15-853:Algorithms in the Real World

Announcements:
« HW 3 will be released today
* Due on Wednesday Nov 20

Reminder for last week’'s announcements:
* Project reports due on Dec 3 2:30pm

 Format announced In last lecture. We will share a
template this week.

 Project presentations are in class on Dec 3 and 5

15-853 Page 1

Recall: Bloom filter

Representing a dictionary with far fewer bits when only need
membership query.

Possible if we:
Allow to make mistakes on membership gueries
No deletions

Data structure: “Bloom filter” [Bloom 1970]

* Only false positives; no false negatives
* may report that a key Is present when it is not

15-853 Page 2

Recall: Bloom filter

Space efficient data structure for approximate membership
gueries.

* Only false positives; no false negatives

 Keep an array T of M bits
* Initially all entries are zero.
* khash functions: hy, h,, .., h,: U -> [M]
« Assume completely random hash functions for analysis

Adding a key:
« Toadd akey x € S € U, set bits T[h,(X)], T[h,(X)], ...,
Th(X)]to 1

15-853 Page 3

Bloom filter

Membership query:

* For a query for key x € U: check if all the entries T[hi(x)] are
settol

* |f so, answer Yes else answer No.

Q: Why no false negatives?
If an item X Is present, then corresponding bits will be set.

Q: Why false positives?
Other elements could have set the same bits.

Let’'s analyze the probability of false positives.

15-853 Page 4

Bloom filter

A false positive for a query occurs when all k bits In T
corresponding to a query is set.

Let p = probabillity that a bit in T is not set

w - kA ™M

kN
p = (1,,‘— -Q’i T o e
M - 04|

Prob. of false positive = all k bits set = (1 — p)k

.--\CM/M) e
- <

15-853 Page 5

Bloom filter

Q: What value of k minimizes prob. of false positives?

— IQN/NQ)
Differentiate and set to O' Take n L W —<

L (b 0<F)

T

k < N
X/"\(\"CM - /——gjkﬂ/':d M
= O
k = M/N*In(2) is a minima o (1=4) + 2 °
Let £ denote the prob. of false positives. R
Then <write>.. e = (L %L«\L 2N = -
<L % n2 > K’ﬂ (\/(7*)

2 M = I-M«Nw&‘/e)

15-853

Bloom filter

Thus

|- &\ N ksq (V)

33

M

<Write>

|- Ly bog (‘/e) bits per element

E.g..: For 1% false positive probability, M= 10N and k= 7.

Significantly smaller space than N*log(|U|) required to store the
elements.

15-853 Page 7

15-853:Algorithms in the Real World

Hashing:
Concentration bounds
Load balancing: balls and bins
Hash functions (cont.)

mmmm) Data streaming model

15-853 Page 8

Data streaming model

« Different computational model: elements going past in a
“stream”

« Limited storage space: Insufficient to store all the elements

Assumptions:
« Denote the elements of the stream as a,, a,,...
 Each element is from an alphabet U
« Each element takes b bits to represent
 E.g. 32-bit IP addresses

« The question: what functions of input stream can we compute
with what time and space overhead.

15-853 Page 9

Data streaming model

* Functions of interest:
« Sum of all elements seen (easy)
« Max of the elements seen (easy)
« Median (tricky to do with small space)

 Heavy-hitters, i.e., element(s) that have appeared
most often)

« Number of distinct elements seen

« Example application:
« Switch or a router where packets are passing through.

15-853 Page 10

Sampling vs. Hashing

Sampling is a natural option (since it helps reduce the amount
of data)

But can lead to incorrect answers if not done correctly.

Example from [1]:
Suppose we want to figure out

#“unigues” = elements that occur exactly once.
Consider this sampling approach:

« Sample 10% of the stream by picking each element with
probability 0.1.

e Count unigues and scale up the answer by 10

1. “Mining of Massive Datasets” book from Stanford: http://infolab.stanford.edu/~ullman/mmds/book.pdf

15-853 Page 11

Sampling vs. Hashing

This will lead to incorrect answer:

Suppose stream length is n and n/2 are uniques and n/4 appear
twice.

Q: Correct answer is? n/2

In the sampled stream,

Expected length = n/10

#uniques = 0.1*n/2 + n/4 (2*0.1 — 0.1"2)
(approx.) n/10

So our estimate of #unigues = n (incorrect)

This is in expectation, but will hold with high probability as n
gets large (by Chernoff bound)

15-853 Page 12

Sampling vs. Hashing

Q: What was the problem here?

Sampling decision was being made independently on each
element of the stream.

Q: What we should have done?
If an element is sampled, all its copies are also sampled

Q: How can we achieve this via hashing?

Hash the elements to the range [10] and take elements that
map to one value, say O.

If we have at least 1-wise independence then we get 1/10
fraction of the stream along with duplicates.

15-853 Page 13

Streams as vectors

Useful abstraction: viewing streams as vectors (in high
dimensional space)

Stream at time t as a vector xt e zZI\Yl
Xt = (X', XY, X))
Element | =
number of times it element of U has been seen until time t

If next element is J, then x;is incremented by 1

Leads to an extension of the model where each element of the
stream is either

(1) A new element or (2) old element departing (i.e. deletions).

15-853 Page 14

Streams as vectors

That Is, updates to the stream looks like (add e) or (del e).

Assumption: #deletes for any element <= #additions.
=> running count for each element is non-zero

This vector notation makes it easy to to formulate some of the
data stream problems:

« Heavy hitters = estimate “large” entries in the vector x

* Total number of elements seen = Sum of the elements of x
<write> (easy one)

« #distinct elements = #non-zero entries in X

15-853 Page 15

Heavy hitters

Many ways to formalize the heavy hitters problem.
e-heavy-hitters: Indices | such that x;> € || X Il

Let us consider a simpler problem first.
Count-Query:

At any time t, given an index I, output the value of xt with an
error of at most €|[x!|l,. l.e., output an estimate
yviex;xe| Xy

Q: Given an algorithm for Count-Query, how to get heavy
hitters?

To first order: we can look fori's s.t. y; >0
(at least a good first step)

15-853 Page 16

Heavy hitters

Q: Would sampling work for Count-query?

No. Example: N copies of A arrives and then they all depart.
Then sqrt(N) copies of B arrives.

At the end, heavy hitter = only B

But if we sample the elements with any prob. less that sgrt(N),
we don’t expect to see any B.

Next:
Hashing-based solution: Count-Min Sketch

15-853 Page 17

Hashing-based solution: Count-Min Sketch

On board.

15-853 Page 18

