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Mechanism design

Field of game theory with significant real-world impact.

Encompasses areas such as pricing and auction design.



Amazon’s profit swells to $1.6 billion
[NY Times ‘18]

Bidding in government auction of 
airwaves reaches $34 billion
[NYTimes ‘14]

Very-large-scale generalized 
combinatorial multi-attribute 
auctions: Lessons from 
conducting $60B of sourcing
[Sandholm, chapter in Handbook 
of Market Design, 2013]



Amazon’s profit swells to $1.6 billion
[NY Times ‘18]

Bidding in government auction of 
airwaves reaches $34B
[NYTimes ‘14]



Amazon’s profit swells to $1.6B
[NY Times ‘18]



Amazon’s profit swells to $1.6 billion
[NY Times ‘18]

Bidding in government auction of 
airwaves reaches $34 billion
[NYTimes ‘14]

Very-large-scale generalized 
combinatorial multi-attribute auctions: 
Lessons from conducting $60 billion of 
sourcing
[Sandholm ‘13]

Ad rev. in 
2016

Total rev. in 
2016

Google $79 B $89.46 B

Facebook $27 B $27.64 B



Automated mechanism design
[Conitzer and Sandholm, UAI’02; Sandholm CP’03]

Use optimization, ML, & data to design mechanisms

– Helps overcome challenges faced by manual approaches:

2 items for sale: Revenue-maximizing mechanism unknown



Automated mechanism design
[Conitzer and Sandholm, UAI’02; Sandholm CP’03]

Use optimization, ML, & data to design mechanisms

– Helps overcome challenges faced by manual approaches:

2 items for sale: Revenue-maximizing mechanism unknown

In these two lectures, we:

– Cover optimization algorithms

– Provide statistical guarantees

• Techniques of independent interest (we believe) to ML theory
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Mechanism design for sales settings

There’s a set of items for sale and a set of buyers

At a high level, a mechanism determines:

1. Which buyers receive which items

2. What they pay
𝑣𝑖 : 2
𝑣𝑖 : 3

𝑣𝑖 ,       : 6

𝑣𝑖 : 2
𝑣𝑖 : 2

𝑣𝑖 ,       : 4



Mechanism design example:
Posted price mechanisms

Set a price per item

Buyers buy the items maximizing their utility

: 1.50
: 3.50

𝑣𝑖 : 2
𝑣𝑖 : 3

𝑣𝑖 ,       : 6

Value for items minus price



Mechanism design example:
First-price auction

Highest bidder wins. Pays his bid.

$9 $7 $6 $5



Mechanism design example:
Second-price auction

Highest bidder wins. Pays second highest bid.

$9 $7 $6 $5



Mechanism design example:
Second-price auction with a reserve

Auctioneer sets reserve price 𝒓

Highest bidder wins if bid ≥ 𝒓

Pays maximum of second highest bid and 𝒓

Reserve price: $8         Revenue = $8

Reserve price: $6         Revenue = $7

$9 $7 $6 $5



Second-price auction

1961: Introduced by Vickrey
Vickrey, William. "Counterspeculation, 
auctions, and competitive sealed 
tenders." The Journal of finance 16.1 
(1961): 8-37.

1996: He won Nobel Prize

Studied extensively in CS
[E.g., Sandholm, Intl. J. Electronic 
Commerce ’00; Cesa-Bianchi, Gentile, 
and Mansour, IEEE Transactions on 
Information Theory, ‘15; Daskalakis 
and Syrgkanis, FOCS’16].



Notation

There are 𝑚 items and 𝑛 buyers

Each buyer 𝑖 has value 𝑣𝑖(𝑏) ∈ ℝ for each bundle 𝑏 ⊆ [𝑚]

Let 𝒗𝑖 = 𝑣𝑖 𝑏1 , … , 𝑣𝑖 𝑏2𝑚 for all 𝑏1, … , 𝑏2𝑚 ⊆ 𝑚

Buyer 𝑖’s “type”



Notation

There are 𝑚 items and 𝑛 buyers

Each buyer 𝑖 has value 𝑣𝑖(𝑏) ∈ ℝ for each bundle 𝑏 ⊆ [𝑚]

Let 𝒗𝑖 = 𝑣𝑖 𝑏1 , … , 𝑣𝑖 𝑏2𝑚 for all 𝑏1, … , 𝑏2𝑚 ⊆ 𝑚

Example

Items = {    ,    }

𝒗𝑖 = 𝑣𝑖 , 𝑣𝑖 , 𝑣𝑖 , 𝑣𝑖 ,        f

𝑣𝑖 = 2 𝑣𝑖 = 3 𝑣𝑖 ,       = 6

∅

𝑣𝑖 = 0∅

0 2 3

Buyer 𝑖’s “type”

6



What exactly is a mechanism?
(In sale settings)

Mechanism 𝑀 is defined by an allocation and payment function.

1. Allocation function defines which buyers receive which items

2. Payment function defines how much each buyer pays

Revenue of 𝑀 given values 𝒗1, … , 𝒗𝑛 is sum of payments:
revenue𝑀 𝒗1, … , 𝒗𝑛

Sometimes, each buyer 𝑖 might need to submit a set of bids:

෥𝒗𝑖 = ෤𝑣𝑖 𝑏1 , … , ෤𝑣𝑖 𝑏2𝑚

෥𝒗𝑖 may not equal buyer 𝑖’s true values 𝒗𝑖



Why can we restrict attention to single-shot IC 
mechanisms? 

Revelation principle (informal): If some allocation and payment 
fns are implementable by a mechanism, then there’s a single-shot 
incentive compatible mechanism with same payment and 
allocation fn

Mechanism lies for the agents!

Agent 1’s
preferences

.

.

.
Strategy

Strategy

Outcome

New mechanism

Agent 𝒎’s
preferences

Original
mechanism

Strategy
formulator

Strategy
formulator



Mechanism desiderata

We want to design mechanisms that are:

Incentive compatible

Agents’ bids equal their true values

They’re incentivized to bid truthfully

Individually rational

Agents have nothing to lose by participating



Incentive compatibility

The second-price auction is incentive compatible.

Every bidder will maximize their utility by bidding truthfully.

Why not bid above value      ?

value       - payment  • 1  wins item



Incentive compatibility

The second-price auction is incentive compatible.

Every bidder will maximize their utility by bidding truthfully.

Why not bid above value      ?

– If winner, will stay winner and price won’t change

True 
value

Bid
Other bidders’ 

bids

value       - payment  • 1  wins item



Incentive compatibility

The second-price auction is incentive compatible.

Every bidder will maximize their utility by bidding truthfully.

Why not bid above value      ?

– If winner, will stay winner and price won’t change

– If loser, might become winner, but will pay more than value       

value       - payment  • 1  wins item

True 
value

Bid
Other bidder’s 

bid
Other bidder’s 

bid



Incentive compatibility

The second-price auction is incentive compatible.

Every bidder will maximize their utility by bidding truthfully.

Why not bid below value      ?

value       - payment  • 1  wins item



Incentive compatibility

The second-price auction is incentive compatible.

Every bidder will maximize their utility by bidding truthfully.

Why not bid below value      ?

– If winner, might become loser; shift from non-negative to zero utility

value       - payment  • 1  wins item

True 
value

Bid
Other bidder’s 

bid
Other bidder’s 

bid



Incentive compatibility

The second-price auction is incentive compatible.

Every bidder will maximize their utility by bidding truthfully.

Why not bid below value      ?

– If winner, might become loser; shift from non-negative to zero utility

– If loser, will still be loser, so utility will still be zero

value       - payment  • 1  wins item

True 
value

Bid
Other bidder’s 

bid
Other bidder’s 

bid



Individual rationality

The second-price auction is individually rational.

Each bidder is no worse off participating than not, when truthful

Bidders pay nothing or their payment is smaller than their value.

$9 $7 $6 $5



A bit more formally…

Buyers’ values are drawn from a probability distribution.

