
15-849 Datacenter Computing
Dimitrios Skarlatos

Fall 2021

1

Agenda

• Processor Design

• Memory Hierarchy
• Virtual Memory

215-849 Datacenter Computing

Some Slides from:
Computer Architecture A Quantitative Approach

Processor Design

15-849 Datacenter Computing 3

Single Processor Performance

15-849 Datacenter Computing 4

Dennard
Scaling ends

Amdahl’s
Law limits

Moore’s
Law ends

Power

Intel 80386 ~ 2 W

Intel Core i7 ~130 W

Pretty much the limit of what
can be cooled by air

15-849 Datacenter Computing 5

The Problem

6

Application Main Memory

Core
L3

Cache
L1

Cache
L2

Cache

100x Slower!

PA 4

PA 1

Fast!

Speculative Execution

7

Application Main Memory

Core
L3

Cache
L1

Cache
L2

Cache

100x Slower!

PA 4

PA 1

Fast!

1. Issue LD VA1
2. Issue LD VA8
3. if (…) {
4. Instruction A
5. }

In-order Execution Time

Speculative Execution
Time

LD VA 1 LD VA 8
Branch
Instr A

Branch Instr ALD VA 8LD VA 1

Instr A
Squash!

Speculative Execution

8

Application Main Memory

Core
L3

Cache
L1

Cache
L2

Cache

100x Slower!

PA 4

PA 1

Fast!

1. Issue LD VA1
2. Issue LD VA8
3. if (…) {
4. Instruction A
5. }

In-order Execution Time

Speculative Execution
Time

LD VA 1 LD VA 8
Branch
Instr A

Branch Instr ALD VA 8LD VA 1

Instr A
Squash!

Re-Order Buffer
(ROB)

LD VA 1
LD VA 8
BranchSpec Ptr

Instr AInstr A

Speculative Execution

9

Application Main Memory

Core
L3

Cache
L1

Cache
L2

Cache

100x Slower!

PA 4

PA 1

Fast!

1. Issue LD VA1
2. Issue LD VA8
3. if (…) {
4. Instruction A
5. }

In-order Execution Time

Speculative Execution
Time

LD VA 1 LD VA 8
Branch
Instr A

Branch Instr ALD VA 8LD VA 1

Re-Order Buffer
(ROB)

LD VA 1
LD VA 8
BranchSpec Ptr

Instr A

Speculative Execution

10

Application Main Memory

Core
L3

Cache
L1

Cache
L2

Cache

100x Slower!

PA 4

PA 1

Fast!

1. Issue LD VA1
2. Issue LD VA8
3. if (…) {
4. Instruction A
5. }

In-order Execution Time

Speculative Execution
Time

LD VA 1 LD VA 8
Branch
Instr A

Branch Instr ALD VA 8LD VA 1

Re-Order Buffer
(ROB)

LD VA 1
LD VA 8
Branch

Spec Ptr

Instr ASquash!

Speculative Execution

11

Application Main Memory

Core
L3

Cache
L1

Cache
L2

Cache

100x Slower!

PA 4

PA 1

Fast!

1. Issue LD VA1
2. Issue LD VA8
3. if (…) {
4. Instruction A
5. }

In-order Execution Time

Speculative Execution
Time

LD VA 1 LD VA 8
Branch
Instr A

Branch Instr ALD VA 8LD VA 1

Re-Order Buffer
(ROB)

LD VA 1
LD VA 8
Branch

Spec Ptr

Instr ASquash!

Speculative Execution

12

Application Main Memory

Core
L3

Cache
L1

Cache
L2

Cache

100x Slower!

PA 4

PA 1

Fast!

1. Issue LD VA1
2. Issue LD VA8
3. if (…) {
4. Instruction A
5. }

In-order Execution Time

Speculative Execution
Time

LD VA 1 LD VA 8
Branch
Instr A

Branch Instr ALD VA 8LD VA 1

Re-Order Buffer
(ROB)

LD VA 1
LD VA 8Spec Ptr

Microarchitectural Replay Attacks!

How did we get here?

