ME 24-354: General Robotics 2 Exam

Date Handed Out: December 1, 1998
Time Allotted: 1 hour and 15 minutes

- Please show all work.
- You can use one crib sheet.
- You must attempt all problems.
- GOOD LUCK!!!

P1. [Sensors,10pts] A seismometer having a natural frequency of $4 \mathrm{rad} / \mathrm{sec}$ and $\zeta=0.2$ is attached to a structure that performs a harmonic motion. If the difference between the maximum and minimum recorded values is 8 mm , find the amplitude of motion of the vibrating structure when its frequency is $40 \mathrm{rad} / \mathrm{s}$.

P2. [Distance, 10pts] You are a NY taxi driver in Manhattan and you pick up Matt Mason at the Ritz Plaza 48th Street and 8th Ave. You take him to Time Square at 42 nd and 7 th Ave. because he claims he wants to see a Disney show. You charge him for 7 units of travel, but he wants to pay you for $6.08=\sqrt{1^{2}+6^{2}}$. Why are you not cheating him?

P3. [Motion Planning, 20pts] Draw the generalized Voronoi diagram of the configuration space of the given environment

P4. [Inverse Kinematics, 20pts] A mobile robot has a two link manipulator mounted on top of it. The mobile base can rotate around its vertical axis. Given the position $\left(X_{e}, Y_{e}, Z_{e}\right)$ and orientation $\left(\Omega_{e}\right)$ of the tip of the manipulator, find the position (x, y) and orientation (α) of the mobile base, and the joint angles of the two-link manipulator.

P5. [Edge Detection, 20pts]
Consider the following operations

- Convolve an image with the

$$
\left[\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 1 & 0 \\
-1 & 1 & 0
\end{array}\right]
$$

- Take the absolute value of the result.
- Rescale the absolute value image so the lowest pixel is 0 and the highest is 255 .
- Threshold the resulting image (with an appropriate threshold) where "low" valued pixels become black and "high" valued pixels become white.
- Result is a binary image.
(a) If you chose the appropriate threshold, then what is the meaning of the white pixels?
(b) How do you determine this threshold?

P6. [Convolution Masks, 20pts] The Laplacian operator can be used to detect edges in an image.
$\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$
Show that the following mask can be used to approximate the Laplacian operator.

$$
\nabla^{2} \approx\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Hint: Note that the second derivatives can be written as $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)$
The approximation of the first derivative centered at $[i, j]$ can be written as,

$$
\frac{\partial f}{\partial x}=f[i, j+1]-f[i, j]
$$

- I hereby promise that the work on this exam is independent work and I acted in good faith in accordance to the University's no-cheating policies.
- I also understand that attendance on the last day of class is mandatory

Name

H. Choset
$2 \operatorname{Exam}$ (Page 3 of 4)
Fall, 1998

H. Choset

2 Exam (Page 4 of 4)
Fall, 1998

