15-849 Datacenter Computing

Dimitrios Skarlatos
Fall 2021

Agenda

* Processor Design
 Memory Hierarchy
* Virtual Memory

Some Slides from:
Computer Architecture A Quantitative Approach

c Carnegie Mellon University
Computer Science Department

Processor Design

C Carnegie Mellon University
) Computer Science Department

ingle Processor Performance

Intel Core i7 4 cores 4.2 GHz (Boost to 4.5 GHz)
Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz,
Intel Core i7 4 cores 4.0 GHz (Boost to 4.2 GHz)
Intel Xeon 4 cores 3.7 GHz (Boost to 4.1 GHz)
1 00,000 Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)
Intel Xeon 4 cores 3.6 GHz (Boost to 4.0 GHz)

Intel Core i7 4 cores 3.4 GHz (boost to 3.8 GHz)
Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel Xeon 4 cores, 3.3 GHz (to 3.6 GHz)

Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
Intel Core Duo Extreme 2 cores, 3.0 GHz
Intel Core 2 Extreme 2 cores, 2.9 GHz

10,000 = e e —------ AMD Athlon 64, 2.8 GHz -~

AMD Athlon, 2.6 GHz ey
Intel Xeon EE 3.2 GHz

Intel D8SOEMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)
IBM Power4, 1.3 GHz
Intel VC820 motherboard, 1.0 GHz Pentium Ill processor

Professional Workstation XP1000, 667 MHz 21264A
1000 Digital AlphaServer 8400 6/575. 575 MHz 21264

21,871

23%lyear

100 do o IBMPOWERstion 100, 150 Mz
Digital 3000 AXP/500, 150 MHz

IBM RS6000/540, 30 MHz, 52%lyear LaW I I
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz gz72 '° Dennard
Scaling ends

10 e
VAX 8700, 22 MHz

Sun-4/260, 16.7 MHz %

g

AX-11/780, 5 MHz

I I I T T T T T T I I I T I I

I T I
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

C Carnegie Mellon University
) Computer Science Department

Power

Intel Skylake Core i7

Intel 80386 ~2 W |
Intel Core i7 ~130 W oM e

Pretty much the limit of what = =
can be cooled by air

16.7MHzin1986

Digital VAX-11/780
5MHz in 1978

15%lyear
1 T T T T T T T T T T T T T T T T T T T
D O A N> O DO O O I > & & 0 9 N> o B
A > N N N N N

c Carnegie Mellon University
Computer Science Department

The Problem

~N

[Application 100x Slower! dMain Memor
) N N[B

N s
Core L1 L2 L3
Cache Cache Cache
J J

Fast!

C Carnegie Mellon University
Computer Science Department

Speculative Execution

1. Issue LD VAl In-order Execution Time 5>
LD VA 1 Branch | Instr A
3.1if (.) {
4. Instruction A -
5.} Speculative Execution Time >
LD VA 1
Branch
Instr A

Squash! 7y

~N

[Application 100x Slower! dMain Memor
N N N[)
Core L1 L2 L3
Cache Cache Cache
J J

Fast!

c Carnegie Mellon University
Computer Science Department

Speculative Execution

3.if () {

5.}

1. Issue LD VAl

4. Instruction A

[Application

~N

J

{ Core

~

In-order Execution Time 5>
LD VA 1 Branch | Instr A
. . Time
Speculative Execution >
LD VA 1 LD VA 11)
Branch
Instr A Specﬂ) Branch | }Re-Order Buffer
Squash! ¥ Instr A (ROB)
J

-

c Carnegie Mellon University
Computer Science Department

_)L

Cache

\

Fast!

L2
Cache

AN

Cache

L3

100x Slower! -Main MemOri

Speculative Execution

1. Issue LD VAl

LD VA 1
3.1if () |
4. Instruction A
5.} Speculative Execution
LD VA 1
__Branch
__Instr A _:
Y
[Application SPECTRE 100x Slower!
N\ N (- N[A
aP L a P L2@ LaP
C.Sos . che Cache . ‘Cache
g Gl N Y

c Carnegie Mellon University
Computer Science Department

Fast!

