Modern Organ Exchanges: Designs, Algorithms, and Opportunities

OR

AI Making Life-and-Death Decisions about Humans

OR

Longest-Running Application of AI for Good?

Tuomas Sandholm

90,000+

Waiting for a kidney in the U.S.

Live donation

Kidney exchange

Idea introduced in 1986 [Rapaport]
First exchange (NEPKE) started 2003-04 [Roth, Sönmez, Ünver, ...]

Objective of the batch problem:

Maximum weight combination of short disjoint cycles

Other barter-exchange markets

- Holiday Homes: Intervac
- Books: Read It Swap It
- General used goods:
 Netcycler / swap.com
- National Odd Shoe Exchange

- Room exchange (e.g. dorm rooms)
- Nurse shift exchange

Cap on cycle length

- Why a cap?
 - Transplants in a cycle must occur simultaneously
 - Cycle may fail
- Cap is typically 3

What if?

Never-ending altruist-donor (NEAD) chains

[With Rees et al. New England Journal of Medicine 2009]

First NEAD chain, generated by our algorithm:

 NEAD chains have become the main modality of kidney exchange worldwide: >10,000 transplants

30-chain [New York Times 2/18/2012]

[National Kidney Registry]

Kidney exchanges use designs, algorithms, and software from my CMU lab

- Technology selected in 2008
- Licensed to UNOS for free
- National exchange went live in 2010
- Now includes 80% of the transplant centers in the US
- Match run every week
- Only US organ exchange that is fully algorithmically run

Previously:

- Alliance for Paired Donation
- Paired Donation Network

Solving the batch problem

- NP-complete (even without chains) [Abraham, Blum, Sandholm, EC-07]
- Novel branch-and-price algorithm enabled nationwide scaling [Abraham, Blum, Sandholm, EC-07]
- •
- Fastest current algorithm: [Dickerson, Manlove, Plaut, Sandholm, Trimble, EC-16]
 - $X_{ij} \to X_{ijk}$
 - uses the extra constraints:

"if an edge is used at position k+1 in chain, there must be an appropriate edge used at position k in that chain"

"Position-indexed" compact formulation for within-batch chain caps

[Dickerson, Manlove, Plaut, Sandholm & Trimble, EC-16]

$$\max \qquad \sum_{(i,j)\in A} \sum_{k\in\mathcal{K}(i,j)} w_{ij}y_{ijk} + \sum_{c\in\mathcal{C}} w_c z_c \qquad \qquad (3a)$$
 s.t.
$$\sum_{j:(j,i)\in A} \sum_{k\in\mathcal{K}(j,i)} y_{jik} + \sum_{c\in\mathcal{C}:i} \sum_{\substack{appears in c}} z_c \leq 1 \qquad i\in P \qquad \qquad (3b)$$

$$\sum_{j:(i,j)\in A} y_{ij1} \leq 1 \qquad i\in N \qquad \qquad (3c)$$

$$\sum_{j:(j,i)\in A\wedge} y_{jik} \geq \sum_{j:(i,j)\in A} y_{i,j,k+1} \qquad \forall i\in P, \\ k\in\{1,\ldots,K-1\} \qquad \qquad (3d)$$

$$y_{ijk} \in \{0,1\} \qquad (i,j)\in A, k\in\mathcal{K}(i,j) \qquad \qquad (3e)$$

$$z_c \in \{0,1\} \qquad c\in\mathcal{C} \qquad \qquad (3f)$$

3a: max weight of edges in chains + weight of cycles

3b: each pair is in at most one chain or cycle

3c: each NDD has at most one used out-edge

3d: if an edge is used at position k+1 in chain, there must be an appropriate edge used at position k in that chain

Additional functionality for modern kidney exchanges supported by our algorithm and our later enhancements

Multiple willing donors per patient

- All their edges included in input graph
- Solver automatically uses at most one of the donors

Incorporating compatible pairs

- Why?
 - Patient can get a better kidney
 - Others get more/better matches

- Our algorithm supports this
 - Could preprocess so patient can't get worse kidney than her compatible donor brings

Weights on edges

- Algorithm supports weights on edges (thus also on nodes)
- Weights can represent, e.g.,
 - Degrees of compatibility
 - Projected life years (potentially quality-adjusted)
 - Travel distance
 - Wait time
 - Transplanting children
 - Transplanting sensitized, hard-to-match patients

Side constraints

- Algorithm supports certain kinds of side constraints, e.g.,
 - Center A does not want to be in cycles longer than 2
 - Patient x does not want to be in a cycle longer than 2
 - Center B does not want to participate in altruistic donor chains of length greater than 3

— ...

Fielded kidney exchanges

- NEPKE (started 2003-04, now closed)
- United Network for Organ Sharing (UNOS)
- Alliance for Paired Donation
- Paired Donation Network (now closed)
- National Kidney Registry
- San Antonio
- Mayo Clinic
- St. Barnabas Compassionate Share
- Netherlands
- UK
- Canada
- Australia
- Portugal
- Israel
- Sweden
- ...