Standard assumption

Example

𝒗1, … , 𝒗𝑛 ~𝒟, where 𝒗𝑖 = 𝑣𝑖 , 𝑣𝑖 , 𝑣𝑖 , 𝑣𝑖 ,∅



Different types of incentive compatibility

Ex ante IC:
Bidders should be truthful in expectation over all bidders’ values

Ex interim IC:
Bidders should be truthful in expectation over others’ values

Ex post IC:
Given all of the bidders’ values, the bidders should be truthful

Can similarly define ex ante, ex interim, and ex post
individual rationality

Each bidder knows: Own values All bidders’ 
values

Ex 
ante

Ex 
interim

Ex 
post

Distribution



Incentive 
compatibility

1972: Hurwicz introduced IC

2007: He won Nobel prize

L. Hurwicz. On 
Informationally Decentralized 
Systems. Decision and 
Organization, edited by C.B. 
McGuire and R. Radner. 1972.



Optimal single-item 
sales mechanism

1981: Myerson discovered 
“optimal” 1-item auction

2007: Won Nobel prize

R. Myerson. Optimal auction 
design. Mathematics of 
Operations Research, 
6(1):58–73, 1981. 

Revenue-maximizing



Optimal single-item auctions

What’s the problem with second-price auction?
– Strong bidder typically wins and pays weak bidder’s bid

– Leaves revenue on the table!

D
en

si
ty

value

Strong bidderWeak bidder

Myerson’s optimal auction boosts weak bidders’ bids

Creates extra competition while maintaining IC



Optimal single-item auctions

Bidder 𝑖’s value distribution has PDF 𝑓𝑖, CDF 𝐹𝑖, support in [0, 1]

Myerson’s optimal auction

Let 𝜙𝑖 𝑡 = 𝑡 −
1−𝐹𝑖(𝑡)

𝑓𝑖(𝑡)
. Solicit bids ෤𝑣1, … , ෤𝑣𝑛 from buyers

If all virtual values 𝜙1 ෤𝑣1 , … , 𝜙𝑛 ෤𝑣𝑛 < 0, don’t allocate item

Else allocate item to buyer 𝑖∗ with highest virtual value 𝜙𝑖 ෤𝑣𝑖
Charge bidder 𝑖∗ her threshold bid (min she could bid and win):

𝜙𝑖∗
−1 max 0, 𝜙𝑖∗ ෤𝑣𝑗 𝑗≠𝑖∗



Optimal single-item auctions

When buyers’ values are i.i.d.:

Equivalent to 2nd-price auction with reserve of 𝜙𝑖
−1 0

Extended to selling multiple units of an item [Maskin & Riley, ‘89]



Major challenge:
Optimal multi-item auctions

Don’t know how to sell two items optimally! Tons of work, e.g.:

Economics
E.g., Rochet, Journal of Mathematical Economics, ‘87; Avery and 
Hendershott, Review of Economic Studies, ’00; Armstrong, Review of 
Economic Studies, ’00; Thanassoulis, Journal of Economic Theory, ’04; 
Manelli and Vincent, Journal of Economic Theory ’06

Computer science
E.g., Conitzer and Sandholm, UAI’02, ICEC’03, EC’04; Likhodedov and 
Sandholm, AAAI‘04, AAAI’05; Cai and Daskalakis, FOCS’11; Cai, Daskalakis, 
and Weinberg, STOC’12, FOCS’12; Sandholm and Likhodedov, Operations 
Research ’15; Yao, SODA’15; Hart and Nisan, Journal of Economic Theory, ‘17
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Automated mechanism design (AMD)
[Conitzer and Sandholm, UAI’02; Sandholm CP’03]

• Often designer has info about agents – silly to ignore

Solve mechanism design as a search/optimization problem automatically
• Built a system for doing that
• Create a mechanism for the specific setting at hand rather than a class of 

settings

• Can lead to greater value of designer’s objective than known mechanisms
• Sometimes circumvents economic impossibility results

o Always minimizes the pain implied by them
• Can be used in new settings & for unusual objectives
• Can yield stronger incentive compatibility & participation properties
• Shifts the burden of design from human to machine



Automated mechanism design ≠ Algorithmic mechanism design

[Conitzer and Sandholm, UAI-02]                      [Nisan and Ronen`01]



Classical vs. automated mechanism design

once

Build software

Prove general theorems 
& publish

Intuitions about
mechanism design

Real-world mechanism
design problem appears

Mechanism for setting at 
hand

Build mechanism 
by hand

AMD software
Real-world mechanism

design problem appears
Mechanism for setting at 

hand

Automated

Classical



Input

• Instance is given by
– Set of possible outcomes

– Set of agents
• For each agent

– set of possible types

– probability distribution over these types

– utility function converting type/outcome pairs to utilities

– Objective function
• Gives a value for each outcome for each combination of agents’ types

• E.g. payment maximization

– Restrictions on the mechanism
• Are side payments allowed?

• Is randomization over outcomes allowed?

• What concept of nonmanipulability is used?

• What participation constraint notion (if any) is used?



Output

• Mechanism

– A mechanism maps combinations of agents’ revealed types to 
outcomes

• Randomized mechanism maps to probability distributions over outcomes

• Also specifies payments by agents (if payments allowed)

• …which

– is nonmanipulable (according to the given concept)

– satisfies the given participation constraint

– maximizes the expectation of the objective function



type vectors
quasilinear preferences

possible
impossible possible

possible



Complexity of AMD

Theorem [Conitzer and Sandhom, UAI’02, ICEC’03, EC’04]

The following are NP-complete (even for 1 buyer) for designing a deterministic 
mechanism:
1. Maximizing social welfare (sum of agents’ values for their allocations) (no payments)
2. Maximizing designer’s utility over outcomes (no payments)
3. Maximizing a general (linear) objective that doesn’t regard payments
4. Expected revenue
Polynomial time for designing a randomized mechanism for constant #agents (LP)

But also there is a blowup in input

– Exponential allocation space: (#agents +1)#items

– The support of the distribution over values might be 
doubly exponential: k^(2#items) 

• k is the number of possible values a buyer might 
have for a bundle



Classes of automated mechanism design

1. “Flat-representation” de novo design

2. Search in a parametric mechanism class

3. Incremental automated mechanism design



Two key ideas to get scalability and avoid the need 
to discretize type space

[Likhodedov & Sandholm AAAI-04, AAAI-05, Operations Research 2015]

• Don’t assume valuation distribution is given, only 
samples from it

• AMD as search in a parametric mechanism class



There’s an unknown distribution over valuations.

Use a set of samples to learn a mechanism that has high 
expected revenue.

Multi-item
E.g., Likhodedov and Sandholm, AAAI‘04, AAAI’05; Balcan, 
Blum, Hartline, and Mansour, FOCS’05; Morgenstern and 
Roughgarden, COLT’16;  Syrgkanis, NIPS’17; Cai and Daskalakis, 
FOCS’17; Gonczarowski and Weinberg, FOCS’18…

Single-item
E.g., Elkind, SODA’07; Dhangwatnotai, Roughgarden, and Yan, 
EC’10; Mohri and Medina, ICML’14;  Cole and Roughgarden 
STOC’14…

value                    ~



Mechanism design as a learning problem

Goal: Given large family of mechanisms and set of buyers’ values 
sampled from unknown distribution 𝒟, find mechanism with 
high expected revenue.

Approach: Find mechanism that’s (nearly) optimal over the set of samples.

Sample 𝑁

…

Sample 1

𝑣1

𝑣1

𝑣1

…

𝑣𝑛

𝑣𝑛

𝑣𝑛

𝑣1

𝑣1

𝑣1

…

𝑣𝑛

𝑣𝑛

𝑣𝑛



Two key ideas to get scalability and avoid the need to 
discretize type space

[Likhodedov & S., AAAI-04, AAAI-05; S. & Likhodedov, Operations Research-15]

• Don’t assume that the distribution over bidders’ 
valuations is given, only samples from it

– Now an active research field in TCS & AI

• Automated mechanism design as search in a parametric 
mechanism class

𝜆 𝒃

𝑤𝑖



A fundamental building block for multi-item, 
multi-bidder automated mechanism design of 
deterministic mechanisms

Based on a series of papers by Vickrey [Journal of 
Finance ‘61], Clarke [Public Choice ‘71], and Groves 
[Econometrica ‘73]

The multi-item, multi-bidder incentive compatible 
auction that maximizes social welfare

Generalization of the Vickrey auction

Sum of the buyers’ values for the items they’re 
allocated

Vickrey-Clarke-Groves 
mechanism (VCG)



Each buyer 𝑖 submits a bid 𝑣𝑖(𝑏) for each bundle 
𝑏 of items.