In-order Execution

Time

>
Branch | Instr A
Time >
LD VA 1])

Instr A

Y,

Spec Ptr g nch | YRe-Order Buffer

(ROB)

Main Memori

Speculative Execution

1. Issue LD VAl

In-order Execution Time 5>
LD VA 1 Branch | Instr A
. . Time
Speculative Execution >
LD VA 1 LD VA 1])
Spec Ptr
Branch | }Re-Order Buffer
Squash! Instr A (ROB)
J

Cache

100x Slower! -Main MemOri

Cache

3.1f () {
4. Instruction A
5.}
[Application
N N ([
{ Core" Lc1h.e.
«a® e
-
Fast!

c Carnegie Mellon University
Computer Science Department

10

Speculative Execution

1. Issue LD VAl

In-order Execution Time 5>
LD VA 1 Branch | Instr A
. . Time
Speculative Execution >
LD VA 1 LD VA 1])
Spec Ptr
Branch | }Re-Order Buffer
Squash! Instr A (ROB)
J

Cache

100x Slower! -Main MemOri

Cache

3.1f () {
4. Instruction A
5.}
[Application
N N ([
{ Core" Lc1h.e.
«a® e
-
Fast!

c Carnegie Mellon University
Computer Science Department

11

Speculative Execution

3.1if () {

5.}

1. Issue LD VAl

4. Instruction A

[Application

~N

J

{ Core

~

c Carnegie Mellon University
Computer Science Department

Fast!

In-order Execution Time 5>
LD VA 1 Branch | Instr A
. . Time
Speculative Execution >
LD VA 1 LD VA 1])

Cache

.

Cache

Branch

Spec Ptr,

" Instr A |

*Re-Order Buffer
(ROB)

Y,

J

Microarchitectural Replay Attacks!

.

Cache

L3

100x Slower! -Main MemOri

12

How did we get here?

Pipelining become universal technique in 1985
» Overlaps execution of instructions
« Exploits “Instruction Level Parallelism”

c Carnegie Mellon University
Computer Science Department

5-stage Pipeline

PC

C Carnegie Mellon University
) Computer Science Department

M
u
X
Add NPC :
q - Branch Condl:
taken :
M
u
Instruction E X :
memory > IR Registers ALU |
> M output|
gi{ 2T oo
X memory

12(\ 32
.| Sign-

LMD

14

5-stage Pipeline

Fetch Execute Memory | Write-back
Decode Execute Memory | Write-back

Fetch Decode Execute Memory | Write-back

Fetch Decode Execute Memory | Write-back

Fetch Decode Execute Memory | Write-back
Fetch Decode Execute Memory | Write-back

Fetch Decode Execute Memory | Write-back

C Carnegie Mellon University
) Computer Science Department

How did we get here?

Pipelining become universal technique in 1985
» Overlaps execution of instructions
« Exploits “Instruction Level Parallelism”

Beyond this, there are two main approaches:

« Hardware-based dynamic approaches
» Used in server and desktop processors
* Not used as extensively in PMP processors

« Compiler-based static approaches
* Not as successful outside of scientific applications

c Carnegie Mellon University
Computer Science Department

Instruction Level Parallelism (ILP)

When exploiting instr-level parallelism, goal is to minimize CPI
* Pipeline CPI =
* |deal pipeline CPI +
o Structural stalls +
» Data hazard stalls +
* Control stalls

Parallelism with basic block is limited
* Typical size of basic block = 3-6 instructions
* Must optimize across branches

c Carnegie Mellon University
Computer Science Department

Data dependency

Instruction j is data dependent on instruction / if
* Instruction / produces a result that may be used by instruction

* Instruction j is data dependent on instruction k and instruction k is data
dependent on instruction /

Dependent instructions cannot be executed simultaneously

c Carnegie Mellon University
Computer Science Department

Data dependency

Dependencies are a property of programs
Pipeline organization determines detection and if it causes a stall

Data dependence conveys:
 Possibility of a hazard
» Order in which results must be calculated
* Upper bound on exploitable instruction level parallelism

c Carnegie Mellon University
Computer Science Department

Stall Factors

Data Hazards
» Read after write (RAW) < True Dependence!
« Write after write (WAW)
» Write after read (WAR)

R2 < RO + R1
R3 ¢ R2 + R4

Control Dependence

» Ordering of instruction i with respect to a branch instruction

* Instruction control dependent on a branch cannot be moved before the branch so
that its execution is no longer controlled by the branch

» An instruction not control dependent on a branch cannot be moved after the
branch so that its execution is controlled by the branch

c Carnegie Mellon University
Computer Science Department

10-bit shift register

Branch history fe——o Most recent braqch Branch address
result (not taken/taken)

10 + + 10

Branch Prediction) e

1024 2-bit predictors

Basic 2-bit predictor:

 For each branch:
gshare

» Predict taken or not taken
« If the prediction is wrong two consecutive times, change prediction

Correlating predictor:
» Multiple 2-bit predictors for each branch

* One for each possible combination of outcomes of preceding n branches
« (m,n) predictor: behavior from last m branches to choose from 2™ n-bit predictors

Tournament predictor:
« Combine correlating predictor with local predictor

c Carnegie Mellon University
Computer Science Department

Hardware-Based Speculation

Execute instructions along predicted execution paths but only
commit the results if prediction was correct

Instruction commit: allowing an instruction to update the register
file when instruction is no longer speculative

Need an additional piece of hardware to prevent any irrevocable
action until an instruction commits
* |.e. updating state or taking an execution

c Carnegie Mellon University
Computer Science Department

Reorder Buffer

Holds the result of instruction between completion and commit

Type | Dst Val Rdy

Four fields:
* Instruction type: branch/store/register
 Destination field: register number
 Value field: output value
« Ready field: completed execution?

Modify pipeline:

« Operand source is now reorder buffer entry instead of functional unit

c Carnegie Mellon University
Computer Science Department

Reorder Buffer

Issue:
 Allocate ROB, read available operands

Execute:
» Begin execution when operand values are available o0 0)}

Write result: ol
» Write result and ROB tag on bus

Commit: SPECTRE

 When ROB reaches head of ROB, update register
 When a mispredicted branch reaches head of ROB, discard all entries

c Carnegie Mellon University
Computer Science Department

24

Reorder Buffer

Register values and memory values are not written until commit

On misprediction:
» Speculated entries in ROB are cleared

Exceptions:
* Not recognized until it is ready to commit

c Carnegie Mellon University
Computer Science Department

25

Speculative Execution

How much to speculate

* Mis-speculation degrades performance and power relative to no
speculation
« May cause additional misses (cache, TLB)

* Prevent speculative code from causing higher costing misses (e.g. L2)

Speculating through multiple branches
« Complicates speculation recovery

Speculation and energy efficiency

* Note: speculation is only energy efficient when it significantly improves
performance

c Carnegie Mellon University
Computer Science Department

G

Processor Pipeline

3pAd/ak9

Front End Instruction .
Cache Tag| L1 Instruction Cache
LOP Cache 32KiB 8-Way Instruction
Tag TLB
16 Bytes/cycle
Branch
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
MopP MoP MOP MOP MoP MopP
Instruction Queue
| (50, 2x25 ethries) |
MoP MoP MoP MopP MopP
MicroCode 5-Way Decode

1-4p0Ps

SGFERE Complex| [Simple |[Simple |[Simple |[Simple
(MS ROM) Decoder || Decoder || Decoder || Decoder || Decoder
WoP WoP 3 3

4 poPs
— 5 u0Ps
Decoded Stream Buffer (DSB)
(HOP Cache) 6 HOPs
(1.5k HOPs; 8-Way)
(64 8 window) MUX]

I Allocation Queue (IDQ) (128, 2x64 LOPS) ‘

Reorder buffer
From instruction unit
"
g Reg# Data
Instruction
queue
FP registers
Load/store
operations
¥ _ _ Operand
o buses
operations
Load buffers
Operation bus
Store 2
address 1
Store
data
Memory unit FP multipliers
b‘;f: Common data bus (CDB)

(280D) 522ng 83aq uowwoD

)) MOP uOP pOP pOP pOP pOP |Branch Order Buffer|
Register Alias Table (RAT) 7/l°h (BOB) (48-entry)

T Rename / Allocate / Retirement

Move Elimination ReOrder Bufter (324 entrics) Zeroing Idioms

nop nopP nopP nop nop nop HopP nop

i " Scheduler : ’
nteger Physical Register il o . [Vector Physical Register File
(180 Registers) Unified Reservation Station (RS] (168 Registers)
(97 entries)
[Forto | Port 1 [Ports | [Port6] [Port2] [Porta]| [Porta] Port 7

g1LS payiun

Kep-t aI9sz
ayped z1

Carnegie Mellon University
Computer Science Department

noP
EUs
Execution E I’|9i ne Store Buffer & Forwarding
(56 entries)
328/eycle
LoadBuffer] & | L1 Data Cache M
(72 entries)| 32KiB 8-Way
H
A

Memory Subsystem

3pAd/ar9

32B/cycle
ToL3

27

Simultaneous Multithreading (SMT)