Pipelining become universal technique in 1985
• Overlaps execution of instructions
• Exploits “Instruction Level Parallelism”

15-849 Datacenter Computing 13

5-stage Pipeline

15-849 Datacenter Computing 14

Fetch Decode Execute Memory Write-back

5-stage Pipeline

15-849 Datacenter Computing 15

Fetch Decode Execute Memory Write-back

Fetch Decode Execute Memory Write-back

Fetch Decode Execute Memory Write-back

Fetch Decode Execute Memory Write-back

Fetch Decode Execute Memory Write-back

Fetch Decode Execute Memory Write-back

Fetch Decode Execute Memory Write-back

How did we get here?

Pipelining become universal technique in 1985
• Overlaps execution of instructions
• Exploits “Instruction Level Parallelism”

Beyond this, there are two main approaches:
• Hardware-based dynamic approaches

• Used in server and desktop processors
• Not used as extensively in PMP processors

• Compiler-based static approaches
• Not as successful outside of scientific applications

15-849 Datacenter Computing 16

Instruction Level Parallelism (ILP)

When exploiting instr-level parallelism, goal is to minimize CPI
• Pipeline CPI =

• Ideal pipeline CPI +
• Structural stalls +
• Data hazard stalls +
• Control stalls

Parallelism with basic block is limited
• Typical size of basic block = 3-6 instructions
• Must optimize across branches

15-849 Datacenter Computing 17

Data dependency

Instruction j is data dependent on instruction i if
• Instruction i produces a result that may be used by instruction j
• Instruction j is data dependent on instruction k and instruction k is data

dependent on instruction i

Dependent instructions cannot be executed simultaneously

15-849 Datacenter Computing 18

Data dependency

Dependencies are a property of programs

Pipeline organization determines detection and if it causes a stall

Data dependence conveys:
• Possibility of a hazard
• Order in which results must be calculated
• Upper bound on exploitable instruction level parallelism

15-849 Datacenter Computing 19

Stall Factors

Data Hazards
• Read after write (RAW)
• Write after write (WAW)
• Write after read (WAR)

Control Dependence
• Ordering of instruction i with respect to a branch instruction

• Instruction control dependent on a branch cannot be moved before the branch so
that its execution is no longer controlled by the branch

• An instruction not control dependent on a branch cannot be moved after the
branch so that its execution is controlled by the branch

15-849 Datacenter Computing 20

ß True Dependence! R2 ß R0 + R1
R3 ß R2 + R4

Branch Prediction

Basic 2-bit predictor:
• For each branch:

• Predict taken or not taken
• If the prediction is wrong two consecutive times, change prediction

Correlating predictor:
• Multiple 2-bit predictors for each branch
• One for each possible combination of outcomes of preceding n branches

• (m,n) predictor: behavior from last m branches to choose from 2m n-bit predictors

Tournament predictor:
• Combine correlating predictor with local predictor

15-849 Datacenter Computing 21

gshare

Hardware-Based Speculation

Execute instructions along predicted execution paths but only
commit the results if prediction was correct

Instruction commit: allowing an instruction to update the register
file when instruction is no longer speculative

Need an additional piece of hardware to prevent any irrevocable
action until an instruction commits
• I.e. updating state or taking an execution

15-849 Datacenter Computing 22

Reorder Buffer

Holds the result of instruction between completion and commit

Four fields:
• Instruction type: branch/store/register
• Destination field: register number
• Value field: output value
• Ready field: completed execution?

Modify pipeline:
• Operand source is now reorder buffer entry instead of functional unit

15-849 Datacenter Computing 23

Type Dst Val Rdy

Reorder Buffer

Issue:
• Allocate ROB, read available operands

Execute:
• Begin execution when operand values are available

Write result:
• Write result and ROB tag on bus

Commit:
• When ROB reaches head of ROB, update register
• When a mispredicted branch reaches head of ROB, discard all entries

15-849 Datacenter Computing 24

Reorder Buffer

Register values and memory values are not written until commit

On misprediction:
• Speculated entries in ROB are cleared

Exceptions:
• Not recognized until it is ready to commit

15-849 Datacenter Computing 25

Speculative Execution

How much to speculate
• Mis-speculation degrades performance and power relative to no

speculation
• May cause additional misses (cache, TLB)

• Prevent speculative code from causing higher costing misses (e.g. L2)