The auction is incentive compatible, so we 
assume the bidders’ bids equal their true values 
[Clarke, Public Choice ’71; Groves, Econometrica 

‘73; Vickrey, Journal of Finance ‘61]

Vickrey-Clarke-Groves 
mechanism (VCG)



Let 𝑏1, … , 𝑏𝑛 be an allocation of the 𝑚 goods.

This means 𝑏1, … , 𝑏𝑛 ⊆ [𝑚] and 𝑏𝑖 ∩ 𝑏𝑗 = ∅.

Social Welfare 𝑏1, … , 𝑏𝑛 = σ𝑖∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠 𝑣𝑖 𝑏𝑖
𝒃∗ = 𝑏1

∗, … , 𝑏𝑛
∗ maximizes social welfare 𝑆𝑊 ∙

𝑆𝑊−𝑖 𝑏1, … , 𝑏𝑛 = σ𝑗∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠− 𝑖 𝑣𝑗 𝑏𝑗

𝑆𝑊 𝑏1, … , 𝑏𝑛

Vickrey-Clarke-Groves 
mechanism (VCG)

Social welfare of the allocation, not 
including bidder 𝑖’s value

𝑏1
∗, 𝑏2

∗ = ∅

Bidder 1 2

1 0

2 1

2.5 1



Let 𝑏1, … , 𝑏𝑛 be an allocation of the 𝑚 goods.

This means 𝑏1, … , 𝑏𝑛 ⊆ [𝑚] and 𝑏𝑖 ∩ 𝑏𝑗 = ∅.

Social Welfare 𝑏1, … , 𝑏𝑛 = σ𝑖∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠 𝑣𝑖 𝑏𝑖
𝒃∗ = 𝑏1

∗, … , 𝑏𝑛
∗ maximizes social welfare 𝑆𝑊 ∙

𝑆𝑊−𝑖 𝑏1, … , 𝑏𝑛 = σ𝑗∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠− 𝑖 𝑣𝑗 𝑏𝑗

𝒃−𝑖 = 𝑏1
−𝑖 , … , 𝑏𝑛

−𝑖 maximizes 𝑆𝑊−𝑖 𝑏1, … , 𝑏𝑛

𝑆𝑊 𝑏1, … , 𝑏𝑛

Vickrey-Clarke-Groves 
mechanism (VCG)

The social-welfare-maximizing allocation if 
bidder 𝑖 hadn’t participated.

𝑏1
∗, 𝑏2

∗ =

𝑏1
−1, 𝑏2

−1 =

∅

∅

Bidder 1 2

1 0

2 1

2.5 1



Let 𝑏1, … , 𝑏𝑛 be an allocation of the 𝑚 goods.

This means 𝑏1, … , 𝑏𝑛 ⊆ [𝑚] and 𝑏𝑖 ∩ 𝑏𝑗 = ∅.

Social Welfare 𝑏1, … , 𝑏𝑛 = σ𝑖∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠 𝑣𝑖 𝑏𝑖
𝒃∗ = 𝑏1

∗, … , 𝑏𝑛
∗ maximizes social welfare 𝑆𝑊 ∙

𝑆𝑊−𝑖 𝑏1, … , 𝑏𝑛 = σ𝑗∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠− 𝑖 𝑣𝑗 𝑏𝑗

𝒃−𝑖 = 𝑏1
−𝑖 , … , 𝑏𝑛

−𝑖 maximizes 𝑆𝑊−𝑖 𝑏1, … , 𝑏𝑛

Allocation: 𝒃∗

Payment:

Bidder 𝑖 pays 𝑆𝑊−𝑖 𝒃
−𝑖 − 𝑆𝑊−𝑖 𝒃

∗

𝑆𝑊 𝑏1, … , 𝑏𝑛

Vickrey-Clarke-Groves 
mechanism (VCG)

The social-welfare-maximizing allocation.

𝑏1
∗, 𝑏2

∗ =

𝑏1
−1, 𝑏2

−1 =

∅

∅

Bidder 1 2

1 0

2 1

2.5 1

How much happier 
everyone would be if buyer 

𝑖 hadn’t participated.



Let 𝑏1, … , 𝑏𝑛 be an allocation of the 𝑚 goods.

This means 𝑏1, … , 𝑏𝑛 ⊆ [𝑚] and 𝑏𝑖 ∩ 𝑏𝑗 = ∅.

Social Welfare 𝑏1, … , 𝑏𝑛 = σ𝑖∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠 𝑣𝑖 𝑏𝑖
𝒃∗ = 𝑏1

∗, … , 𝑏𝑛
∗ maximizes social welfare 𝑆𝑊 ∙

𝑆𝑊−𝑖 𝑏1, … , 𝑏𝑛 = σ𝑗∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠− 𝑖 𝑣𝑗 𝑏𝑗

𝒃−𝑖 = 𝑏1
−𝑖 , … , 𝑏𝑛

−𝑖 maximizes 𝑆𝑊−𝑖 𝑏1, … , 𝑏𝑛

Allocation: 𝒃∗

Payment:

Bidder 𝑖 pays 𝑆𝑊−𝑖 𝒃
−𝑖 − 𝑆𝑊−𝑖 𝒃

∗

𝑆𝑊 𝑏1, … , 𝑏𝑛

Vickrey-Clarke-Groves 
mechanism (VCG)

How much happier 
everyone would be if buyer 

𝑖 hadn’t participated.

𝑏1
∗, 𝑏2

∗ =

𝑏1
−1, 𝑏2

−1 =

𝑆𝑊−1 𝑏1
−1, 𝑏2

−1 = 1

𝑆𝑊−1 𝑏1
∗, 𝑏2

∗ = 0

Bidder 1 pays
1 − 0 = 1

∅

∅

Bidder 1 2

1 0

2 1

2.5 1

What if we add an additive boost to the social 
welfare of the allocation 𝑏1

−1, 𝑏2
−1 ?

Bidder 1 values her 
allocation for $2.5, but only 
payed $1. How can we get 

her to pay more?



Let 𝑏1, … , 𝑏𝑛 be an allocation of the 𝑚 goods.

This means 𝑏1, … , 𝑏𝑛 ⊆ [𝑚] and 𝑏𝑖 ∩ 𝑏𝑗 = ∅.

Social Welfare 𝑏1, … , 𝑏𝑛 = σ𝑖∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠 𝑣𝑖 𝑏𝑖
𝒃∗ = 𝑏1

∗, … , 𝑏𝑛
∗ maximizes social welfare 𝑆𝑊 ∙

𝑆𝑊−𝑖 𝑏1, … , 𝑏𝑛 = σ𝑗∈𝐵𝑖𝑑𝑑𝑒𝑟𝑠− 𝑖 𝑣𝑗 𝑏𝑗

𝒃−𝑖 = 𝑏1
−𝑖 , … , 𝑏𝑛

−𝑖 maximizes 𝑆𝑊−𝑖 𝑏1, … , 𝑏𝑛

Allocation: 𝒃∗

Payment:

Bidder 𝑖 pays 𝑆𝑊−𝑖 𝒃
−𝑖 − 𝑆𝑊−𝑖 𝒃

∗

𝑆𝑊 𝑏1, … , 𝑏𝑛

Vickrey-Clarke-Groves 
mechanism (VCG)

𝑏1
∗, 𝑏2

∗ =

𝑏1
−1, 𝑏2

−1 =

𝑆𝑊−1 𝑏1
−1, 𝑏2

−1 = 1 + 𝟏. 𝟒𝟗

𝑆𝑊−1 𝑏1
∗, 𝑏2

∗ = 0

Bidder 1 pays
1 + 𝟏. 𝟒𝟗 − 0 = 𝟐. 𝟒𝟗

∅

∅

Bidder 1 2

1 0

2 1

2.5 1

What if we add an additive boost to the social 
welfare of the allocation 𝑏1

−1, 𝑏2
−1 ?