Front End Instruction
Cache Tag| L1 Instruction Cache

LOP Cache 32KiB 8-Way Instruction
Tag TLB

16 Bytes/cycle
Branch
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
MOP MOP MOP MOP MOP MOP

Instruction Queue
I (50, 2x25 eStrles) l

MOP MOP MOP MOP MOP

apPA/ar9

MicroCode 5-Way Decode
Seqiencer [Gamen] [Simot][Simete][Simete [Simote |
o Decoder| | Decoder || Decoder || Decoder || Decoder
1-4 poPs nor nor nor norp
4 poPs
5 pOPs
Decoded Stream Buffer (DSB)
(HOP Cache) 6 uOPs
(1.5k HOPs; 8-Way)
(64 8 window) MUX

f P Al freteent
3 Move Elimination ReOrder Buffer (224 eniries) Zeroing Idioms
3
; nor nor nor nor nor nor nor nor
H
i nteger Physical Register Ald | o Resi‘wh:g:"‘egtaﬁon (Rs) |Vector Physical Register Fle
3
g (180 Registers) (97 entries) (168 Registers)
Al N
Port 0 Port 1 [Port5] [Port6] [Port2] [Port3] [Portd] Port 7 = H=
3
HoP nop noP noP nop noP HoP nop S AN 32B/cycle
o o (@)
o
= Q
| [INT AW] AGU AGU Store Datal AGU wnl &8 To L3
Load Data| [Load Data =l E g
o
Q
= <
256bit/cycle

EUs

Execution Engine Store Buffer & Forwarding
(56 entries)

(=
328Ieycle \§
. <
3 o
LoadBuffer| & | L1 Data Cache ﬂ] ®
(72 entries) i 32KiB 8-Way
7

Memory Subsystem

c Carnegie Mellon University
Computer Science Department

Simultaneous Multithreading (SMT)

Front End Instruction
Cache Tag| L1 Instruction Cache

LOP Cache 32KiB 8-Way Instruction
Tag TLB

16 Bytes/cycle
Branch
Predictor | Instruction Fetch & PreDecode |
(16 B window) F E d
BPU
{] MOP MOP MOP MOP MOP MOP ro n t n

Instruction Queue
(50, 2x25 entries)

3P Lo/gr9

MicroCode 5-Way Decode
Seduencer Compls] [St | Simee [Smore][S |
(MS ROM) Decoder || Decoder || Decoder || Decoder || Decoder
1-4 poPs ROP WOP WOP woP Stack
Engine
4 poPs (SE)
Sulps =

Decoded Stream Buffer (DSB)

Execution Engine

(64 B window)

Allocation Queue (IDQ) (128, 2x64 LOPs) I

HOP pOP pOP pOP pOP pOP |Branch Order Buffer| E
Register Alias Table (RAT) [« Pag, (BOB) (48-entry)

Load

iminati Rename / Allocate / Retirement
ReOrder Buffer (224 entries) ZE IR

HoP nopP HoP HOP HoP HoP HoP HoP

Scheduler
nteger Physical Register e n . Vector Physical Register File
F‘MV (180 Registers) (Ui e HE) (= (168 Registers)

(s800) 525ng =38 uowwoD

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port4 Port 7 c § -
HoP HoP HOP HOP nop RoP HOP HOP % a : 32B/cycle
a| @y /
INTAW | [AGU] AGU Store Datal AGU 0| &0 Tol3
o 57 Memory Subsystem
@
b Y Y
256bit/cycle
EUs
Execution E ngi he Store Buffer & Forwarding
(56 entries) §
328leycle \ g
X <
= (2}
13 Data TLB >
LoadBuffer| & | L1 Dz'ita Cache 4
(72 entries) Li‘- 32KiB 8-Way
E

Memory Subsystem

c Carnegie Mellon University
Computer Science Department

C

(s800) 525ng =38 uowwoD

Simultaneous Multithreading (SMT)

Front End Instruction
Cache Tag| L1 Instruction Cache

LOP Cache 32KiB 8-Way Instruction
Tag TLB

16 Bytes/cycle
Branch -
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
MOP MOP MOP MOP MOP MOP
Instruction Queue
(50, 2x25 entries)
MOP MOP MOP
MicroCode 5-Way Decode
Seduencer Compter [Sote [S | S | Ste |
(MS ROM) Decoder || Decoder || Decoder || Decoder || Decoder
1-4 poPs OP HoP HoP 3 Stack
Engine
4 uoPs (SE)
—— 5 pOP:
Decoded Stream Buffer (DSB) LB ==
(HOP Cache) 6 HOPs
(1.5k pOPs; 8-Way)
(64 B window) MUX