Speculating through multiple branches
• Complicates speculation recovery

Speculation and energy efficiency
• Note: speculation is only energy efficient when it significantly improves

performance

15-849 Datacenter Computing 26

Processor Pipeline

15-849 Datacenter Computing 27

Simultaneous Multithreading (SMT)

15-849 Datacenter Computing 28

Front End

Execution
Engine

Memory
Subsystem

EUs

Simultaneous Multithreading (SMT)

15-849 Datacenter Computing 29

Front End

Execution Engine

Memory Subsystem

EUs

Simultaneous Multithreading (SMT)

15-849 Datacenter Computing 30

Front End

Execution Engine

Memory Subsystem

EUs

Front End

Execution Engine

Memory Subsystem

EUs

Thread 1 Thread 2

Security Considerations

Deep pipeline w/ variable timing per instr

Branch predictors

Load / Store queues

Out-of-Order Execution

Simultaneous multi-threading

15-849 Datacenter Computing 31

à Spectre, Meltdown, Microscope

à Amplifies/Simplifies most attacks

à MemJam, MDS (RIDL, Fallout)

à Foundation of many attacks (secret-dependent CF)

à Subnormal FP, PortSmash

Memory Hierarchy

15-849 Datacenter Computing 32

The Problem

33

Application Main Memory

Core
L1

Cache

100x Slower!

PA 4

PA 1

Fast!

Memory Hierarchy

34

Application Main Memory

Core
L3

Cache
L1

Cache
L2

Cache

100x Slower!

PA 4

PA 1

Fast!

Memory Hierarchy

35

Main MemoryCore
L3

Cache
L1

Cache
L2

Cache

Flash Storage

Disk Storage

Size
Speed

4KB
200ps

64KB
1ns

256KB
3-10ns 10-64KB

10-20ns 32-256KB
50-100ns

16-64TB
5-10ms

1-16TB
100-200us

The Processor-Memory Gap

15-849 Datacenter Computing 36

Why we need a memory hierarchy?

Programmers want unlimited amounts of memory with low latency

Fast memory technology is more expensive per bit than slower memory

Solution: organize memory system into a hierarchy
• Entire addressable memory space available in largest, slowest memory
• Incrementally smaller and faster memories, each containing a subset of the memory

below it, proceed in steps up toward the processor

Temporal and spatial locality insures that nearly all references can be caches
• Gives the allusion of a large, fast memory being presented to the processor

15-849 Datacenter Computing 37

Memory Hierarchy Design

Memory hierarchy design becomes more crucial with recent
multi-core processors:
• Aggregate peak bandwidth grows with # cores:

• Intel Core i7 can generate two references per core per clock
• Four cores and 3.2 GHz clock

• 25.6 billion 64-bit data references/second +
• 12.8 billion 128-bit instruction references/second
• = 409.6 GB/s!

• DRAM bandwidth is only 8% of this (34.1 GB/s)
• Requires:

• Multi-port, pipelined caches
• Two levels of cache per core
• Shared third-level cache on chip

15-849 Datacenter Computing 38

GDDR5

HBM

Memory Hierarchy Fundamentals

When a word is not found in the cache, a miss occurs:
• Fetch word from lower level in hierarchy, requiring a higher latency
• Lower level may be another cache or the main memory
• Also fetch the other words contained within the block

• Takes advantage of spatial locality

• Place block into cache in any location within its set, determined by addr
• Block address MOD number of sets in cache

15-849 Datacenter Computing 39

Memory Hierarchy Fundamentals

n sets => n-way set associative
• Direct-mapped cache => one block per set
• Fully associative => one set

Writing to cache: two strategies
• Write-through

• Immediately update lower levels of hierarchy

• Write-back
• Only update lower levels of hierarchy when an updated block is replaced

• Both strategies use write buffer to make writes asynchronous

15-849 Datacenter Computing 40

Memory Hierarchy Fundamentals

15-849 Datacenter Computing 41

Memory Hierarchy Fundamentals

15-849 Datacenter Computing 42

Memory Hierarchy Fundamentals

15-849 Datacenter Computing 43

Memory Hierarchy Fundamentals

15-849 Datacenter Computing 44

Memory Hierarchy Fundamentals

Six basic cache optimizations:
1. Larger block size

• Reduces compulsory misses
• Increases capacity and conflict misses, increases miss penalty

