16831 Statistical Techniques, Fall 2014: Problem Set 4

Name:

Due: Tuesday, December 9, 11:59 pm EST (Email)

1 RKHS

Figure 1: Left: Tractor with ladar used to detect and upper bound the terrain supporting surface. (image from
Wellington and Stentz, 04). Right: A 3D representation of resulting terrain using a kernel algorithm.

Let’s explore using a kernel function (like that above) for modeling terrain supporting surface as an alternative
to the use of a factor graph model for ground plane estimation. We’ll model terrain height as a function in a
RKHS, that is f([z,y]) = >, ask([z,yli, [x,y]). Assume we get a ray from a laser that contacts the ground
supporting surface. That provides us two pieces of information about the surfaces:

a) First, suppose the beam returns from the ground at point [z;, y;]Jena. Write a loss function (for just this
point) on the terrain surface that captures this information. I; =. (Hint: Make it simple— you’ll need to use
it as part of an update later.)

b) Second, suppose the beam starts at point [z;, y;|start. Given that the terrain supporting surface for the
robot is a function, we know that besides telling us a point where the surface is, the beam provides an upper
bound on where the terrain could be. Can you write down a simple loss function that penalizes the terrain
surface that lies above the ray ([z;, ¥i]start, [Ti, YiJena)? (Hint: consider only the largest violation of the
constraint that the surface lies below the beam.)



c¢) Let’s write a kernel gradient descent algorithm that minimizes these loss functions. What is the functional
gradient of the sum of (a) and (b) above? (Hint: Remember that in general, the functional gradient will
look like V pI,(f) = U;(f([z:, yi)e))k([zi, ¥i], -) where the prime symbol means the regular derivative.

If you are confused by the functional gradient method, assume instead that the terrain supporting surface can
be written as a linear combination of features/basis b (perhaps fourier functions or wavelets) as f([x;,y:]) =
wPb([x;,v:]). Then compute the standard sub-gradient with respect to w instead.

d) Explain intuitively how such an algorithm works.



2 (Gaussian Processes

Stranded on a desert island, the key to your survival is one last regression problem. Fortunately, you brought
your Gaussian Processes reading on your ill-fated flight, and even more fortunately the plane did not have
in-flight entertainment so you studied in in great detail this time.

Given the data © = {—2,1,2} and y = {0.5, —2, 1}, you need to come up with a mean estimate for arbitrary
locations z* € [—8...8]. You may plot variance estimates if you wish, but are not required to. Assume a
prior mean of 0 on all y values, and assume some noise.

Note: We are not looking for exact answers, your survival depends on your ability to reason about and
understand kernel functions, not invert 3x3 matrices (trust us). You are welcome to write a computer
program to verify your intuition (not vice versa).

a) But before plotting, answer this one theoretical question: To be a covariance function, or equivalently a
kernel function, k(z,y) must be positive definite. What does this mean?

b) RBF/Squared Exponential Kernel: k(z,z’) = exp (7%7;0’\\2) for the length-scales 1.0, 0.2, and 5.0
(please write each length scale on its plot).
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Figure 2: Squared Exponential / RBF Kernel



c) k(z,2') = aTa’:
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Figure 3: Linear Kernel
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Figure 4: Constant Kernel



e) k(z,2') =1 (x == 2a'):
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Figure 5: Indicator Kernel

Here are spare plots. If you use these, clearly mark which kernel you are plotting.
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Figure 6: Spare plots.

f) What would happen if you tried to parameterize a Gaussian Process in the “natural” parameterization.
Can you make something like this work? Why or why not?