Allocation Queue (IDQ) (128, 2x64 LOPs) I

HOP HOP upOP pOP pOP pOP |Branch Order Buffer
Register Alias Table (RAT) [« Pag, (BOB) (48-entry)

Load
i‘ iminati Rename / Allocate / Retirement
e ReOrder Buffer (224 entries) LR

nop nop nop nop nop nop nop nop

Scheduler
Integer Physical Register File] - < . Vector Physical Register File|
Int Unified Reservation Station (RS)
L (180 Registers) (97 entries) (168 Registers)

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

HoP HOP HoP HOP nop nop HoP HoP

INT ALY INTAW | [AGU] AGU Store Datal AGU
Vect Shuffle Load Data| [Load Data

INT Vect AL
LEA

oA Ul

2S6bit/cyele

EUs

Execution Engine Store Buffer & Forwarding
(56 entries)

328/eycle

L1 Data Cache M

32KiB 8-Way

328/eyele

Load Buffer
(72 entries)

328/eyele

Memory Subsystem

Carnegie Mellon University
Computer Science Department

apPA>/gr9

g11S payiun

N

g e

N 32B/cycle
lle)

IS § / ToL3
=0

Q

<

apA/gr9

Front End

Execution Engine

Memory Subsystem

Thread 1l Thread 2

Front End

Execution Engine

EUs

Memory Subsystem

30

Security Considerations

Deep pipeline w/ variable tlmlng per instr > subnormal Fp, PortSmash
Branch predictors - Foundation of many attacks (secret-dependent CF)
Load / Store queues - MemJam, MDS (RIDL, Fallout)

Out-of-Order Execution > Spectre, Meltdown, Microscope

Simultaneous multi-threading - Amplifies/Simplifies most attacks

c Carnegie Mellon University
Computer Science Department

31

G

Memory Hierarchy

Carnegie Mellon University
Computer Science Department

32

The Problem

Application 100x Slower! dMain Memor
> < s N
3 ‘ L1 |
Core Cache
- J
Fast!

C Carnegie Mellon University
Computer Science Department

Memory Hierarchy

~N

[Application 100x Slower! dMain Memor
Y (N[A

N s h
Core L1 L2 L3
Cache Cache Cache
J

Fast!

c Carnegie Mellon University
Computer Science Department

Memory Hierarchy

Size 4KB 64KB
Speed 200ps 1ns

C Carnegie Mellon University
) Computer Science Department

L3
Cache
256KB
10-64KB
3-10ns
10-20ns 32-256KB
50-100ns
Characteristic L1 L2 L3
Size 32 KiB I/32 KiB D 256 KiB 2 MiB per core
Associativity both 8-way 4-way 16-way
Access latency 4 cycles, pipelined 12 cycles 44 cycles
Replacement scheme Pseudo-LRU Pseudo-LRU Pseudo-LRU but with an

ordered selection algorithm

1-16TB
100-200us

Flash Storage

Disk Storage

16-64TB
5-10ms

35

The Processor-Memory Gap

100,000

10,000 -

TOO0 e T e s e e en e fe e

Performance

TOO e M e [

10 1

I I I | I I
1980 1985 1990 1995 2000 2005 2010 2015

Year

C Carnegie Mellon University
) Computer Science Department

Why we need a memory hierarchy?

Programmers want unlimited amounts of memory with low latency
Fast memory technology is more expensive per bit than slower memory

Solution: organize memory system into a hierarchy

« Entire addressable memory space available in largest, slowest memory

 Incrementally smaller and faster memories, each containing a subset of the memory
below it, proceed in steps up toward the processor

Temporal and spatial locality insures that nearly all references can be caches
» Gives the allusion of a large, fast memory being presented to the processor

c Carnegie Mellon University
Computer Science Department

Memory Hierarchy Design

Memory hierarchy design becomes more crucial with recent
multi-core processors:

« Aggregate peak bandwidth grows with # cores:
* Intel Core i7 can generate two references per core per clock
» Four cores and 3.2 GHz clock
« 25.6 billion 64-bit data references/second +
» 12.8 billion 128-bit instruction references/second
« =409.6 GB/s!
« DRAM bandwidth is only 8% of this (34.1 GB/s)
* Requires:
« Multi-port, pipelined caches
» Two levels of cache per core
» Shared third-level cache on chip

