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• Virtual Memory
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Processor Design
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Single Processor Performance
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Dennard 
Scaling ends

Amdahl’s
Law limits

Moore’s
Law ends



Power

Intel 80386 ~ 2 W

Intel Core i7 ~130 W

Pretty much the limit of what 
can be cooled by air
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The Problem
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How did we get here?

Pipelining become universal technique in 1985
• Overlaps execution of instructions
• Exploits “Instruction Level Parallelism”
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5-stage Pipeline
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How did we get here?

Pipelining become universal technique in 1985
• Overlaps execution of instructions
• Exploits “Instruction Level Parallelism”

Beyond this, there are two main approaches:
• Hardware-based dynamic approaches

• Used in server and desktop processors
• Not used as extensively in PMP processors

• Compiler-based static approaches
• Not as successful outside of scientific applications
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Instruction Level Parallelism (ILP)

When exploiting instr-level parallelism, goal is to minimize CPI
• Pipeline CPI =

• Ideal pipeline CPI +
• Structural stalls +
• Data hazard stalls +
• Control stalls

Parallelism with basic block is limited
• Typical size of basic block = 3-6 instructions
• Must optimize across branches
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Data dependency

Instruction j is data dependent on instruction i if
• Instruction i produces a result that may be used by instruction j
• Instruction j is data dependent on instruction k and instruction k is data 

dependent on instruction i

Dependent instructions cannot be executed simultaneously
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Data dependency

Dependencies are a property of programs

Pipeline organization determines detection and if it causes a stall

Data dependence conveys:
• Possibility of a hazard
• Order in which results must be calculated
• Upper bound on exploitable instruction level parallelism
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Stall Factors

Data Hazards
• Read after write (RAW)
• Write after write (WAW)
• Write after read (WAR)

Control Dependence
• Ordering of instruction i with respect to a branch instruction

• Instruction control dependent on a branch cannot be moved before the branch so 
that its execution is no longer controlled by the branch

• An instruction not control dependent on a branch cannot be moved after the 
branch so that its execution is controlled by the branch
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ß True Dependence! R2 ß R0 + R1
R3 ß R2 + R4



Branch Prediction

Basic 2-bit predictor:
• For each branch:

• Predict taken or not taken
• If the prediction is wrong two consecutive times, change prediction

Correlating predictor:
• Multiple 2-bit predictors for each branch
• One for each possible combination of outcomes of preceding n branches

• (m,n) predictor:  behavior from last m branches to choose from 2m n-bit predictors

Tournament predictor:
• Combine correlating predictor with local predictor
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Hardware-Based Speculation

Execute instructions along predicted execution paths but only 
commit the results if prediction was correct

Instruction commit:  allowing an instruction to update the register 
file when instruction is no longer speculative

Need an additional piece of hardware to prevent any irrevocable 
action until an instruction commits
• I.e. updating state or taking an execution
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Reorder Buffer

Holds the result of instruction between completion and commit

Four fields:
• Instruction type:  branch/store/register
• Destination field:  register number
• Value field:  output value
• Ready field:  completed execution?

Modify pipeline:
• Operand source is now reorder buffer entry instead of functional unit

15-849 Datacenter Computing 23

Type Dst Val Rdy



Reorder Buffer

Issue:
• Allocate ROB, read available operands

Execute:
• Begin execution when operand values are available

Write result:
• Write result and ROB tag on bus

Commit:
• When ROB reaches head of ROB, update register
• When a mispredicted branch reaches head of ROB, discard all entries
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Reorder Buffer

Register values and memory values are not written until commit

On misprediction:
• Speculated entries in ROB are cleared

Exceptions:
• Not recognized until it is ready to commit
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Speculative Execution

How much to speculate
• Mis-speculation degrades performance and power relative to no 

speculation
• May cause additional misses (cache, TLB)

• Prevent speculative code from causing higher costing misses (e.g. L2)

Speculating through multiple branches
• Complicates speculation recovery

Speculation and energy efficiency
• Note:  speculation is only energy efficient when it significantly improves 

performance

15-849 Datacenter Computing 26



Processor Pipeline
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Simultaneous Multithreading (SMT)
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Simultaneous Multithreading (SMT)
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Security Considerations

Deep pipeline w/ variable timing per instr

Branch predictors

Load / Store queues

Out-of-Order Execution

Simultaneous multi-threading 
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à Spectre, Meltdown, Microscope

à Amplifies/Simplifies most attacks

à MemJam, MDS (RIDL, Fallout)

à Foundation of many attacks (secret-dependent CF)

à Subnormal FP, PortSmash



Memory Hierarchy
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Memory Hierarchy

35

Main MemoryCore
L3 

Cache
L1 

Cache
L2 

Cache

Flash Storage

Disk Storage

Size
Speed

4KB
200ps

64KB
1ns

256KB
3-10ns 10-64KB

10-20ns 32-256KB
50-100ns

16-64TB
5-10ms

1-16TB
100-200us



The Processor-Memory Gap
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Why we need a memory hierarchy?