Vickrey-Clarke-Groves mechanism [Vickrey, ‘61; Clarke, ‘71; Groves, ‘73]

Boost per allocation 𝑏1, … , 𝑏𝑛 : 𝝀 𝑏1, … , 𝑏𝑛 ; Weight per bidder 𝑖: 𝒘𝒊

Affine maximizer auction [Roberts 1979]

Affine maximizer auctions

1. Compute the social-welfare-maximizing allocation:

𝒃∗ = 𝑏1
∗, … , 𝑏𝑛

∗ = argmax σ𝑗∈Bidders𝒘𝒋 𝑣𝑗 𝑏𝑗 + 𝝀 𝑏1, … , 𝑏𝑛

2. For each bidder 𝑖, find social-welfare-maximizing allocation w/o his participation:

𝒃−𝑖 = 𝑏1
−𝑖 , … , 𝑏𝑛

−𝑖 = argmax σ𝑗∈Bidders−{𝑖}𝒘𝒋 𝑣𝑗 𝑏𝑗 + 𝝀 𝑏1, … , 𝑏𝑛

3. Compute bidder 𝑖’s payment, for all 𝑖

(How much happier everyone would be if bidder 𝑖 hadn’t participated):

𝟏

𝒘𝒊
෍

𝑗∈Bidders−{𝑖}

𝒘𝒋 𝑣𝑗 𝑏𝑗
−𝑖 + 𝝀 𝒃−𝑖 − ෍

𝑗∈Bidders−{𝑖}

𝒘𝒋 𝑣𝑗 𝑏𝑗
∗ + 𝝀 𝒃∗

• AMAs are ex-post IC and IR [Roberts 1979]
• Every IC multi-item, multi-bidder auction (where each bidder only cares about what 

she gets and pays) is almost an affine maximizer auction (with some qualifications) 
[Lavi, Mu'Alem, and Nisan, FOCS’03].



Boost per allocation 𝑏1, … , 𝑏𝑛 : 𝝀 𝑏1, … , 𝑏𝑛 ; Weight per bidder 𝑖: 𝒘𝒊

Virtual valuation combinatorial auctions 
(VVCAs)

Virtual valuation combinatorial auctions [Likhodedov and Sandholm, AAAI’04, ’05; OR’15]

1. Compute the social-welfare-maximizing allocation:

𝒃∗ = 𝑏1
∗, … , 𝑏𝑛

∗ = argmax σ𝑗∈Bidders 𝒘𝒋 𝑣𝑗 𝑏𝑗 + 𝝀𝒋 𝑏𝑗

2. For each bidder 𝑖, compute the social-welfare-maximizing allocation without his 
participation:

𝒃−𝑖 = 𝑏1
−𝑖 , … , 𝑏𝑛

−𝑖 = argmax σ𝑗∈Bidders−{𝑖} 𝒘𝒋 𝑣𝑗 𝑏𝑗 + 𝝀𝒋 𝑏𝑗

3. Compute bidder 𝑖’s payment, for all 𝑖
(How much happier everyone would be if bidder 𝑖 hadn’t participated):

𝟏

𝒘𝒊
σ𝑗∈Bidders− 𝑖 𝒘𝒋 𝑣𝑗 𝑏𝑗

−𝑖 + 𝝀𝑗 𝑏𝑗
−𝑖 − σ𝑗∈Bidders− 𝑖 𝒘𝒋 𝑣𝑗 𝑏𝑗

∗ + 𝝀𝑗 𝑏𝑗
∗

Boost per bidder-bundle pair (𝑗, 𝑏): 𝝀𝒋 𝑏 ;

𝝀 𝑏1, … , 𝑏𝑛 replaced with σ𝑗∈Bidders𝝀𝒋 𝑏𝑗



Computational considerations

[Sandholm & Likhodedov, OR‘15]

Theorem
There is no polynomial-time algorithm 
capable of determining (for every given 
set of valuations) whether one 
parameter vector is better than another 
(unless P=NP).

Projection of 
expected 
revenue 
surface 
on a 3D 
subspace

Fact
Expected revenue is not 
convex in the VVCA or 
AMA parameters.

Theorem
Expected revenue is continuous and 
almost everywhere differentiable in 
parameters.

Theorem
For any given valuation 
vector, revenue has only 
one maximum in any 
parameter.

Algorithm possibilities:
1. Grid search
2. Hill climbing in parameter space –

starting, e.g., from VCG
(In either method, evaluate each step 
using simulation.)



Simple search algorithms in parameter space 
[Sandholm and Likhodedov, OR’15]

• Grid search not scalable to large problems

• Overfitting already on 3rd iteration (when using 1,000 samples in the training set) 
=> practical motivation for our learning theory

Iterated grid search of AMA parameter space, with grid tightened and re-centered 
around best solution from previous iteration.

Algorithm AMA*

1. Start at VCG (𝑤𝑖 = 1 for every bidder 𝑖 and 𝜆 𝑏1, … , 𝑏𝑛 = 0 for all allocations 
𝑏1, … , 𝑏𝑛 ).

2. Run (Fletcher-Reeves conjugate) gradient ascent in AMA parameter space.

Algorithm BLAMA (Basic Local AMA search)

Ditto for VVCA parameter space.

Algorithm VVCA*



Reduce complexity by selecting gradient ascent 
direction using economic insights

[Sandholm and Likhodedov, OR’15]

High-level idea: If bidder 𝑖 pays in allocation 𝒃∗ = 𝑏1
∗, … , 𝑏𝑛

∗

much less than her value for 𝑏𝑖
∗, she should pay more.



Allocation boosting of AMA (ABAMA)

[Sandholm and Likhodedov, OR’15]

1. Sample the valuations from the prior distributions

2. Start at VCG

3. For every sample point, compute the revenue loss on the winning allocation 
(ABAMAa) or the second-best allocation (ABAMAb)
• The revenue loss from a bidder is the difference between the bidder’s valuation and her 

payment

• The revenue loss is the sum of the bidders’ revenue losses

• The revenue loss of an allocation is the sum of the revenue losses of the samples 
associated with the allocation

4. Make a list of allocations in decreasing order of revenue loss

5. Choose the first allocation, a, from the list. If the list is empty, exit.

6. Run (Fletcher-Reeves conjugate) gradient ascent in the {w, λ(a)} subspace of the 
AMA parameter space. 
– If the values of {w, λ(a)} did not change (i.e., we cannot further improve revenue by 

modifying {w, λ(a)}), remove a from the list and go to 5. 

– Otherwise go to 3.



Bidder-Bundle Boosting VVCA (BBBVVCA) algorithm 

[Sandholm and Likhodedov, OR’15]

• Similar idea, but optimized for VVCAs



Experiments: 2 items, 2 bidders

Table shows the 
revenue lift of 
various 
mechanisms 
over VCG

[Sandholm and 
Likhodedov, 
OR‘15]

• 𝑣𝑖 1 and 𝑣𝑖 2 are drawn from a prior distribution with PDF 𝑓𝑖
• 𝑣𝑖 1,2 = 𝑣𝑖 1 + 𝑣𝑖 2 + 𝑐𝑖
• Each 𝑐𝑖 is drawn from a distribution with PDF 𝑓𝑐

Setting 1 Setting 2 Setting 3

𝒇𝟏 U[0, 1] U[1, 2] U[1, 2]

𝒇𝟐 U[0, 1] U[1, 2] U[1, 5]

𝒇𝒄 0 U[-1, 1] U[-1, 1]

VCG 2/3 2.45 2.85

AMA* +32% +14% +48%

VVCA* +31% +13% +47%

BLAMA +17% +13% +31%

ABAMA +17% +13% +32%

BBBVVCA +18% +14% +30%

Experimental 
setup

In Setting I, generalizing the mechanism design from MBARPs to VVCAs doesn’t yield 
additional revenue, but generalizing further to AMAs does.



