
Homework 2

16-311: Introduction to Robotics

Contents

Learning Objectives 1

1 Filters 2
1.1 What Are Filters and How Do They Operate? 2
1.2 Why Are Filters Used? . 3
1.3 Exercises in Filter Operation . 3

2 Determining Distance Geometrically 4

3 Stereo Vision 4

4 Image Manipulation 6

What To Submit 9

Learning Objectives

In this homework, you will apply concepts from Lab 2 and expand your understanding
by exploring filters and neural networks.

The primary objectives of this assignment are as follows:

1. Develop practical skills in creating and utilizing filters for image processing.

2. Practice geometric methods, such as using similar triangles and stereo vision,
to calculate distances.

3. Implement a neural network to classify images effectively.

Here is the point distribution for this assignment:

1

• Section 1 - 8 points

• Section 2 - 16 points

• Section 3 - 16 points

• Section 4 - 60 points

1 Filters

In this section, we will explore filters, also referred to as masks or kernels. Filters
are fundamental tools in image processing and computer vision, used to manipulate
pixel values within an image. They operate by systematically applying mathematical
operations to a small, localized region of the image, often referred to as the filter’s
receptive field. This localized region is typically a small matrix, such as a 3×3 or
5×5 grid, that slides over the image to perform computations.

1.1 What Are Filters and How Do They Operate?

Filters are matrices of numbers (weights) that are applied to a corresponding region
of an image. The operation involves an element-wise multiplication between the filter
and the pixels it overlaps, followed by summing the resulting values. This process,
often referred to as convolution (or cross-correlation, depending on implementation),
is repeated as the filter slides across the image. The resulting values form a new
matrix, or output image, that reflects the operation performed by the filter.

Filters can highlight specific features, reduce noise, enhance edges, or extract
patterns from images. For instance:

• Smoothing filters average pixel values to reduce image noise or blur details.

2

• Edge detection filters highlight areas of high contrast, identifying boundaries
within the image.

• Sharpening filters enhance local details by amplifying differences between
neighboring pixels.

1.2 Why Are Filters Used?

Filters serve numerous purposes in image processing, including:

• Noise Reduction: Smoothing filters, like Gaussian or average filters, reduce
random variations in pixel intensity caused by noise.

• Feature Extraction: Edge-detection filters such as Sobel, Prewitt, or Lapla-
cian kernels emphasize edges, which are vital for object recognition and anal-
ysis.

• Data Interpolation: When dealing with missing pixel data, filters can esti-
mate values based on surrounding pixels.

• Image Transformation: Filters can transform an image’s representation,
such as enhancing specific patterns or detecting textures.

1.3 Exercises in Filter Operation

The following exercises demonstrate the practical applications of filters:

1. Design a 3×3 filter that computes the average of the nine pixels it overlaps
with.

2. Create a 3×3 filter that computes the average using the center pixel and its
four neighbors, based on 4-point connectivity.

3. Develop a 3×3 filter that calculates a weighted average of the nine overlapping
pixels, assigning more weight to the center pixel. Ensure all weights sum to 1.

4. Construct a 3×3 filter capable of detecting vertical lines in an image.

3

2 Determining Distance Geometrically

Imagine you are working with a robot equipped with a Raspberry Pi Camera Module
3 that requires characterization. You aim to determine the distance between the
lens and the image sensor (commonly referred to as the focal length) to use this
information for future experiments involving distance estimation.

To approach this, you conduct an experiment:

• You position a one-inch cube exactly 12 inches (30.48 cm) away from the cam-
era, ensuring the cube is centered in the camera’s field of view.

• After capturing an image, you threshold and segment the image, counting the
number of pixels corresponding to the cube’s width.

• Repeating this process 10 times, you calculate an average width of 120 pixels
for the one-inch cube.

• The camera’s sensor resolution is known to be 4608 × 2592 pixels (horizontal
and vertical respectively), with a sensor size of 6.45mm horizontally.

Using this information, what is the focal length of the camera in millimeters?
Please include at least one symbolic equation that you used with your answer.

3 Stereo Vision

This section aims to help you practice implementing the geometry required to de-
termine depth and position from stereo camera images. Consider the robot depicted
in the diagram below, equipped with two forward-facing cameras. The cameras are
spaced 10 cm apart, and they are modeled based on the Raspberry Pi Camera Module
3 specifications.

4

Figure 1: A top-down view of the robot and the object. Note: Diagram is not to
scale.