2. Larger total cache capacity to reduce miss rate
• Increases hit time, increases power consumption

3. Higher associativity
• Reduces conflict misses
• Increases hit time, increases power consumption

4. Higher number of cache levels
• Reduces overall memory access time

5. Giving priority to read misses over writes
• Reduces miss penalty

6. Avoiding address translation in cache indexing
• Reduces hit time

15-849 Datacenter Computing 45

Security Considerations

Shared memory hierarchy

Variable latencies across levels

Sets, Ways, Banks, Slices

Main Memory (DRAM)

15-849 Datacenter Computing 46

Cache timing & contention attacks
Prime+Probe, Flush+Reload, Flush+Flush
L1, L2, cross-core L3
Inclusive and non-inclusive
Directories
Prefetchers
Replacement policy
Userspace, SGX

à DRAM-based timing (DRAMA), Rowhammer

Virtual Memory

15-849 Datacenter Computing 47

Page Tables Main Memory

Virtual Memory Abstraction

48

HardwareOperating SystemApplication

Virtual Address (VA) Physical Address (PA)

Page Tables Main Memory

Virtual Memory Abstraction

49

HardwareOperating SystemApplication

Virtual Memory Abstraction

50

Application

Page Tables Main Memory

PA 4

PA 4VA 1

Virtual Memory Abstraction

51

Application

Page Tables Main Memory

PA 4

PA 4VA 1

Storage

VA 8

PA 1
If Present bit is cleared àPage Fault!

Virtual Memory Abstraction

52

Application

Page Tables Main Memory

PA 4

PA 4VA 1

Storage

VA 8

PA 1

Virtual Memory Abstraction

53

Application

Page Tables Main Memory

PA 4

PA 4VA 1

Storage

PA 1VA 8

PA 1

Virtual Memory Abstraction

54

Application

Main Memory

PA 4

PA 4VA 1

PA 1VA 8

PA 1

Page Tables

Virtual Memory Translation

55

Application

Main Memory

PA 4

PA 1

Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

TLB
Issue LD VA 1

TLB Miss!

PA 4VA 1

PA 1VA 8

Virtual Memory Translation

56

Application

Main Memory

PA 4

PA 1

Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

TLB

PA 4VA 1

PA 1VA 8

à “Page Walk” = Fetch entry from page tableTLB Miss

PA4VA1

Issue LD VA 1

Virtual Memory Translation

57

Application

Main Memory

PA 4

PA 1

Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

TLB

PA4VA1

PA 4VA 1

PA 1VA 8

Issue LD VA 1

Virtual Memory Translation

58

Main Memory

PA 4

PA 1

x86-64 Radix Page Tables

Virtual Memory Translation

59

Main Memory

PA 4

PA 1

pmd
pte

PMD
PTE

CR3

47 … 39 38 … 30 29 … 21 20 … 12 11 … 0

9-bits 9-bits 9-bits 9-bits Page Offset

+
+

+
+

Address A

Virtual Address

TLB Entry

pgd
pud

PUD
PGD

PA4VA1

x86-64 Radix Page Tables

Virtual Memory Translation

60

Application

Main Memory

PA 4

PA 1

Radix Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

TLB

à “Page Walk” = Fetch entry from radix page tableTLB Miss

Issue LD VA 1

PMD
PTE

PUDPGD

pud pmd pte
pgdpgd

Virtual Memory Translation

61

Application

Main Memory

PA 4

PA 1

Radix Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

TLB

à “Page Walk” = Fetch entry from radix page tableTLB Miss

Issue LD VA 1

PMD
PTE

PUDPGD

pgd

pgd

pud pmd ptepud

Virtual Memory Translation

62

Application

Main Memory

PA 4

PA 1

Radix Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

TLB

à “Page Walk” = Fetch entry from radix page tableTLB Miss

Issue LD VA 1

PMD
PTE

PUDPGD

pud

pgd
pte

pud pmdpmd

Virtual Memory Translation

Application

Main Memory

PA 4

PA 1

Radix Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

TLB

à “Page Walk” = Fetch entry from radix page tableTLB Miss

Issue LD VA 1

PMD
PTE

PUDPGD

pmd

pmd

63

pgd pud
ptepte

Multilevel TLBs

Application

Main Memory

PA 4

PA 1

Radix Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

L1 TLB

PMD
PTE

PUDPGD

L2 TLB

64

pgd
pte

pud pmd

Intel i7 TLB structures

Memory Management Unit Cache

Application

Main Memory

PA 4

PA 1

Radix Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

L1 TLB

PMD
PTE

PUDPGD

L2 TLB

MMU Cache

65

pgd
pte

pud pmd

Translations in Data Caches

Application

Main Memory

PA 4

PA 1

Radix Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

L1 TLB

PMD
PTE

PUDPGD

L2 TLB

pgd pgd pud

pmd ptepud

MMU Cache

66

pgd
pte

pud pmd

Even More Memory is Here!

