Imagine that you can offer Sleeping Beauty bets at each point in the scenario, including on Sunday (before
the usual scenario starts). Note that we don’t want the fact that a bet is offered to reveal information about
the day or how the coin landed, so if we offer her a bet when she wakes up, we offer it to her every time she
wakes up. Specifically, a set of bets for Sleeping Beauty is specified by the following numbers:

• The payoffs of the bet offered on Sunday: ySu,H ∈ R for when the coin comes up Heads and ySu,T ∈ R
for when the coin comes up Tails.

• Three numbers yMo,H , yMo,T , yT u,T ∈ R denoting the payoff of accepting the bet on Monday/Tuesday.

Sleeping Beauty knows all of these payoffs, but of course she doesn’t know on Sunday which of ySu,H ∈ R
and ySu,T ∈ R she’s going to get if she accepts the bet, and she also doesn’t know once she wakes up on
Monday/Tuesday which of yMo,H , yMo,T , yT u,T she is going to get if she accepts the bet.

A Dutch book is a set of bets s.t. if you accept all of them, then you lose money with certainty. In the
present case, this just means that ySu,H + yMo,H < 0 and ySu,T + yMo,T + yT u,T < 0, i.e., if you accept both
bets whenever they are offered to you, then you will lose money regardless of whether the coin comes up
Heads or Tails.

Accepting a Dutch book of bets seems undesirable. After all, when we are offered a Dutch book, we
can always walk away with a payoff of 0 by rejecting all bets. Thus, Dutch books are sometimes used as
arguments against specific methods of reasoning. If some method X of reasoning sometimes accepts Dutch
books, then it seems that we should reject method X. Such arguments are commonly referred to as Dutch
book arguments. Intuitively, one might think that only the silliest of methods are vulnerable to Dutch books.
But in many cases only very specific methods avoid accepting Dutch books. For example, Dutch books alone
can be used to justify the use of probabilities and updating beliefs by conditionalization.

In this problem, you will show that if Beauty is not vulnerable to Dutch books, she must have particular
types of beliefs. (The assumption throughout is that Beauty is risk-neutral, i.e., she attempts to maximize
her expected amount of money.)

We will assume that on Sunday, Beauty makes her decision normally, breaking ties in favor of accepting
the bet. That is, she accepts the bet on Sunday if and only if 1/2ySu,H + 1/2ySu,T ≥ 0.

Thus, for the purpose of this problem, Beauty’s beliefs are defined by three numbers pMo,H , pMo,T , pT u,T .
We require that these sum to 1.

2.1
First we will consider what beliefs Beauty must have if she uses causal decision theory to decide which bets
to accept.

2

http://www.cs.cmu.edu/~conitzer/agentdesigntutorial.html
https://www.youtube.com/watch?v=0JcBhF8Qt2Q

Hopefully you remember CDT from lecture. For the purpose of this exercise it is enough to know that
CDT accepts the bet if and only if

pMo,HyMo,H + pMo,T yMo,T + pT u,T yT u,T ≥ 0.

(We again assume that ties are broken in favor of accepting the bet.)
Give the set of possible values of (pMo,H , pMo,T , pT u,T) s.t. CDT avoids accepting Dutch books. Prove

that for these values CDT avoids Dutch books and that no other values allow CDT to avoid Dutch books.
Hint: Note that each Dutch book ySu,H , ySu,T , yMo,H ,yMo,T ,yT u,T with 1/2ySu,H + 1/2ySu,T ≥ 0 puts

a constraint on pMo,H , pMo,T , pT u,T . For example, consider ySu,H = 1, ySu,T = −1, yMo,H = −2,yMo,T =
yT u,T = 1/2 − ϵ. Note that this is indeed a Dutch book and that the Sunday bet is accepted. Thus, for CDT
with pMo,H , pMo,T , pT u,T to reject the bet it has to be the case that

−2pMo,H + pMo,T (1/2 − ϵ) + pT u,T (1/2 − ϵ) < 0.

2.2
Second, we will consider what beliefs Beauty must have if she uses evidential decision theory. Again, hopefully
you remember this theory and how this works from class, but all you need to know is that EDT accepts the
Monday/Tuesday bet if and only if

pMo,HyMo,H + (pMo,T + pT u,T)(yMo,T + yT u,T) ≥ 0.