Scalability experiments 
(3 items, symmetric distribution)

[Sandholm and 
Likhodedov, 
OR‘15]



[Sandholm and 
Likhodedov, 
OR‘15]

Scalability experiments 
(3 bidders, symmetric distribution)



[Sandholm and 
Likhodedov, 
OR‘15]

VCG

Anytime performance 

(7 items, 7 bidders, symmetric distribution) 



Classes of automated mechanism design

1. “Flat-representation” de novo design

2. Search in a parametric mechanism class

3. Incremental automated mechanism design



Incremental automated mechanism design

[Conitzer and Sandholm IJCAI`07]

1. Start with some (manipulable) mechanism M

2. Find some set F of manipulations
– Here a manipulation is given by an agent i, a type vector 

‹ϑ1 ,…, ϑn›, and a better type report ϑ’i for agent i

3. If possible, change the mechanism M to prevent (many of) these 
manipulations from being beneficial

a) make the outcome that M selects for ϑ more desirable for agent i (when he 
has type ϑi), or

b) make the outcome that M selects for ϑ’ less desirable for agent i (when he 
has type ϑi), or 

c) a combination of (a) and (b)

4. Repeat from step 2 until termination



An application of incremental automated 
mechanism design to a setting with payments

[Conitzer and Sandholm IJCAI`07]

• Our objective g is to maximize some (say, linear) combination of 
allocative social welfare (i.e., social welfare not taking payments into 
account) and revenue
– Doesn’t matter what the combination is

• The set F of manipulations that we consider is that of all possible 
misreports (by any single agent at a time)

• We try to prevent manipulations according to (a) above (for a type 
vector from which there is a beneficial manipulation, make its outcome 
desirable enough to the manipulating agents to prevent the 
manipulation)
– Among outcomes that achieve this, we choose one that maximizes the 

objective g

• Designs the VCG mechanism in a single iteration



An application of incremental automated mechanism 
design to a setting with ordinal preferences

[Conitzer and Sandholm IJCAI`07]

• The set F consists of all manipulations in which a voter changes which 
candidate he ranks first

• We try to prevent manipulations as follows: 
For a type (vote) vector from which there is a beneficial manipulation, 
consider all the outcomes that may result from such a manipulation (in 
addition to the current outcome), and choose as the new outcome the 
one that minimizes #agents that still have an incentive to manipulate 
from this vote vector

• We’ll change the outcome for each vote vector at most once

• Designs plurality-with-runoff voting rule 

– In that voting rule, if no candidate gets more than 50% of the vote, simulate a 
second election between the 2 candidates with the most votes in the first round



Incremental AMD via deep learning
[Dütting, Feng, Narasimhan, Parkes, and Ravindranath, ICML’19]

𝑚 items, 𝑛 additive bidders

Bid of bidder 𝑖 for item 𝑗: 𝑏𝑖𝑗

Parameters 𝑤

Feedback: Revenue and bidders’ regret

Allocation Net Payment Net

Allocation: 𝑔𝑤: ℝ𝑛𝑚 → Δ1 ×⋯× Δ𝑚 Payment: 𝑝𝑤: ℝ𝑛𝑚 → ℝ≥0
𝑛

Fractional payment: 
𝑝𝑖
𝑤 = 𝛼𝑖 ⋅ 𝑔𝑖

𝑤 ⋅ 𝑏𝑖 , 𝛼𝑖 ∈ [0,1]
(Guarantees IR)



Solid regions: Learned allocation probability when single bidder with 𝑣1, 𝑣2~𝑈[0,1]

Optimal mechanism [Manelli and Vincent, JET’06] represented by regions separated 
by dashed orange lines

Incremental AMD via deep learning
[Dütting, Feng, Narasimhan, Parkes, and Ravindranath, ICML’19]



Our new architecture: 
Differentiable economics for randomized 

affine maximizer auctions
[Curry, Sandholm & Dickerson, arXiv-22]

• A strategyproof multiagent, 
multi-item architecture

• Modification of affine 
maximizer auctions

• New in our work: learn all 
parameters, including offered 
allocations, end-to-end

–This additionally allows the 
offered allocations to be 
lotteries

Always

Strategyproof

Multiple

Bidders

RegretNet

ALGNet

RochetNet

MenuNet

???

Universal

approximator

Us



Differentiable end-to-end

• AMA procedure describes forward pass at test time

• At train time, replace max and argmax operations with soft 
versions

• Compute gradients of learned parameters including the 
allocations with respect to objective (revenue) and optimize

• Contrast with RegretNet: objective is simply revenue (no 
Lagrangian regret terms)



Experimental results

• 2x2 iid uniform auction:

• A larger setting (3x10):

• Learned auctions are sparse (2048 allocations allowed, only 10 
used at end)

• Randomized version yields dramatically better revenue than 
deterministic version (e.g., 2.158 vs. 1.462)



Revenue optimization using interim variables

Setting: Single item, known value distribution with finite support 𝑇𝑛

Can write single-item revenue maximization problem as LP: Find 

1. Allocation function 𝑿: 𝑇𝑛 ⟶ 0,1 𝑛

2. Payment function 𝑷: 𝑇𝑛 ⟶ℝ𝑛

with maximum expected revenue σ𝒗∈𝑇𝑛ℙ 𝒗 σ𝑖=1
𝑛 𝑃𝑖 𝒗 s.t.

a. Allocation is always feasible

b. Mechanism is Bayes-Nash (i.e., ex interim) incentive compatible: 
∀𝑖, 𝑣𝑖 , ෤𝑣𝑖,
𝔼𝒗−𝑖 𝑣𝑖 ∙ 𝑋𝑖 𝑣𝑖 , 𝒗−𝑖 − 𝑃𝑖 𝑣𝑖 , 𝒗−𝑖 ≥ 𝔼𝒗−𝑖 𝑣𝑖 ∙ 𝑋𝑖 ෤𝑣𝑖 , 𝒗−𝑖 − 𝑃𝑖 ෤𝑣𝑖 , 𝒗−𝑖

There are 𝑇 𝑛 variables 𝑋𝑖 𝒗 !

[Cai, Daskalakis, and Weinberg, ’12]



Revenue optimization using interim variables…

Instead, optimize over interim variables (single-item case):

• 𝑥𝑖 𝑣𝑖 = 𝔼𝒗−𝑖 𝑋𝑖 𝑣𝑖 , 𝒗−𝑖
Expected probability bidder 𝑖 receives item given bid 𝑣𝑖

• 𝑝𝑖 𝑣𝑖 = 𝔼𝒗−𝑖 𝑃𝑖 𝑣𝑖 , 𝒗−𝑖
Bidder 𝑖’s expected payment, given bid 𝑣𝑖

1-item thm: 𝑛|𝑇| interim variables & 𝑛|𝑇| constraints suffice

Can be generalized to multi-item for additive bidders

– Runtime remains polynomial in #bidders

– Polynomial in distribution’s support size: Exponential in #items 

[Cai, Daskalakis, and Weinberg, ’12]



Revenue optimization and optimal transport

Setting: Single, additive bidder with independent values

Value distribution known

Main result [Daskalakis, Deckelbaum, and Tzamos, EC’13]:

Rev. max. has dual that takes the form of optimal transport problem
(Recall optimal transport problem: Move one mass to another, minimizing cost)

Dual is tight

Consequences:
– In that setting, every optimal auction has a certificate in form of transportation 

flow
• Can help verify whether candidate auction is optimal

– Can be a tool for characterizing optimal multi-item auctions in restricted settings
• They studied conditions under which a take-it-or-leave-it offer for the grand bundle is 

optimal



Automated mechanism design in sponsored 
search auctions

• Generalized second price auction was the basic mechanism used by most companies for 
sponsored search
– But it has many knobs one can tweak
– Essentially all sponsored search companies nowadays do some forms of automated mechanism 

design

• Optimizing mechanisms with different expressiveness – “the premium mechanism” 
[Benisch, Sadeh & Sandholm, Ad Auctions Workshop 2008, IJCAI-09]
– First to use computational learning theory tools to characterize expressiveness of a mechanism 

[Benisch, Sandholm & Sadeh AAAI-08] 

• Redoing Baidu’s sponsored search auction [Sandholm 2009-13]
• Optimizing reserve prices in Yahoo!’s sponsored search auction [Ostrovsky & Schwartz 

EC-11]
– See also reserve price optimization for overstock liquidation (aka “asset recovery”) [Walsh, 

Parkes, Sandholm & Boutilier AAAI-08]

• Reinforcement learning for ad auctions: “reinforcement mechanism design” [Tang IJCAI-
17, …]

• Boosted second price auction for Google’s display ads [Golrezaei, Lin, Mirrokni, and 
Nazerzadeh, Management Science R&R]

• …



Automated mechanism design 
beyond sales mechanisms

• Combinatorial public goods problems [Conitzer and Sandholm, UAI’03 
Bayesian Modeling Applications Workshop]

• Real-world industrial sourcing mechanisms

• Divorce settlement mechanisms [Conitzer and Sandholm, UAI’03 
Bayesian Modeling Applications Workshop]

• Reputation/recommendation systems [Jurca and Faltings, EC’06, 
EC’07]

• Facility location problems [Sui, Boutilier, and Sandholm, IJCAI’13]

• Assignment mechanisms [Narasimhan and Parkes, UAI’16]

• Mechanism design without money [Narasimhan, Agarwal and Parkes, 
IJCAI’16]

• Redistribution mechanisms [Guo and Conitzer, EC’07, AAMAS’08, 
EC’08, EC’09, AI’10, AIJ’14; Nath and Sandholm, WINE’16, GEB’19…]

• …



Outline

1. Introduction

2. Mechanism design basics

3. Automated mechanism design (AMD)

4. Sample complexity guarantees for AMD

Note: There’s been a lot of recent work on batch learning for AMD. We focus on that.



reserve

𝑝2

𝑝1

Goal: Given family of mechanisms ℳ and set of buyers’ values sampled 
from unknown distr. 𝒟, find mechanism with high expected revenue.