HBM

Vertical stacking (3D) Interposer stacking (2.5D)

c Carnegie Mellon University
Computer Science Department

38

Memory Hierarchy Fundamentals

When a word is not found in the cache, a miss occurs:
« Fetch word from lower level in hierarchy, requiring a higher latency
* Lower level may be another cache or the main memory

* Also fetch the other words contained within the block
» Takes advantage of spatial locality

 Place block into cache in any location within its set, determined by addr
» Block address MOD number of sets in cache

c Carnegie Mellon University
Computer Science Department

Memory Hierarchy Fundamentals

n sets => n-way set associative
» Direct-mapped cache => one block per set
 Fully associative => one set

Writing to cache: two strategies
» Write-through

» Immediately update lower levels of hierarchy

o Write-back

« Only update lower levels of hierarchy when an updated block is replaced
 Both strategies use write buffer to make writes asynchronous

c Carnegie Mellon University
Computer Science Department

G

Memory Hierarchy Fundamentals

Block frame address

Block

11111111112 2
no. 012345678901234567890

22222222233
12345678901

Memory

Carnegie Mellon University
Computer Science Department

41

Memory Hierarchy Fundamentals

Fully associative:
block 12 can go
anywhere

Block 01234567
no.

Cache

Block frame address

Block 11111111112
no. 012345678901234567890

Memory

C Carnegie Mellon University
) Computer Science Department

Memory Hierarchy Fundamentals

Fully associative: Direct mapped:

block 12 can go block 12 can go

anywhere only into block 4
(12 MOD 8)

Block 01234567 Block 01234567
no. no.

Cache

Block frame address

Block 11111111112
no. 012345678901234567890

Memory

C Carnegie Mellon University
) Computer Science Department

Memory Hierarchy Fundamentals

Fully associative: Direct mapped: Set associative:

block 12 can go block 12 can go block 12 can go

anywhere only into block 4 anywhere in set 0
(12 MOD 8) (12 MOD 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.

Cache
Set Set Set Set
0 1 2 3
Block frame address
Block 11111111112222222222383
no. 01234567890123456789012345678901

Memory

C Carnegie Mellon University
) Computer Science Department

Memory Hierarchy Fundamentals

Six basic cache optimizations:

1. Larger block size
* Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty
2. Larger total cache capacity to reduce miss rate
» Increases hit time, increases power consumption
3. Higher associativity
« Reduces conflict misses
* Increases hit time, increases power consumption
4. Higher number of cache levels
» Reduces overall memory access time
5. Giving priority to read misses over writes
* Reduces miss penalty
6. Avoiding address translation in cache indexing
* Reduces hit time

c Carnegie Mellon University
Computer Science Department

Security Considerations

—

Shared memory hierarchy Cache timing & contention attacks
Prime+Probe, Flush+Reload, Flush+Flush

L1, L2, cross-core L3
Inclusive and non-inclusive
Directories

Prefetchers

. Replacement policy
Sets, Ways, Banks, Slices Userspace, SGX

Variable latencies across levels L

Main Memory (DRAM) - DRAM-based timing (DRAMA), Rowhammer

c Carnegie Mellon University
Computer Science Department

46

G

Virtual Memory

Carnegie Mellon University
Computer Science Department

47

Virtual Memory Abstraction

Virtual Address (VA)

[Application] { Operating System }

C Carnegie Mellon University
Computer Science Department

Physical Address (PA)

Hardware

48

Virtual Memory Abstraction

4 N

[Application] Operating System Hardware

- /

C Carnegie Mellon University
Computer Science Department

Virtual Memory Abstraction

Page Tables Main Memory

4)
[Application }//_) \\-
U

- /

c Carnegie Mellon University
Computer Science Department

Virtual Memory Abstraction

Page Tables Main Memory

4 N
[Application }<: ><i\)_
L

If Present bit is cleared - Page Fault!

C Carnegie Mellon University
Computer Science Department 51

Virtual Memory Abstraction

Page Tables

[

. . -’%
Application]—<

C Carnegie Mellon University
Computer Science Department

Main Memory

0P

t

@)
=
Q
Q
®

52

G

Virtual Memory Abstraction

Table 4-20. Format of a Page-Table Entry that Maps a 4-KByte Page

Bit
Position(s)

Contents

0(P)

Present; must be 1 to map a 4-KByte page

1 (R/W)

Read/write; if 0, writes may not be allowed to the 4-KByte page referenced by this entry (see Section 4.6)

2 (UrS)

User/supervisor; if 0, user-mode accesses are not allowed to the 4-KByte page referenced by this entry (see Section
4.6)