(We again assume that ties are broken in favor accepting the bet.)
Again give the set of possible values of (pMo,H , pMo,T , pT u,T) s.t. EDT avoids accepting Dutch books.

Prove that for these values EDT avoids Dutch books and that no other values allow EDT to avoid Dutch
books.

3 The Beginnings of a Poker Shark (100 points)
In this problem, you will implement the CFR regret minimizer for sequence-form decision problems.

You will run your CFR implementation on three games: rock-paper-superscissors (a simple variant of
rock-paper-scissors, where beating paper with scissors gives a payoff of 2 instead of 1) and two well-known
poker variants: Kuhn poker [Kuhn, 1950] and Leduc poker [Southey et al., 2005]. A description of each game
is given in the folder cfr_files under the course web page, according to the format described in Section 3.1.
That folder also contains a stub Python file to help you set up your implementation.

3.1 Format of the game files
Each game is encoded as a json file with the following structure.

• At the root, we have a dictionary with three keys: decision_problem_pl1, decision_problem_pl2,
and utility_pl1. The first two keys contain a description of the tree-form sequential decision problems
faced by the two players, while the third is a description of the bilinear utility function for Player 1 as a
function of the sequence-form strategies of each player. Since both games are zero-sum, the utility for
Player 2 is the opposite of the utility of Player 1.

• The tree of decision points and observation points for each decision problem is stored as a list of nodes.
Each node has the following fields

id is a string that represents the identifier of the node. The identifier is unique among the nodes for
the same player.

3

type is a string with value either decision (for decision points) or observation (for observation
points).

actions (only for decision points). This is a set of strings, representing the actions available at the
decision node.

signals (only for observation points). This is a set of strings, representing the signals that can be
observed at the observation node.

parent_edge identifies the parent edge of the node. If the node is the root of the tree, then it is null.
Else, it is a pair (parent_node_id, action_or_signal), where the first member is the id of the
parent node, and action_or_signal is the action or signal that connects the node to its parent.

parent_sequence (only for decision points). Identifies the parent sequence pj of the decision point,
defined as the last sequence (that is, decision point-action pair) encountered on the path from the
root of the decision process to j.

Remark 1. The list of nodes of the tree-form sequential decision process is given in top-down
traversal order. The bottom-up traversal order can be obtained by reading the list of nodes
backwards.

• The bilinear utility function for Player 1 is given through the payoff matrix A such that the (expected)
utility of Player 1 can be written as

u1(x, y) = x⊤Ay,

where x and y are sequence-form strategies for Players 1 and 2 respectively. We represent A in the
file as a list of all non-zero matrix entries, storing for each the row index, column index, and value.
Specifically, each entry is an object with the fields

sequence_pl1 is a pair (decision_pt_id_pl1, action_pl1) which represents the sequence of Player 1
(row of the entry in the matrix).

sequence_pl2 is a pair (decision_pt_id_pl2, action_pl2) which represents the sequence of Player 2
(column of the entry in the matrix).

value is the non-zero float value of the matrix entry.

Example: Rock-paper-superscissors In the case of rock-paper-superscissors the decision problem faced by
each of the players has only one decision point with three actions: playing rock, paper, or superscissors. So,
each tree-form sequential decision process only has a single node, which is a decision node. The payoff matrix
of the game1 is

0 −1 1
1 0 −2

−1 2 0


.

r
p
s

r p s

So, the game file in this case has content:

{
"decision_problem_pl1": [

{"id": "d1_pl1", "type": "decision", "actions": ["r", "p", "s"],
"parent_edge": null, "parent_sequence": null}

1A Nash equilibrium of the game is reached when all players play rock with probability 1/2, paper with probability 1/4 and
superscissors with probability 1/4. Correspondingly, the game value is 0.

