15-853: Algorithms in the Real World

Error Correcting Codes

Welc**e t* t*e fi*st clas* o* t*is course.

Y*u a** in f*r a f*n rid* th*s se*est*r!

What do these sentences say?

Why did this work?

Redundancy!

Codes are clever ways of judiciously adding redundancy to enable recovery under "noise".

General Model

"Noise" introduced by the channel:

- changed fields in the codeword vector (e.g. a flipped bit).
 - Called errors
- missing fields in the codeword vector (e.g. a lost byte).
 - Called <u>erasures</u>

How the decoder deals with errors and/or erasures?

- detection (only needed for errors)
- correction

Applications

- Storage: CDs, DVDs, hard disks, Flash,...
- Wireless: Cell phones, wireless links,...
- Satellite and Space: TV, Mars rover, ...
- <u>Digital Television</u>: DVD, MPEG2 layover,

Reed-Solomon codes were traditionally the most used in practice.

LDPC codes used for 4G (and 5G) communication. Algorithms for decoding are quite sophisticated.

symbols (e.g., bits)

Other kind: convolutional codes (we won't cover it)...

- Each message and codeword is of fixed size
- Notation:

$$\mathbf{n} = |\mathbf{c}|$$
 length of the codeword

C = "code" = set of codewords

Simple Examples

3-Repetition code: k=1, n=3

<box>

- How many erasures can be recovered?
- How many errors can be detected?
- Up to how many errors can be corrected?

Errors are much harder to deal with than erasures.

Why?

Need to find out **where** the errors are!

Simple Examples

Single parity check code: k=2, n=3

<box>

Consider codewords as vertices on a hypercube.

codeword

n = 3 = dimensionality $2^n = 8 = number of nodes$

Simple Examples

Single parity check code: k=2, n=3

- How many erasures can be recovered?
- How many errors can be detected?
- Up to how many errors can be corrected?

Cannot even correct single error. Why?

Codewords are too "close by"

Let's formalize this notion of distance...

In general, symbols come from an "alphabet"

Notation:

 Σ = alphabet

 $\mathbf{q} = |\Sigma| = \text{alphabet size}$

Question:

What alphabet did we use so far?

 $\mathbf{C} \subseteq \Sigma^{\mathsf{n}}$ (codewords)

Notion of distance between codewords:

 $\Delta(x,y)$ = number of positions s.t. $x_i \neq y_i$

minimum distance of a code

 $\mathbf{d} = \min\{\Delta(x,y) : x,y \in \mathbb{C}, x \neq y\}$

Code described as: (n, k, d)_q

Binary Codes

Today we will mostly be considering $\Sigma = \{0,1\}$ and will sometimes use (n,k,d) as shorthand for $(n,k,d)_2$

In binary $\Delta(x,y) = |\{i : x_i \neq y_i\}|$ is often called the **Hamming distance**

Example of (6,3,3)₂ systematic code

message	codeword
000	000000
001	001 011
010	010 101
011	011 110
100	100 110
101	101 101
110	110 011
111	111 000

<u>Definition</u>: A **Systematic code** is one in which the message appears in the codeword

Error Correcting One Bit Messages

How many bits do we need to correct a one bit error on a one bit message?

In general need $d \ge 3$ to correct one error. Why?

Role of Minimum Distance

Theorem:

A code C with minimum distance "d" can:

- 1. detect any (d-1) errors
- 2. recover any (d-1) erasures
- 3. correct any <write> errors

Proof: <Will be part of homework>

Intuition here.. minimum-distance-decoding..

<u>Desiderata</u>

We look for codes with the following properties:

- Good rate: k/n should be high (low overhead)
- 2. Good distance: d should be large (good error correction)
- 3. Small block size k
- 4. Fast encoding and decoding
- 5. Others: want to handle bursty/random errors, local decodability, ...

We will begin next class with Hamming Codes