3 (PWT)

Page-level write-through; indirectly determines the memory type used to access the 4-KByte page referenced by
this entry (see Section 4.9.2)

Applicatii | 4ro

Page-level cache disable; indirectly determines the memory type used to access the 4-KByte page referenced by this
entry (see Section 4.9.2)

5(A) Accessed:; indicates whether software has accessed the 4-KByte page referenced by this entry (see Section 4.8)

6 (D) Dirty; indicates whether software has written to the 4-KByte page referenced by this entry (see Section 4.8)

7 (PAT) Indirectly determines the memory type used to access the 4-KByte page referenced by this entry (see Section 4.9.2)

8 (C) Global; if CR4.PGE = 1, determines whether the translation is global (see Section 4.10); ignored otherwise

11:9 Ignored

M-1)12 Physical address of the 4-KByte page referenced by this entry

51M Reserved (must be 0)

58:52 Ignored

62:59 Protection key; if CR4.PKE = 1 or CR4.PKS = 1, this may control the page's access rights (see Section 4.6.2);
otherwise, it is not used to control access rights.

63 (XD) If IA32_EFERINXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 4-KByte page controlled by

this entry; see Section 4.6); otherwise, reserved (must be 0)

Carnegie Mellon University
Computer Science Department

Main Memory

Storage

53

Virtual Memory Abstraction

[

Application]

c Carnegie Mellon University
Computer Science Department

Page Tables

54

Virtual Memory Translation

s

.

Application

~N

J

-

-

Core

~

J

Issue LD VA 1

c Carnegie Mellon University
Computer Science Department

L2
Cache

N
L1
Cache
J
N
TLB
J
TLB Miss!

L3
Cache

Page Tables

55

Virtual Memory Translation

s

.

Application

~N

J

-

-

Core

~

J

Issue LD VA 1

c Carnegie Mellon University
Computer Science Department

“ [
L1 L2 L3

Cache Cathe J t Cache
J
N\

TLB
J

TLB Miss - “Page Walk” = Fetch entry from page table

Page Tables

56

Virtual Memory Translation

s

.

Application

~N

J

-

-

Core

~

J

Issue LD VA 1

C Carnegie Mellon University
Computer Science Department

L1 (L3
CaI:he t Cache J t Cache
|

TIIB

Page Tables

57

Virtual Memory Translation
x86-64 Radix Page Tables

C Carnegie Mellon University
Computer Science Department

Virtual Memory Translation
x86-64 Radix Page Tables

Virtual Address

47 ... 39 38...30 29 ... 21 20...12 11 ... 0
Address A 9-bits 9-bits 9-bits 9-bits Page Offset

CR3

c Carnegie Mellon University
Computer Science Department

Virtual Memory Translation

s

Application

~N

J

-

-

Core

~

_Radix Page Tables

J

Issue LD VA 1

c Carnegie Mellon University
Computer Science Department

“ [
L1 L2 L3

Cache Cache J t Cache
J
)
TLB
J

TLB Miss - “Page Walk” = Fetch entry from radix page table

60

Virtual Memory Translation

s

Application

~N

J

-

-

Core

~

J

Issue LD VA 1

c Carnegie Mellon University
Computer Science Department

“ [
L1 L2 L3

Cache Cache J t Cache

TLB

J

TLB Miss - “Page Walk” = Fetch entry from radix page table

61

Virtual Memory Translation

s

Application

~N

J

-

-

Core

~

Radix Page Tables
—

J

Issue LD VA 1

c Carnegie Mellon University
Computer Science Department

“ [
L1 L2 L3

Cache Cache J t Cache
J
)
TLB
pud
J

TLB Miss - “Page Walk” = Fetch entry from radix page table

62

Virtual Memory Translation

s

Application

~N

J

-

-

Core

~

J

Issue LD VA 1

c Carnegie Mellon University
Computer Science Department

Radix Page Tables
Cprn] ()
Lo\ pud WO

: v pte
Cache Cache J t Cache ‘ ‘ ‘

“ [
L1 L2 L3

J
N
TLB
pmd
J

TLB Miss - “Page Walk” = Fetch entry from radix page table

63

Multilevel TLBs

Intel i7 TLB structures

Characteristic Instruction TLB Data DLB Second-level TLB
Entries 128 64 1536
Associativity 8-way 4-way 12-way
Replacement Pseudo-LRU Pseudo-LRU Pseudo-LRU
Access latency 1 cycle 1 cycle 8 cycles
Miss 9 cycles 9 cycles Hundreds of cycles to access
page table
e A
Application Radix Page Tables
\ ()