4

],
"decision_problem_pl2": [

{"id": "d1_pl2", "type": "decision", "actions": ["r", "p", "s"],
"parent_edge": null, "parent_sequence": null}

],
"utility_pl1": [

{"sequence_pl1": ["d1_pl1", "r"], "sequence_pl2": ["d1_pl2", "p"], "value": -1},
{"sequence_pl1": ["d1_pl1", "r"], "sequence_pl2": ["d1_pl2", "s"], "value": 1},
{"sequence_pl1": ["d1_pl1", "p"], "sequence_pl2": ["d1_pl2", "r"], "value": 1},
{"sequence_pl1": ["d1_pl1", "p"], "sequence_pl2": ["d1_pl2", "s"], "value": -2},
{"sequence_pl1": ["d1_pl1", "s"], "sequence_pl2": ["d1_pl2", "r"], "value": -1},
{"sequence_pl1": ["d1_pl1", "s"], "sequence_pl2": ["d1_pl2", "p"], "value": 2}

]
}

3.2 Learning to best respond
Let Q1 and Q2 be the sequence-form strategy polytopes corresponding to the tree-form sequential decision problems
faced by Players 1 and 2 respectively. A good smoke test when implementing regret minimization algorithms is to
verify that they learn to best respond. In particular, you will verify that your implementation of CFR applied to the
decision problem of Player 1 learns a best response against Player 2 when Player 2 plays the uniform strategy, that is,
the strategy that at each decision points picks any of the available actions with equal probability.

Let u ∈ Q2 be the sequence-form representation of the strategy for Player 2 that at each decision point selects
each of the available actions with equal probability. When Player 2 plays according to that strategy, the utility vector
for Player 1 is given by ℓ := Au, where A is the payoff matrix of the game.

For each of the three games, take your CFR implementation for the decision problem of Player 1, and let it output
strategies xt ∈ Q1 while giving as feedback at each time t the same utility vector ℓ. As T → ∞, the average strategy

x̄T := 1
T

T∑
t=1

xt ∈ Q1 (1)

will converge to a best response to the uniform strategy u, that is,

lim
T →∞

(x̄T)⊤Au = max
x̂∈Q1

x̂⊤Au.

If the above doesn’t happen empirically, something is wrong with your implementation.

Problem 3.1 (25 points). In each of the three games, apply your CFR implementation to the tree-form sequential
decision problem of Player 1, using as local regret minimizer at each decision point the regret matching algorithm.
At each time t, give as feedback to the algorithm the same utility vector ℓ = Au, where u ∈ Q2 is the uniform
strategy for Player 2. Run the algorithm for 1000 iterations. After each iteration T = 1, . . . , 1000, compute the
value of vT := (x̄T)⊤Au where x̄T ∈ Q1 is the average strategy output so far by CFR, as defined in (1).

Plot vT as a function of T . Empirically, what is the limit you observe vT is converging to?
Your solution should include three plots (one for each game) and three values. Don’t forget to turn in your

source code too.

⋆ Hint: represent vectors on R|Σ| (including the sequence-form strategies output by CFR and utility vectors given to
CFR) in memory as dictionaries from sequences (tuples (decision_point_id, action)) to floats.

⋆ Hint: in rock-paper-superscissors, vT should approach the value 1/3. In Kuhn poker, the value 1/2. In Leduc poker,
the value 2.0875.

3.3 Learning a Nash equilibrium using CFR
Now that you are confident that your implementation of CFR is correct, you will use CFR to converge to Nash
equilibrium using the self-play idea described in lecture and recalled next.

5

The idea behind using regret minimization to converge to Nash equilibrium in a two-player zero-sum game is to use
self play. We instantiate two regret minimization algorithms, RX and RY , for the domains of the maximization and
minimization problem, respectively. At each time t the two regret minimizers output strategies xt and yt, respectively.
Then, they receive as feedback the vectors ℓt

X , ℓt
Y defined as

ℓt
X := Ayt, ℓt

Y := −A⊤xt, (2)

where A is Player 1’s payoff matrix.
We summarize the process pictorially in Figure 1.

RX

RY

x1

y1 ℓ1
Y

ℓ1
X RX

RY

x2

y2

RX

RY

ℓt−1
X

ℓt−1
Y

xt

yt ℓt
Y

ℓt
X RX

RY

xt+1

yt+1 · · ·· · ·

Figure 1: The flow of strategies and utilities in regret minimization for games. The symbol denotes
computation/construction of the utility vector.