• Large family of parametrized mechanisms ℳ

(E.g., 2nd-price auctions w/ reserves or posted price mechanisms)

• Set of buyers’ values sampled from unknown distribution 𝓓

Sample 1 Sample 𝑁

…

Posted price 
mechanisms:

Sample 1 Sample 𝑁
…2nd price auctions 

with reserves: 𝑣1 𝑣𝑛…𝑣2 𝑣1 𝑣𝑛…𝑣2

𝑣1
𝑣1
𝑣1

…

𝑣𝑛
𝑣𝑛
𝑣𝑛

𝑣1
𝑣1
𝑣1

…

𝑣𝑛
𝑣𝑛
𝑣𝑛

Mechanism design as a learning problem



Will ෡M have high revenue over 𝒟?

…Seen: 𝑣1 𝑣𝑛…𝑣2 𝑣1 𝑣𝑛…𝑣2

…𝑣1 𝑣𝑛…𝑣2 𝑣1 𝑣𝑛…𝑣2

Approach: Find ෡𝑀 (nearly) optimal mechanism over the set of samples.

Mechanism design as a learning problem

Key question: Will ෡𝑀 have high expected revenue?

New 𝑣 ∼ 𝐷:

Goal: Given family of mechanisms ℳ and set of buyers’ values sampled 
from unknown distr. 𝒟, find mechanism with high expected revenue.



Mechanism design as a learning problem

Goal: Given family of mechanisms ℳ and set of buyers’ values sampled 
from unknown distr. 𝒟, find mechanism with high expected revenue.

Approach: Find ෡𝑀 (nearly) optimal mechanism over the set of samples.

Will ෡𝑀 have high expected revenue?

Key technical tool: uniform convergence, for any mechanism in class 
ℳ, average revenue over samples “close” to its expected revenue.



• Imply that ෡𝑀 have high expected revenue.

Approach: Find ෡𝑀 (nearly) optimal mechanism over the set of samples.

Will ෡𝑀 have high expected revenue?

Key technical tool: uniform convergence, for any mechanism in class 
ℳ, average revenue over samples “close” to its expected revenue.

Mechanism design as a learning problem

Goal: Given family of mechanisms ℳ and set of buyers’ values sampled 
from unknown distr. 𝒟, find mechanism with high expected revenue.



• Imply that ෡𝑀 have high expected revenue.

Approach: Find ෡𝑀 (nearly) optimal mechanism over the set of samples.

Will ෡𝑀 have high expected revenue?

Key technical tool: uniform convergence, for any mechanism in class 
ℳ, average revenue over samples “close” to its expected revenue.

Learning theory: N = O dim ℳ /ϵ2 instances suffice for 𝜖-close

Mechanism design as a learning problem

Goal: Given family of mechanisms ℳ and set of buyers’ values sampled 
from unknown distr. 𝒟, find mechanism with high expected revenue.



• Imply that ෡𝑀 have high expected revenue.Learning theory: N = O dim ℳ /ϵ2 instances suffice for 𝜖-close

Mechanism design as a learning problem

Goal: Given family of mechanisms ℳ and set of buyers’ values sampled 
from unknown distr. 𝒟, find mechanism with high expected revenue.

dim ℳ (e.g. pseudo-dimension): ability of fns in ℳto fit complex patterns 



• Imply that ෡𝑀 have high expected revenue.Learning theory: N = O dim ℳ /ϵ2 instances suffice for 𝜖-close

Mechanism design as a learning problem

Goal: Given family of mechanisms ℳ and set of buyers’ values sampled 
from unknown distr. 𝒟, find mechanism with high expected revenue.

dim ℳ (e.g. pseudo-dimension): ability of fns in ℳto fit complex patterns 

Challenge: analyze dim(ℳ) for complex combinatorial, modular mechanisms.



• Digital goods (unrestricted supply): Balcan, Blum, Hartline, and Mansour [FOCS’05] 
were first to use learning-theoretic tools to design and analyze auctions.

• Mohri and Medina [ICML’14] use a combination of pseudo-dimension and 
Rademacher complexity to analyze second-price auctions with reserves.

• Morgenstern and Roughgarden provide pseudo-dimension bounds for 𝑡-level 
auctions [NIPS’15] and “simple” (by design) multi-item mechanisms [COLT’16].

• Devanur, Huang, and Psomas [STOC’16] and Gonczarowski and Nisan [STOC’17] 
give covering-style analyses for single-item settings.

• Balcan, Sandholm, and Vitercik [NIPS’16, EC’18] give general theorem for bounding 
pseudo-dimension of multi-item mechanism classes.

• Syrgkanis [NIPS’17] provides a new complexity measure (the “split-sample growth 
rate” based on Rademacher complexity) to analyze auction classes.

• Cai and Daskalakis [FOCS’17] give a new complexity measure implying uniform 
convergence bounds when the underlying distribution is a product distribution.

Uniform  Convergence of Auctions



Brief tour of VC theory



VC-dimension [Vapnik-Chervonenkis, 1971]

VC-dimension: complexity measure that characterizes the sample 
complexity of binary-valued function classes.

E.g., H= Linear separators in  Rd
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VC-dimension [Vapnik-Chervonenkis, 1971]

VC-dimension of a function class H is the cardinality of the largest set S

that can be labeled in all possible ways 2|S| by H.
[If arbitrarily large finite sets can be shattered by H, then VCdim(H) = ∞]

E.g., H= linear separators in 𝐑𝟐

VCdim H ≥ 3

VCdim(H) = 3

VCdim H < 4



VCdim H ≥ 3

Example: VC-dimension of linear separators

E.g., H= linear separators in 𝐑𝟐



Example: VC-dimension of linear separators

VCdim H < 4

Case 1: one point inside the triangle formed by the
others. Cannot label inside point as positive and
outside points as negative.

Case 2: all points on the boundary (convex hull).
Cannot label two diagonally as positive and other two
as negative.

Fact: VCdim of linear separators in 𝐑𝐝 is d+1

E.g., H= linear separators in 𝐑𝟐



VC-dimension [Vapnik-Chervonenkis, 1971]

VC-dimension of a function class H is the cardinality of the largest set S

that can be labeled in all possible ways 2|S| by H.
[If arbitrarily large finite sets can be shattered by H, then VCdim(H) = ∞]

E.g., H= linear separators in 𝐑𝟐

VCdim H ≥ 3

VCdim(H) = 3

VCdim H < 4



Why VC-dimension matters

Example: H={all 0/1 fns over some domain}, then any set of points 

can be labelled in all possible ways with fns H, VCdim H = ∞.

Why does it matter “how many points we can label in all possible 

ways with functions from the class”?

No hope to generalize.

Given training set (pts & labels), there exist fns in H that label training set 

correctly, but provide complete opposite answers everywhere else.

𝑦

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7

Training set



Why VC-dimension matters

Sauer’s Lemma: If d = VCdim(H), then any set of points size m>d, can 

be labelled only in O m𝑑 ways with functions from the class.

Sample complexity: N = O VCdim 𝐻 /ϵ2 training instances suffice 
for generalizability.

Classes of finite VC-dimension

Not all 2𝑚 labelings are achievable!

Why does it matter “how many points we can label in all possible 

ways with functions from the class”?



Equivalently, the pseudo-dimension of F is the VC dimension of the class of 
“below-the-graph” indicator functions Bf x, y = sgn f x − y : f ∈ F

The pseudo-dimension of a function class F is the cardinality of the 
largest set S = {x1, … , xN} and thresholds y1, … , yN s.t. all 2N

above/below patterns can be achieved by functions f ∈ F.

• E.g., for N = 2, there should exist f1 ∈ F s.t. f1 x1 < y1, f1 x2 < y2

Pseudo-dimension: complexity measure that characterizes the sample 
complexity of real-valued function classes.