Programmers want unlimited amounts of memory with low latency

Fast memory technology is more expensive per bit than slower memory

Solution:  organize memory system into a hierarchy
• Entire addressable memory space available in largest, slowest memory
• Incrementally smaller and faster memories, each containing a subset of the memory 

below it, proceed in steps up toward the processor

Temporal and spatial locality insures that nearly all references can be caches
• Gives the allusion of a large, fast memory being presented to the processor
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Memory Hierarchy Design

Memory hierarchy design becomes more crucial with recent 
multi-core processors:
• Aggregate peak bandwidth grows with # cores:

• Intel Core i7 can generate two references per core per clock
• Four cores and 3.2 GHz clock

• 25.6 billion 64-bit data references/second +
• 12.8 billion 128-bit instruction references/second
• = 409.6 GB/s!

• DRAM bandwidth is only 8% of this (34.1 GB/s)
• Requires:

• Multi-port, pipelined caches
• Two levels of cache per core
• Shared third-level cache on chip
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GDDR5

HBM



Memory Hierarchy Fundamentals

When a word is not found in the cache, a miss occurs:
• Fetch word from lower level in hierarchy, requiring a higher latency
• Lower level may be another cache or the main memory
• Also fetch the other words contained within the block

• Takes advantage of spatial locality

• Place block into cache in any location within its set, determined by addr
• Block address MOD number of sets in cache
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Memory Hierarchy Fundamentals

n sets => n-way set associative
• Direct-mapped cache => one block per set
• Fully associative => one set

Writing to cache:  two strategies
• Write-through

• Immediately update lower levels of hierarchy

• Write-back
• Only update lower levels of hierarchy when an updated block is replaced

• Both strategies use write buffer to make writes asynchronous
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Memory Hierarchy Fundamentals
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Memory Hierarchy Fundamentals
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Memory Hierarchy Fundamentals
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Memory Hierarchy Fundamentals
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Memory Hierarchy Fundamentals

Six basic cache optimizations:
1. Larger block size

• Reduces compulsory misses
• Increases capacity and conflict misses, increases miss penalty

2. Larger total cache capacity to reduce miss rate
• Increases hit time, increases power consumption

3. Higher associativity
• Reduces conflict misses
• Increases hit time, increases power consumption

4. Higher number of cache levels
• Reduces overall memory access time

5. Giving priority to read misses over writes
• Reduces miss penalty

6. Avoiding address translation in cache indexing
• Reduces hit time
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Security Considerations

Shared memory hierarchy

Variable latencies across levels

Sets, Ways, Banks, Slices

Main Memory (DRAM)
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Cache timing & contention attacks
Prime+Probe, Flush+Reload, Flush+Flush
L1, L2, cross-core L3
Inclusive and non-inclusive
Directories
Prefetchers
Replacement policy
Userspace, SGX

à DRAM-based timing (DRAMA), Rowhammer



Virtual Memory
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Virtual Memory Abstraction
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Virtual Memory Translation
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Virtual Memory Translation
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Virtual Memory Translation
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Multilevel TLBs
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Memory Management Unit Cache
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Translations in Data Caches
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Even More Memory is Here!
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Virtual Memory

Protection via virtual memory
• Keeps processes in their own memory space

Role of architecture
• Provide user mode and supervisor mode
• Protect certain aspects of CPU state
• Provide mechanisms for switching between user and supervisor modes
• Provide mechanisms to limit memory accesses
• Provide TLB to translate addresses
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From Virtual Memory to Virtual Machines

Supports isolation and security

Sharing hardware among many unrelated users

Enabled by raw speed of processors, making the overhead more acceptable

Allows different ISAs and OS to be presented to user programs
• “System Virtual Machines”
• SVM software is called “virtual machine monitor” or “hypervisor”
• Individual virtual machines run under the monitor are called “guest VMs”
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VMM Requirements

Guest software should:
• Behave on as if running on native hardware
• Not be able to change allocation of real system resources

VMM should be able to “context switch” guests

Hardware must allow:
• System and use processor modes
• Privileged subset of instructions for allocating system resources
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Impact of VMs on Virtual Memory

Each guest OS maintains its own set of page tables
• VMM adds a level of memory between physical and virtual memory 

called “real memory”
• VMM maintains shadow page table that maps guest virtual addresses to 

physical addresses
• Requires VMM to detect guest’s changes to its own page table
• Occurs naturally if accessing the page table pointer is a privileged operation
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Impact of VMs on Virtual Memory
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Virtualization Extensions

Objectives:
• Avoid flushing TLB
• Use nested page tables instead of shadow page tables
• Allow devices to use DMA to move data
• Allow guest OS’s to handle device interrupts
• For security:  allow programs to manage encrypted portions of code 

and data
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Security Considerations

Present bit

Write & Execute permissions

Monitor MMU/Paging/MM

Manipulate:
• Physical page number
• Data pages
• TLB-shootdowns

TLB
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à Controlled Channel Attacks

à Buffer overflow/Code Injection

Integrity violations

à Several Side-channels (Leaky Cauldron)

à TLBleed, side-channel amplifier



Next Up à Side-channels in the Cloud!

Check paper schedule
• https://www.cs.cmu.edu/~15849/schedule.html

Fill preference form
• https://forms.gle/JZ93UQvwtepL9KKm7

Schedule will be finalized by Monday!
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