ME 24-354: General Robotics 1 Exam

Date Handed Out: November 23, 1999
Time Allotted: 1 hour and 15 minutes

- Please show all work.
- You can use one crib sheet.
- You must attempt all five problems.
- GOOD LUCK!!!

P1. [Transformations, 1Opts] Let

$$
H=\left[\begin{array}{cccc}
n_{x} & o_{x} & a_{x} & p_{x} \\
n_{y} & o_{y} & a_{y} & p_{y} \\
n_{z} & o_{z} & a_{z} & p_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

be a homogenous transformation. Demonstrate that H is either a translation followed by a rotation or a rotation followed by a translation.

P2. $[\boldsymbol{D}-\boldsymbol{H}$ Notation, 1Opts] Consider the following three degree-of-freedom manipulator with one revolute joint, followed by a prismatic (linear translation) joint, and then a revolute joint, which rotates the final link.
(a) Baring joint limits, can this robot arbitrarily position and orient an object in the plane?
(b) Write out the Dennavit-Hartenburg parameters and variables for this robot. Circle the variables.

P3. [Inverse Kinematics, 40pts]
The two-link manipulator shown above has three actuators which are used to specify θ_{1}, θ_{2} and $S . l_{1}$ is the fixed length of the first link. The second link has a variable link length S.
(a) Write out the forward kinematics of the above manipulator, i.e., given $l_{1}, \theta_{1}, \theta_{2}$ and S, calculate x, y and θ.
(b) Write out the inverse kinematics of the manipulator, i.e., given x, y and θ, as well as l_{1}, calculate θ_{1}, θ_{2} and S.

- If you prefer to use an algebraic method to calculate S, then you only need to specify A, B and C in the solution of an quadratic equation

$$
S=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 B}
$$

Hint:

Figure 1. D-H Notation Question
$-(\cos \theta)^{2}+(\sin \theta)^{2}=1$

- We found it easier to find S first.
- If you chose to solve for S with a geometric method, then feel free to define dummy variables, but you have to clearly label them on a clear diagram and define them. (Note, you cannot simply introduce a "convenient" variable and go from there.)

P4. [Motion Planning, 30pts] Draw the generalized Voronoi diagram of the configuration space of the given environment and robot in Figure 3. Draw diagram on page.

P5. [Misc., 10 pts] Professor Mason spoke of non-prehensile manipulation in class. Please describe two examples of non-prehensile manipulation.
H. Choset

1 Exam (Page 3 of 4)
Fall, 1999

Figure 2. Inverse Kinematics.

Figure 3. Voronoi Diagram: Draw on this page

