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15-853:Algorithms in the Real World

• Expander Graphs

• LDPC (Expander) codes
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Hamming codes are binary (2r-1–1, 2r-1-r, 3) codes.

Basically (n, n – log n, 3)

Hadamard codes are binary (2r-1, r, 2r-1) codes.

Basically (n, log n, n/2)

Reed Solomon codes are (n, k, n-k+1)n
Optimal but large alphabet

Concatenated codes can get best of both worlds

Next: 

Another set of codes, optimized for fast (de)coding.

Based on graphical constructions.

Examples of Codes
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(a, b) Expander Graphs (non-bipartite)

Properties

– Expansion: every small subset (k ≤ an) has many 

(≥ bk) neighbors 

– Low degree – not technically part of the definition, 

but typically assumed

k ≤ an ≥ bk

G
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(a, b) Expander Graphs (bipartite)

Properties

– Expansion: every small subset (k ≤ an) on left has 
many (≥ bk) neighbors on right

– Low degree – not technically part of the definition, 
but typically assumed

k nodes

(k ≤ an) at least bk nodes
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Expander Graphs: Applications

Pseudo-randomness:  implement randomized algorithms with 

few random bits

Cryptography: strong one-way functions from weak ones.

Hashing: efficient n-wise independent hash functions

Random walks: quickly spreading probability as you walk 

through a graph

Error Correcting Codes: several constructions

Communication networks: fault tolerance, gossip-based 

protocols, peer-to-peer networks
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d-regular graphs

An undirected graph is d-regular if every vertex has d 

neighbors.

A bipartite graph is d-left-regular if every vertex on the left 

has d neighbors on the right.

We consider only d-left-regular constructions. 

(And call it d-regular with abuse of notation.)
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Expander Graphs: Constructions

Important parameters:size (n), degree (d), expansion (b)

Randomized constructions

– A random d-regular graph is an expander with a high probability

– Time consuming and cannot be stored compactly

Explicit constructions

– Cayley graphs, Ramanujan graphs etc

– Typical technique – start with a small expander, apply operations 

to increase its size
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Theorem: For every constant 0 < c < 1, can construct bipartite 

graphs with 

n nodes on left, 

cn on right,

d-regular (left), 

that are  (𝛼, 3d/4) expanders, for constants 𝛼 and d that are 

functions of c alone.

“Any set containing at most alpha fraction of the left has (3d/4) 

times as many neighbors on the right”

Expander Graphs: Constructions



LDPC CODES

From expanders to codes
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Low Density Parity Check (LDPC) Codes
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Low Density Parity Check (LDPC) Codes
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Each row is a vertex on the right and 
each column is a vertex on the left.    

A codeword on the left is valid if each right “parity check” 
vertex has parity 0.

The graph has O(n) edges (low density)
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Applications in the real world

• 5G cellular technology (3GPP 5G NR, first release 

Dec. 2017)

• Solid State Drives (NAND Flash memory)

• NASA

– Proposed for all their space data systems

• 10Gbase-T (IEEE 802.3an, 2006)

– Standard for 10 Gbits/sec over copper wire

• WiMax (IEEE 802.16e, 2006)

– Standard for medium-distance wireless.   

Approx 10Mbits/sec over 10 Kilometers.
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History

Invented by Gallager in 1963 (his PhD thesis)

Generalized by Tanner in 1981 (instead of using 

parity and binary codes, use other codes for 

“check” nodes).

Mostly forgotten by community at large until the 

mid 90s when revisted by Spielman, MacKay and others.



Consider a d-regular LPDC with (a,3d/4) expansion.

Theorem: Distance of code is greater than an.

Proof. (by contradiction)

Linear code; distance= min weight of non-0 codeword.

Assume a codeword with weight w ≤ an.

Let W be the set of 1 bits in codeword

#edges = wd

#neighbors on right 3/4*wd

Max #neighbors with >1 edge from W? 

#unique neighbors = wd/2

So at least one neighbor sees a single

1-bit. Parity check would fail!
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Distance of LDPC codes

d = degree

W

neighbors
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Correcting Errors in LPDC codes

We say a vertex is unsatisfied if parity  0

Algorithm:

While there are unsatisfied check bits

1. Find a bit on the left for which more than 
d/2 neighbors are unsatisfied

2. Flip that bit

Q: Converges? 

Since every step reduces unsatisfied parity by at least 1.
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Correcting Errors in LPDC codes

We say a vertex is unsatisfied if parity  0

Algorithm:

While there are unsatisfied check bits

1. Find a bit on the left for which more than 
d/2 neighbors are unsatisfied

2. Flip that bit

Q: Running time?

Runs in linear time (for constant maximum degree on the 
right).

Why must there be a node with more than d/2 unsatisfied 
neighbors (if we’re not at a codeword)?
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Correcting Errors in LPDC codes

Theorem: Always exists a node > d/2 unsatisfied neighbors 
if we’re not at a codeword.

Proof: (by contradiction)

Suppose not. (Let d be odd.) Let S be the corrupted bits.

Each such bit has majority of satisfied neighbors

(sat. neighbors see at least two corrupted bits on left)

(unsat. neighbors may see only one corrupted bit on left)

Each corrupt bit gives $1 to each unsat nbr, $½ to sat nbr.

Total money given < 3d/4 |S|.

Each node in N(S) collects $1 at least. 

Total money collected at least |N(S)|.

So |N(S)| < 3d/4 |S|. Contradicts expansion.
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Coverges to closest codeword

Theorem: Assume (a,3d/4) expansion. If # of error bits 

is less than an/4 then simple decoding algorithm 

converges to closest codeword.

Proof: let:

ui = # of unsatisfied check bits on step 

i

ri = # corrupt code bits on step i

si = # satisfied check bits with corrupt 

neighbors on step i

Q: What do we have to show about ri?

We know that ui decrements on each 

step, but what about ri?
Will be continued in the next lecture