~600 transplants in US per year, mainly via NEAD chains

Only US one that uses purely algorithmic matching

Failure-aware kidney exchange

[Dickerson, Procaccia & Sandholm, EC-13, Management Science 2019]

Failure-aware kidney exchange

[Dickerson, Procaccia & Sandholm, EC-13, Management Science 2019]

Only 7-12% of planned transplants go into execution

- We propose to find a solution that has maximum expected weight
 - Each edge has a weight and a success probability
 - Can't just multiply weight and probability
- We needed to develop a different optimal algorithm
 - Based on branch-and-price

Algorithm changes for probabilistic setting

- Use chain extension in pricing problem
 - Theorem. Don't need to extend a chain by any #steps if optimistic infinite extension has negative value:

- Ordering heuristics for cycle and chain generation
- Upper bound now hard
 - Theorem. Discounted clearing NP-complete (even with no chains or cycle length cap)
 - So, we use looser bound: solve with $w'_e = (1-p_{fail}) w_e$
- Lower bound still easy
 - Theorem. Discounted clearing with 2-cycles polytime

Scalability experiment

Time limit 1 hour; 8GB RAM; Saidman et al. generator; $p_{fail} = 0.7$; #altruists = 0.1*#pairs

	CPLEX (Discounted)		Ours (Discounted)	
V	Cleared	Time (cleared)	Cleared	Time (cleared)
10	127 / 128	0.044	128 / 128	0.027
25	125 / 128	0.045	128 / 128	0.023
50	105 / 128	0.123	128 / 128	0.046
75	91 / 128	0.180	126 / 128	0.072
100	1 / 128	1.406	121 / 128	0.075
150	0 / 128	_	114 / 128	0.078
200	0 / 128	_	113 / 128	0.135
250	0 / 128	_	94 / 128	0.090
500	0 / 128	_	107 / 128	0.264
700	0 / 128	_	115 / 128	1.071
900	0 / 128	_	38 / 128	2.789
1000	0 / 128	_	0 / 128	_

Dynamic experiment with failures

24 weeks; Bimodal failure probability; #altruists = 0.1 * #pairs

FutureMatch: Combining human value judgments, ML, and integer programming for automatically generating the best policy for large-scale dynamic problems [Dickerson & S., AAAI-15]

Experiments with 3 objectives: max-graft-survival, max-cardinality, max-β-weighted-cardinality

E.g., for β =2, improves over myopic in both #transplants and #sensitized transplants

Preference elicitation from multiple experts

 To extract the value system from the multiple expert stakeholders, I designed a careful questionnaire with questions comparing small-case solutions

Experts are reluctant to answer, and even ask

Edge testing

- Algorithms for better edge testing policies
 - Blum, Dickerson, Haghtalab, Procaccia & Sandholm
 EC-15, Operations Research 2019
 - McElfresh, Curry, Sandholm & Dickerson
 NeurIPS-20
- Ongoing pilot with UNOS for prioritizing queries in UNOS's donor pre-select tool

Transplant centers hide pairs and NDDs from exchange(s)

- Why do centers do this?
 - Logistical benefit
 - Money
- What fraction of locally matchable pairs/NDDs do centers hide?
 - A: 100% [Stewart, Leishman, Sleeman, Monstello, Lunsford, Maghirang, Sandholm, Gentry, Formica, Friedewald, Andreoni. 2013. American Transplant Congress]
- No mechanism design solution possible in static setting
 [Roth, Sönmez, Ünver (2007a); Ashlagi, Fischer, Kash, Procaccia, GEB-13; Ashlagi & Roth (2014)]
- Incentive-compatible, efficient, long-term-IR credit mechanism [Hajaj, Dickerson, Hassidim, Sandholm, Sarne, AAAI-15]
 - Matching favors centers that reveal more than their expected number of pairs/NDDs, and disfavors those who reveal fewer than that
 - Supports chains and long cycles
 - Assumes pairs and NDDs last for only one matching period

Liver lobe and cross-organ exchanges

- Invented liver lobe and cross-organ exchange [Sandholm, UMass DLS-10]
- Merging kidney and liver lobe exchanges produces a large benefit in theory and simulation [Dickerson & Sandholm, JAIR-17]
- Fielding has started in the small, with manual matching, as it started with kidneys
 - A few liver lobe swaps per year in the US
 - First liver lobe kidney swap took place in 2019

Our ongoing research on organ exchange

- Better algorithms that handle the dynamic problem with arrivals & departures
- Better edge testing policies
- Matching cadence: Race to bottom among exchanges [Das, Dickerson, Li, Sandholm, AMMA-15]
 - Why allow multiple kidney exchanges in a country?
- Better incentive schemes for transplant centers to reveal pairs
- Multi-donor kidney exchange
 - Current practice allows multiple donors listed, only one used
 - Our new approaches allow multiple donors to be used in various ways
 [Sandholm, Farina, Dickerson, Leishman, Stewart, Formica, Thiessen, Kulkarni ATC-17;
 Farina, Dickerson, Sandholm IJCAI-17, AGT-17]
- "Operation frames" [Farina, Dickerson, Sandholm IJCAI-17, AGT-17]
- Other organs
 - Liver & cross-organ exchange [Dickerson & Sandholm, GREEN-COPLAS-13, AAAI-14, JAIR-17]
 - Lung "components" [Ergin, Sönmez, Ünver, draft 2014-15; Tang et al. 2015]
- International exchanges

Some more of my future research on organ donation