Pseudo-dimension [Pollard 1984]

f3 ∈ F s.t. f3 x1 < y1, f3 x2 > y2

f2 ∈ F s.t. f2 x1 > y1, f2 x2 < y2

f4 ∈ F s.t. f4 x1 > y1, f4 x2 > y2



Example: Affine functions on ℝ

Consider points x1, x2 ∈ ℝ with thresholds y1, y2. All four above/below patterns can 
be realized by the class F of affine functions on ℝ, F = x ⟼ ax + b ∶ a, b ∈ ℝ .   

f1 produces (below,below); f2 produces (above,below); f3 produces (below,above); 
f4 produces (above,above)

𝑥1 𝑥2

𝑦2

𝑦1

𝑓1

𝑓2

𝑓3

𝑓4



Uniform convergence guarantees

For any δ ∈ (0,1) and any distribution 𝒟 over 𝒳, with prob. 1 − δ
over the draw x1, … , xN ~𝒟N, for all f ∈ F,

Theorem [Pollard‘84; Dudley ‘67]

𝔼x~𝒟 f x −
1

N
෍

i=1

N

f xi = O U
𝐏𝐝𝐢𝐦(𝓕)

N
+ U

log(1/δ)

N
,

true expectation Empirical average Decay rate



Setup: single-item, multi-bidder.

1. Auctioneer sets a reserve price 𝑟. 

2. Highest bidder wins if bid ≥ 𝑟. Pays maximum of the second highest bid and 𝑟.

2nd

highest 
bid

Highest 
bid

Reserve 𝑟

Revenue

2nd

highest 
bid

Revenue = max 𝑟, 2nd highest bid ∙ 𝟏{highest bid≥𝑟}

Claim: For a fixed set of bids, revenue is a piecewise linear function of the reserve.

Key idea:

Bounding Pdim of auction classes.
Example: Second−price auction with a reserve



• Scanning r from 0 to ∞ there will be (at most) two cutoff values c1
(i)

, c2
(i)

where 
revenue goes from “below” to “above” to “below”.

Theorem [Mohri and Medina, ICML’14; Morgenstern and Roughgarden, COLT’16; Balcan, Sandholm, and Vitercik, EC’18]

ℳ = {rev𝑟 ≔ revenue function of 2nd-price auction w/ reserve 𝑟}. Pdim ℳ ≤ 2.

• With N examples, look at all 2N cutoff values. 

𝑟

Revenue on 𝒗(𝑖)

𝑦(𝑖)

𝑐1
(𝑖)

𝑐2
(𝑖)

• All r in the same interval between 
consecutive cutoff values will give the same 
binary pattern.

• So, at most 2N + 1 binary patterns.

• Pseudo-dimension is max N s.t. all 2N binary patterns are achievable.  Need 2N ≤
2N + 1 so N ≤ 2.  

Key idea: Consider some example 𝐯(i) and revenue-threshold y(i).

Bounding Pdim of auction classes.
Example: Second−price auction with a reserve



A general theorem for bounding mechanism 
classes’ pseudo-dimension

Theorem [Balcan, Sandholm, and Vitercik, EC’18]

Assume:

1. The mechanism class ℳ is parameterized by vectors 𝒑 ∈ ℝ𝒅, and
2. For every set 𝒗 of buyers’ values, a set of ≤ 𝒕 hyperplanes partition 

ℝ𝒅 s.t. in every cell of this partition, revenue𝒗(𝒑) is linear

Then the pseudo-dimension of revenue𝑀:𝑀 ∈ ℳ is 𝑂 𝒅 log 𝒅𝒕 .



High level learning theory bit

• Want to prove that for any mechanism parameters 𝒑:

revenue𝒗 𝒑 = revenue𝒑(𝒗)

• Proof uses structure of dual class revenue𝒗: buyer values 𝒗 .

1

𝒮
σ𝒗∈𝒮 revenue𝒑(𝒗) close to 𝔼 revenue𝒑 𝒗 .

• Function class we care about: revenue𝒑: parameter vectors 𝒑 .

Theorem [Balcan, Sandholm, and Vitercik, EC’18]

Assume:

1. The mechanism class ℳ is parameterized by vectors 𝒑 ∈ ℝ𝒅, and
2. For every set 𝒗 of buyers’ values, a set of ≤ 𝒕 hyperplanes partition 

ℝ𝒅 s.t. in every cell of this partition, revenue𝒗(𝒑) is linear

Then the pseudo-dimension of revenue𝑀: 𝑀 ∈ ℳ is 𝑂 𝒅 log 𝒅𝒕 .



High level learning theory bit

Proof uses structure of dual class revenue𝒗: buyer values 𝒗 .

Theorem [Balcan, Sandholm, and Vitercik, EC’18]

Assume:

1. The mechanism class ℳ is parameterized by vectors 𝒑 ∈ ℝ𝒅, and
2. For every set 𝒗 of buyers’ values, a set of ≤ 𝒕 hyperplanes partition 

ℝ𝒅 s.t. in every cell of this partition, revenue𝒗(𝒑) is linear

Then the pseudo-dimension of revenue𝑀: 𝑀 ∈ ℳ is 𝑂 𝒅 log 𝒅𝒕 .

Usefulness of the dual class also exhibited by [Bartlett, Maiorov, Meir, NIPS’99]

and [Moran and Yehudayoff, JACM’15].



General Sample Complexity via Dual Classes

Thm: Assume costI(α): boundary fns f1, f2, … , fN ∈ F s.t. within each region, 

costI α = g(α) for some g ∈ G. 

Pdim costα I = ෩O dF∗ + dG∗ + dF∗ logN

dF∗ =VCdim (F∗)

dG∗ =Pdim(G∗)

f ∈ F

g ∈ G

[Balcan, Dick, DeBlasio, Kingsford, Sandholm, Vitercik, STOC-21: “How much 
data is sufficient to learn high-performing algorithms?”]



Our main applications of our general theorem

Mechanism class Sample complexity studied before?

Randomized mechanisms (lotteries) NA

Multi-part tariffs and other non-linear 
pricing mechanisms

NA

Posted price mechanisms E.g., Morgenstern-Roughgarden COLT’16; 
Syrgkanis NIPS’17

Affine maximizer auctions Balcan-Sandholm-Vitercik NIPS ’16

Second price auctions with reserves E.g., Morgenstern-Roughgarden COLT’16; 
Devanur et al. STOC‘16

• Match or improve over the best-known guarantees for many of the classes 
previously studied.

• Prove bounds for classes not yet studied from a learning perspective.



• Digital goods (unrestricted supply): Balcan, Blum, Hartline, and Mansour [FOCS’05] 
were first to use learning-theoretic tools to design and analyze auctions.

• Mohri and Medina [ICML’14] use a combination of pseudo-dimension and 
Rademacher complexity to analyze second-price auctions with reserves.

• Morgenstern and Roughgarden provide pseudo-dimension bounds for 𝑡-level 
auctions [NIPS’15] and “simple” (by design) multi-item mechanisms [COLT’16].

• Devanur, Huang, and Psomas [STOC’16] and Gonczarowski and Nisan [STOC’17] 
give covering-style analyses for single-item settings.

• Balcan, Sandholm, and Vitercik [NIPS’16, EC’18] give general theorem for bounding 
pseudo-dimension of multi-item mechanism classes.

• Syrgkanis [NIPS’17] provides a new complexity measure (the “split-sample growth 
rate” based on Rademacher complexity) to analyze auction classes.

• Cai and Daskalakis [FOCS’17] give a new complexity measure implying uniform 
convergence bounds when the underlying distribution is a product distribution.

Uniform  Convergence of Auctions



Outline

1. Introduction

2. Mechanism design basics

3. Automated mechanism design (AMD)

4. Sample complexity guarantees for AMD

a) Formal guarantees

b) Applications of BSV18 to single-item settings

c) Applications of BSV18 to multi-item/multi-unit settings



Studied extensively in econ-CS
[e.g., Feldman, Gravin, and Lucier, SODA’15; 
Babaioff, Immorlica, Lucier, and Weinberg, 
FOCS’14; Cai, Devanur, and Weinberg, 
STOC’16]

Application: Posted price mechanisms

Revenue

Price

Price

ℳ = multi-item, multi-buyer posted price mechanisms
Mechanism designer sets price per item

1. Buyer 1 arrives. Buys bundle maximizing his utility

2. Buyer 2 arrives. Buys remaining bundle maximizing his utility…



Pseudo-dimension of posted price mechanisms

Theorem

Pdim ℳ = 𝑂 𝑑 log 𝑑𝑡 w/ 𝑑 = #dimensions = #items

and 𝑡 = # hyperplanes = (# buyers) ∙ 2(# items)

2
.