Application

Main Memory

PA 4

PA 1

Radix Page Tables

Core
L3

Cache
L1

Cache
L2

Cache

L1 TLB

PMD
PTE

PUDPGD

L2 TLB

pgd pgd pud

pmd ptepud

Non-Volatile Memory
Technology

Sunny Cove introduces 5-Level Radix Page Tables!!

MMU Cache

67

pgd
pte

pud pmd

Virtual Memory

Protection via virtual memory
• Keeps processes in their own memory space

Role of architecture
• Provide user mode and supervisor mode
• Protect certain aspects of CPU state
• Provide mechanisms for switching between user and supervisor modes
• Provide mechanisms to limit memory accesses
• Provide TLB to translate addresses

15-849 Datacenter Computing 68

From Virtual Memory to Virtual Machines

Supports isolation and security

Sharing hardware among many unrelated users

Enabled by raw speed of processors, making the overhead more acceptable

Allows different ISAs and OS to be presented to user programs
• “System Virtual Machines”
• SVM software is called “virtual machine monitor” or “hypervisor”
• Individual virtual machines run under the monitor are called “guest VMs”

15-849 Datacenter Computing 69

VMM Requirements

Guest software should:
• Behave on as if running on native hardware
• Not be able to change allocation of real system resources

VMM should be able to “context switch” guests

Hardware must allow:
• System and use processor modes
• Privileged subset of instructions for allocating system resources

15-849 Datacenter Computing 70

Impact of VMs on Virtual Memory

Each guest OS maintains its own set of page tables
• VMM adds a level of memory between physical and virtual memory

called “real memory”
• VMM maintains shadow page table that maps guest virtual addresses to

physical addresses
• Requires VMM to detect guest’s changes to its own page table
• Occurs naturally if accessing the page table pointer is a privileged operation

15-849 Datacenter Computing 71

Impact of VMs on Virtual Memory

15-849 Datacenter Computing 72

nL4
1

nL3
2

nL2
3

nL1
4

+ gL4
5

GPA
gCR3

gVA

gVA[47:39]gL4

nL4
6

nL3
7

nL2
8

nL1
9

+ gL3
10

gVA[38:30]gL3

nL4
11

nL3
12

nL2
13

nL1
14+

gL2
15

gVA[29:21]gL2

nL4
16

nL3
17

nL2
18

nL1
19

+ gL1
20

gVA[20:12]gL1

nL4
21

nL3
22

nL2
23

nL1
24

+
gVA[11:0]gPA sPA

EPTP

To TLB

NTLB Caching PWC Caching

Virtualization Extensions

Objectives:
• Avoid flushing TLB
• Use nested page tables instead of shadow page tables
• Allow devices to use DMA to move data
• Allow guest OS’s to handle device interrupts
• For security: allow programs to manage encrypted portions of code

and data

15-849 Datacenter Computing 73

Security Considerations

Present bit

Write & Execute permissions

Monitor MMU/Paging/MM

Manipulate:
• Physical page number
• Data pages
• TLB-shootdowns

TLB

15-849 Datacenter Computing 74

à Controlled Channel Attacks

à Buffer overflow/Code Injection

Integrity violations

à Several Side-channels (Leaky Cauldron)

à TLBleed, side-channel amplifier

Next Up à Side-channels in the Cloud!

Check paper schedule
• https://www.cs.cmu.edu/~15849/schedule.html

Fill preference form
• https://forms.gle/JZ93UQvwtepL9KKm7

Schedule will be finalized by Monday!

7515-849 Datacenter Computing

https://www.cs.cmu.edu/~15849/schedule.html
https://forms.gle/JZ93UQvwtepL9KKm7

