
15-853 Page 1

15-853:Algorithms in the Real World

Announcements:

• HW 3 will be released today

• Due on Wednesday Nov 20

Reminder for last week’s announcements:

• Project reports due on Dec 3 2:30pm

• Format announced in last lecture. We will share a

template this week.

• Project presentations are in class on Dec 3 and 5

Recall: Bloom filter

Representing a dictionary with far fewer bits when only need

membership query.

Possible if we:

Allow to make mistakes on membership queries

No deletions

Data structure: “Bloom filter” [Bloom 1970]

• Only false positives; no false negatives

• may report that a key is present when it is not

15-853 Page 2

Recall: Bloom filter

Space efficient data structure for approximate membership

queries.

• Only false positives; no false negatives

• Keep an array T of M bits

• initially all entries are zero.

• k hash functions: h1, h2, .., hk: U -> [M]

• Assume completely random hash functions for analysis

Adding a key:

• To add a key x ∈ S ⊆ U, set bits T[h1(x)], T[h2(x)], ...,

T[hk(x)] to 1

15-853 Page 3

Bloom filter

Membership query:

• For a query for key x ∈ U: check if all the entries T[hi(x)] are

set to 1

• If so, answer Yes else answer No.

Q: Why no false negatives?

If an item x is present, then corresponding bits will be set.

Q: Why false positives?

Other elements could have set the same bits.

Let’s analyze the probability of false positives.

15-853 Page 4

Bloom filter

A false positive for a query occurs when all k bits in T

corresponding to a query is set.

Let p = probability that a bit in T is not set

p =

Prob. of false positive = all k bits set = (1 – p)k

15-853 Page 5

Bloom filter

Q: What value of k minimizes prob. of false positives?

Differentiate and set to 0

k = M/N*ln(2) is a minima

Let 𝞮 denote the prob. of false positives.

Then <write>..

15-853 Page 6

Bloom filter

Thus

<write>

bits per element

E.g..: For 1% false positive probability, M ≈ 10N and k = 7.

Significantly smaller space than N*log(|U|) required to store the

elements.

15-853 Page 7

15-853 Page 8

15-853:Algorithms in the Real World

Hashing:

Concentration bounds

Load balancing: balls and bins

Hash functions (cont.)

Data streaming model

Data streaming model

• Different computational model: elements going past in a

“stream”

• Limited storage space: Insufficient to store all the elements

Assumptions:

• Denote the elements of the stream as a1, a2,...

• Each element is from an alphabet U

• Each element takes b bits to represent

• E.g. 32-bit IP addresses

• The question: what functions of input stream can we compute

with what time and space overhead.

15-853 Page 9

Data streaming model

• Functions of interest:

• Sum of all elements seen (easy)

• Max of the elements seen (easy)

• Median (tricky to do with small space)

• Heavy-hitters, i.e., element(s) that have appeared

most often)

• Number of distinct elements seen

• Example application:

• Switch or a router where packets are passing through.

15-853 Page 10

Sampling vs. Hashing

Sampling is a natural option (since it helps reduce the amount

of data)

But can lead to incorrect answers if not done correctly.

Example from [1]:

Suppose we want to figure out

#“uniques” = elements that occur exactly once.

Consider this sampling approach:

• Sample 10% of the stream by picking each element with

probability 0.1.

• Count uniques and scale up the answer by 10

15-853 Page 11

1. “Mining of Massive Datasets” book from Stanford: http://infolab.stanford.edu/~ullman/mmds/book.pdf

Sampling vs. Hashing

This will lead to incorrect answer:

Suppose stream length is n and n/2 are uniques and n/4 appear

twice.

Q: Correct answer is? n/2

In the sampled stream,

Expected length = n/10

#uniques = 0.1*n/2 + n/4 (2*0.1 – 0.1^2)

(approx.) n/10

So our estimate of #uniques = n (incorrect)

This is in expectation, but will hold with high probability as n

gets large (by Chernoff bound)
15-853 Page 12

Sampling vs. Hashing

Q: What was the problem here?

Sampling decision was being made independently on each

element of the stream.

Q: What we should have done?

If an element is sampled, all its copies are also sampled

Q: How can we achieve this via hashing?

Hash the elements to the range [10] and take elements that

map to one value, say 0.

If we have at least 1-wise independence then we get 1/10

fraction of the stream along with duplicates.

15-853 Page 13

Streams as vectors

Useful abstraction: viewing streams as vectors (in high

dimensional space)

Stream at time t as a vector xt ∈ Z|U|

xt = (xt
1,x

t
2,...,x

t
|U|)

Element i =

number of times ith element of U has been seen until time t

If next element is j, then xj is incremented by 1

Leads to an extension of the model where each element of the

stream is either

(1) A new element or (2) old element departing (i.e. deletions).

15-853 Page 14

Streams as vectors

That is, updates to the stream looks like (add e) or (del e).

Assumption: #deletes for any element <= #additions.

=> running count for each element is non-zero

This vector notation makes it easy to to formulate some of the

data stream problems:

• Heavy hitters = estimate “large” entries in the vector x

• Total number of elements seen = Sum of the elements of x

<write> (easy one)

• #distinct elements = #non-zero entries in x

15-853 Page 15

Heavy hitters

Many ways to formalize the heavy hitters problem.

ε-heavy-hitters: Indices i such that xi > ε ∥ x ∥1

Let us consider a simpler problem first.

Count-Query:

At any time t, given an index i, output the value of xt
i with an

error of at most ε∥xt∥1. I.e., output an estimate

yi ∈ xi ± ε ∥ x ∥1

Q: Given an algorithm for Count-Query, how to get heavy

hitters?

To first order: we can look for i’s s.t. yi >0

(at least a good first step)

15-853 Page 16

Heavy hitters

Q: Would sampling work for Count-query?

No. Example: N copies of A arrives and then they all depart.

Then sqrt(N) copies of B arrives.

At the end, heavy hitter = only B

But if we sample the elements with any prob. less that sqrt(N),

we don’t expect to see any B.

Next:

Hashing-based solution: Count-Min Sketch

15-853 Page 17

Hashing-based solution: Count-Min Sketch

On board.

15-853 Page 18