A well known folk theorem establish that the pair of average strategies produced by the regret minimizers up to
any time T converges to a Nash equilibrium, where convergence is measured via the saddle point gap

0 ≤ γ(x, y) :=
(

max
x̂∈X

{x̂⊤Ay} − x⊤Ay
)

+
(

x⊤Ay − min
ŷ∈Y

{x⊤Aŷ}
)

= max
x̂∈X

{x̂⊤Ay} − min
ŷ∈Y

{x⊤Aŷ}.

A point (x, y) ∈ X × Y has zero saddle point gap if and only if it is a Nash equilibrium of the game.

Theorem 1. Consider the self-play setup summarized in Figure 1, where RX and RY are regret minimizers for
the sets X and Y, respectively. Let RT

X and RT
Y be the (sublinear) regret cumulated by RX and RY , respectively,

up to time T , and let x̄T and ȳT denote the average of the strategies produced up to time T , that is,

x̄T := 1
T

T∑
t=1

xt, ȳT := 1
T

T∑
t=1

yt. (3)

Then, the saddle point gap γ(x̄T , ȳT) of (x̄T , ȳT) satisfies

γ(x̄T , ȳT) ≤ RT
X + RT

Y

T
→ 0 as T → ∞.

Problem 3.2 (25 points). Let the CFR implementation (using regret matching as the local regret minimizer at
each decision point) for Player 1’s and Player 2’s tree-form sequential decision problems play against each other
in self play, as described above.

Plot the saddle point gap and the expected utility (for Player 1) of the average strategies γ(x̄T , ȳT) as a
function of the number of iterations T = 1, . . . , 1000.

Your solution should include six plots (two for each game—one for the saddle point gap and one for the
utility). Don’t forget to turn in your source code too.

⋆ Hint: represent vectors on R|Σ| (including the sequence-form strategies output by CFR and utility vectors given to
CFR) in memory as dictionaries from sequences (tuples (decision_point_id, action)) to floats.

⋆ Hint: to compute the saddle-point gap, feel free to use the function gap(game, strategy_pl1, strategy_pl2)
provided in the Python stub file.

⋆ Hint: the saddle point gap should be going to zero. The expected utility of the average strategies in rock-paper-
superscissor should approach the value 0. In Kuhn poker it should approach −0.055. In Leduc poker it should approach
−0.085.

6

3.4 Discounted CFR (DCFR)

Problem 3.3 (25 points). Do the task of the previous subsection with DCFR [Brown and Sandholm, 2019]
(discussed in class) as the local regret minimizer instead of CFR. Use DCFR parameters α = 1.5, β = 0, γ = 2.

Your solution should include six plots (two for each game—one for the saddle point gap and one for the
utility). Don’t forget to turn in your source code too.

3.5 Predictive CFR+ (PCFR+)

Problem 3.4 (25 points). Do the task of the previous subsection with PCFR+ [Farina et al., 2021] (discussed in
class) as the local regret minimizer.

Your solution should include six plots (two for each game—one for the saddle point gap and one for the
utility). Don’t forget to turn in your source code too.

References
H. W. Kuhn. A simplified two-person poker. In H. W. Kuhn and A. W. Tucker, editors, Contributions to the Theory

of Games, volume 1 of Annals of Mathematics Studies, 24, pages 97–103. Princeton University Press, Princeton,
New Jersey, 1950.

Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse Billings, and Chris Rayner.
Bayes’ bluff: opponent modelling in poker. In Proceedings of the Twenty-First Conference on Uncertainty in
Artificial Intelligence, pages 550–558, 2005.

Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted regret minimization. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2019.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive Blackwell approachability:
Connecting regret matching and mirror descent. To appear in the proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2021.

7

	Selfish Procrastination? (50 points)
	Sleeping Beauty and Dutch Books (50 points)
	
	

	The Beginnings of a Poker Shark (100 points)
	Format of the game files
	Learning to best respond
	Learning a Nash equilibrium using CFR
	Discounted CFR (DCFR)
	Predictive CFR+ (PCFR+)