The camera pair captures two frames, as shown below. In the image from the left
camera, the object appears 30 pixels to the left of the image center. In the image
from the right camera, the object is 50 pixels to the left of the image center.

The cameras have the following specifications: Focal length: 4.74 mm
Sensor size: 7.4 mm diagonal, 6.45 horizontal
Resolution: 4608 x 2592 pixels (horizontal and veritcal, respectively)
Pixel size: 1.4 µm x 1.4 µm

5

Figure 2: Images captured by the left and right cameras.

In your writeup, calculate the distance from the center of the front of the lenses to
the center of the object in meters. Note that this requires considering the geometry
in more than one dimension. Provide a clear explanation of your process. At a
minimum, include two symbolic equations illustrating the geometric principles used
to determine the distance.

4 Image Manipulation

The goal of this section of the assignment is to find a simplified Waldo figure in a
series of images. You will create a Python function called waldo that takes the name
of an image file as a parameter. This function should read a .png file (saved in the
same directory as your program) and output a file called output.txt containing the
x (horizontal) and y (vertical) coordinates of the center of each Waldo found in the
image.

6

Figure 3: Large Waldo for illustrative purposes.

Figure 4: Sample environment for finding Waldos.

7

Function Specifications

• Input: The function should take a single parameter - the filename of the search
image (e.g., ’waldoScene1.png’).

• Output: The function should create a file named output.txt in the same
directory.

• Coordinate System: The origin (1, 1) is at the top-left corner of the image.
X increases to the right, and Y increases downward.

• Output Format: Each line in the output file should contain two space-
separated integers representing the x and y coordinates of a found Waldo.
Do not include headers, extra text, or punctuation in the .txt file.

You can download the regular sized Waldo image from here: http://www.cs.

cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldo.

png. This image will be in the same directory as your code for grading. Figure 4
shows a sample environment that you will be tasked to find waldo in.

Additionally, you can download the sample environment from here: http://www.
cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/

waldoScene1.png and a text file with the positions of Waldo is here: http://www.
cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/

waldoSearch1output.txt.

Grading Criteria

You will be graded based on an image that contains:

• 5 exact copies of Waldo

• 4 blurred copies of Waldo

• 7 copies of Waldo with noise

• 5 rotated copies of Waldo

• 1 double-size copy of Waldo

• 2 double and blurred copies of Waldo

• 7 not Waldos (like a smiley face)

8

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldo.png
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldo.png
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldo.png
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoScene1.png
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoScene1.png
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoScene1.png
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoSearch1output.txt
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoSearch1output.txt
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoSearch1output.txt

Points will be awarded as follows:

• 40 points for finding between 1 and 3 Waldos

• 45 points for finding 4 Waldos

• 50 points for finding 5 Waldos

• 60 points for finding all Waldos from three different varieties

A position is considered accurate if it is within 2 pixels of the center of a small
Waldo or within 4 pixels of the center of a double-sized Waldo.

You are not permitted to use library functions that trivialize the problem. This in-
cludes functions like cv2 resize(), cv2 rotate(), skimage feature match template(),
etc. You are allowed to use basic image processing functions like np.array(),
Image.open(), cv2 cvtColor() (for color space conversions), and basic NumPy
operations. Your code should work with an input image of any size.

You can start from this Python code: https://www.cs.cmu.edu/afs/cs.cmu.

edu/academic/class/16311/www/current/homework/hw1/waldo.pyYou may change
this code as much as you want or start from scratch with you own function. What-
ever changes you make please ensure you are reading an image from the same folder
as the function and writing to ‘output.txt’ your final (x, y) coordinate pairs.

Additional example: http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/
16311/www/current/homework/hw1/waldoScene2.png and a text file with the posi-
tions of Waldo is here: http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/
16311/www/current/homework/hw1/waldoSearch2output.txt.

What To Submit

Submissions are due on Gradescope by the date specified in the Syllabus.
Please submit the following items:

1. PDF Document: Include written answers for sections 1, 2 and 3. Name the
file hw2.pdf and upload it to Gradescope.

2. Code Submission: Submit a folder containing all code files along with a
README file that includes clear instructions on how to run the code on Grade-
scope.

9

https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldo.py
https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldo.py
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoScene2.png
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoScene2.png
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoSearch2output.txt
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/homework/hw1/waldoSearch2output.txt

	Learning Objectives
	Filters
	What Are Filters and How Do They Operate?
	Why Are Filters Used?
	Exercises in Filter Operation

	Determining Distance Geometrically
	Stereo Vision
	Image Manipulation
	What To Submit