Proof sketch. For every buyer and every pair of bundles:

Hyperplane defines where buyer prefers each bundle

• 𝑡 hyperplanes define where buyers’ preference orders fixed

• When preference ordering fixed, bundles they buy are fixed

– So revenue is linear function of prices of items 
they buy

Price

P
ri

ce



Pseudo-dimension of posted price mechanisms

Theorem

Pdim ℳ = 𝑂 𝑑 log 𝑑𝑡 w/ 𝑑 = #dimensions = #items

and 𝑡 = # hyperplanes = (# buyers) ∙ 2(# items)

2
.

Corollary

Pdim ℳ = ෨𝑂 #items 2

Price

P
ri

ce

Also shown by Morgenstern and Roughgarden [COLT ‘16]



Two-part tariffs

Studied for decades in economics
[e.g., Oi, Quarterly Journal of Economics ’71; 
Feldstein, Quarterly Journal of Economics ’72]

𝑝1

𝑝0

Application: Single-item, multi-buyer two-part tariffs
– Multiple units of item for sale.

– Seller sets upfront fee 𝑝0, fee per unit 𝑝1.

– If buyer buys 𝑘 units, pays 𝑝0 + 𝑘 ∙ 𝑝1.

– Each buyer buys number of units maximizing utility.

– Seller offers “menu” of 𝐿 tariffs.
• Buyer chooses tariff and number of units to buy maximizing utility



Pseudo-dimension of two-part tariff menus

Theorem

Pdim ℳ = 𝑂 𝑑 log 𝑑𝑡 with 𝑑 = #dimensions = 2𝐿 and

𝑡 = (#hyperplanes) = (#buyers) 𝐿 #units
2

.

Proof sketch.

For every buyer & every pair of (tariff, #units bought) tuples:

Hyperplane defines where buyer prefers one tuple over other

• 𝑡 hyperplanes define where buyers’ preference orders fixed

• When preference ordering fixed, tariff and #units bought fixed

– So revenue is linear function of upfront fee and price per unit



Pseudo-dimension of two-part tariff menus

Theorem

Pdim ℳ = 𝑂 𝑑 log 𝑑𝑡 with 𝑑 = #dimensions = 2𝐿 and

𝑡 = (#hyperplanes) = (#buyers) 𝐿 #units
2

.

Corollary

Pdim ℳ = ෨𝑂 𝐿



Randomized mechanisms (lotteries)

Application: Multi-item lotteries for one additive buyer 
(generalizes easily to multiple unit-demand or additive buyers)

– Lottery represented by vector 𝜙1, … , 𝜙(#items) and price 𝑝

– If buyer buys lottery, pays 𝑝 and receives each item 𝑖 w.p. 𝜙𝑖

• Expected utility is σ𝑖=1
(#items)

𝑣 𝑖 ∙ 𝜙𝑖 − 𝑝

– Seller offers “menu” of 𝐿 lotteries for buyer to choose from

• Buyer chooses expected-utility-maximizing lottery (or buys nothing)

Studied extensively in econ-CS
[e.g., Briest, Chawla, Kleinberg, and Weinberg, SODA’10; Chawla, 
Malec, and Sivan, EC’10; Babioff, Gonczarowski, and Nisan, STOC’17]



Pseudo-dimension of lotteries

Theorem

Pdim ℳ = 𝑂 𝑑 log 𝑑𝑡 with 𝑡 = # hyperplanes = 𝐿2

𝑑 = #dimensions = 𝑂 #items ∙ 𝐿

Proof sketch. Proof similar to previous.



Pseudo-dimension of lotteries

Theorem

Pdim ℳ = 𝑂 𝑑 log 𝑑𝑡 with 𝑡 = # hyperplanes = 𝐿2

𝑑 = #dimensions = 𝑂 #items ∙ 𝐿

Corollary

Pdim ℳ = ෨𝑂 𝐿 #items



Affine maximizer auctions: 

෨𝑂 # bidders # items +1(# items)

Virtual valuation combinatorial auctions:
෨𝑂 2 # items (#items) # bidders 2

Mixed bundling auctions with reserves: 
෨𝑂 #items 2

[Tang and Sandholm, AAMAS’12]

Mixed bundling auctions: ෨𝑂 1
[Jehiel, Meyer-Ter-Vehn, and 

Moldovanu, JET‘07]

[Balcan, Sandholm, and Vitercik, EC’18]

Affine maximizer auction pseudo-dimension



Additional applications of our general theorem

Multi-item, multi-unit non-linear pricing mechanisms

[E.g., Wilson, Oxford Press ‘93]

𝜆-auctions

[Jehiel, Meyer-Ter-Vehn, and Moldovanu, J. of Econ. Theory ‘07]



3-sparse AMAs2-sparse AMAs

Fine-grained hierarchies of AMAs:

–𝑘-sparse AMAs: ≤ 𝑘 allocation boosts

|empirical revenue - expected revenue|≤ ෨𝑂 U
#bidders+𝑘

|𝑆|

Fine-grained auction hierarchies

1-sparse AMAs



Fine-grained hierarchies of AMAs:

–𝑘-sparse AMAs: ≤ 𝑘 allocation boosts

|empirical revenue - expected revenue|≤ ෨𝑂 U
#bidders+𝑘

|𝑆|

–𝐴-boosted AMAs: only allocations in 𝐴 boosted

|empirical revenue - expected revenue|≤ ෨𝑂 U
#bidders+|𝐴|

|𝑆|

Fine-grained auction hierarchies



Fine-grained hierarchies of AMAs:

–𝑘-sparse AMAs: ≤ 𝑘 allocation boosts

|empirical revenue - expected revenue|≤ ෨𝑂 U
#bidders+𝑘

|𝑆|

–𝐴-boosted AMAs: only allocations in 𝐴 boosted

|empirical revenue - expected revenue|≤ ෨𝑂 U
#bidders+|𝐴|

|𝑆|

Increasing 𝑘 and |𝐴| means looser bounds,
but greater chance class contains high-revenue auction

Fine-grained auction hierarchies

Inevitably, there’s a revenue-generalization tradeoff



Let ෡𝑀 = 𝐚𝐫𝐠𝐦𝐚𝐱𝑘,𝑀∈ℳ𝑘
Empirical revenue of 𝑀− ෨𝑂 U

#bidders+𝑘

|𝑆|

Let 𝑘* be optimal AMA’s sparsity level.

෡𝑀’s revenue is within ෨𝑂 U
#bidders+𝑘∗

|𝑆|
of optimal AMA’s revenue.

We provide guarantees for optimizing this tradeoff

E.g., 𝑘-sparse AMAs ℳ𝑘:

Optimizing the revenue-generalization tradeoff

Increases with 𝑘 Decreases with 𝑘

Theorem



Optimizing the revenue-generalization tradeoff

We provide guarantees for optimizing this tradeoff

E.g., 𝐴-boosted AMAs ℳ𝐴:

Let ෡𝑀 = 𝐚𝐫𝐠𝐦𝐚𝐱𝐴,𝑀∈ℳ𝐴
Empirical revenue of 𝑀− ෨𝑂 U

#bidders+|𝐴|

|𝑆|

Let 𝐴* be the set of boosted allocations under optimal AMA.

෡𝑀’s revenue is within ෨𝑂 U
#bidders+|𝐴∗|

|𝑆|
of optimal AMA’s revenue.

Theorem

Increases with |𝐴| Decreases with |𝐴|



Structural revenue maximization

Structural revenue maximization:

Optimize tradeoff between increasing empirical revenue…

and keeping mechanism class simple

3-sparse AMAs2-sparse AMAs1-sparse AMAs



Structural revenue maximization

Structural revenue maximization:

Optimize tradeoff between increasing empirical revenue…

and keeping mechanism class simple

Extensive literature on structural risk minimization research 
[e.g., Vapnik and Chervonenkis, Theory of Pattern Recognition, 
’74; Blumer, Ehrenfeucht, Haussler, and Warmuth, Information 
Processing Letters ’87; Vapnik, Springer ’95]