L2 TLB

- :
Cor L1 L2 L3
ore Cache Cache Cache
- J

c Carnegie Mellon University
Computer Science Department

Memory Management Unit Cache

()

Application

Radix Page Tables

Core L1 L2 L3 - . .
Cache Cache Cache PMD J \ pre
- J

[MMU ICache]
L1 TLB |
L2 TLB

c Carnegie Mellon University
Computer Science Department

Translations in Data Caches

Ve

~N

Application
> <
Core
- J

c Carnegie Mellon University
Computer Science Department

L Cache

‘{ L1 TLB

_pod _
L2

Cache

[MMU Cache]
1

o I

pmd

Cache

pte

L2 TLB

Radix Page Tables

pgd

PMD

“puc (S

pte

PTE

66

Even More Memory is Here!

(inter)Sunny Cove introduces 5-Level Radix Page Tables!!

s

Application

~N

J

Core

~

(L1

c Carnegie Mellon University
Computer Science Department

L Cache

L2
Cache
pud

Radix Page Tables

el ()
pgd q)
e pm pte

PMD PTE

MMU Cache

b

L2 TLB

Non-Volatile Memory
Technology

67

Virtual Memory

Protection via virtual memory
» Keeps processes in their own memory space

Role of architecture
* Provide user mode and supervisor mode
 Protect certain aspects of CPU state
» Provide mechanisms for switching between user and supervisor modes
* Provide mechanisms to limit memory accesses
* Provide TLB to translate addresses

c Carnegie Mellon University
Computer Science Department

From Virtual Memory to Virtual Machines

Supports isolation and security
Sharing hardware among many unrelated users
Enabled by raw speed of processors, making the overhead more acceptable

Allows different ISAs and OS to be presented to user programs

» “System Virtual Machines”
« SVM software is called “virtual machine monitor” or “hypervisor”

* Individual virtual machines run under the monitor are called “guest VMs”

c Carnegie Mellon University
Computer Science Department

VMM Requirements

Guest software should:
« Behave on as if running on native hardware
* Not be able to change allocation of real system resources

VMM should be able to “context switch” guests

Hardware must allow:

« System and use processor modes
* Privileged subset of instructions for allocating system resources

c Carnegie Mellon University
Computer Science Department

Impact of VMs on Virtual Memory

Each guest OS maintains its own set of page tables

VMM adds a level of memory between physical and virtual memory
called “real memory”

VMM maintains shadow page table that maps guest virtual addresses to
physical addresses
* Requires VMM to detect guest’s changes to its own page table
» Occurs naturally if accessing the page table pointer is a privileged operation

c Carnegie Mellon University
Computer Science Department

Impact of V|V|S on Virtual Memory

gCR3

gVA[47:39] ¥ éGPA’

gly

VA[38:30 /
gL3 gVA[]

oL, |EVA[29:21] ;

VA[20:12]] X]
ngg []

VA[11:0] | X nL nL nL nL; |sPA
gPAl2 >@) o Mg | bz | gnlp | 0Ly s
21 22 23 24 > To1LB
I
EPTP ----- > NTLB Caching Q PWC Caching

C Carnegie Mellon University
Computer Science Department

Virtualization Extensions

Objectives:
 Avoid flushing TLB
« Use nested page tables instead of shadow page tables
 Allow devices to use DMA to move data
 Allow guest OS’s to handle device interrupts

 For security: allow programs to manage encrypted portions of code
and data

c Carnegie Mellon University
Computer Science Department

Security Considerations

Present bit = Controlled Channel Attacks

Write & Execute permissions - Buffer overflow/Code Injection

Monitor MMU/Paging/MM - Several Side-channels (Leaky Cauldron)

—

Manipulate:

» Physical page number L
. Data pages — Integrity violations

 TLB-shootdowns

—

TLB - TLBleed, side-channel amplifier

c Carnegie Mellon University
Computer Science Department

74

Next Up = Side-channels in the Cloud!

Check paper schedule
* https://www.cs.cmu.edu/~15849/schedule.html

Fill preference form
e https://forms.gle/JZ93UQvwteplL 9KKmY7

Schedule will be finalized by Monday!

c Carnegie Mellon University
Computer Science Department

75

https://www.cs.cmu.edu/~15849/schedule.html
https://forms.gle/JZ93UQvwtepL9KKm7

