
16831 Statistical Techniques, Fall 2014: Problem Set 4

Name:

Due: Tuesday, December 9, 11:59 pm EST (Email)

1 RKHS

face can be found by simply averaging the height of the
range points in the terrain map.

If there is vegetation, finding the load-bearing surface
can be difficult because many laser range points hit vari-
ous places on the vegetation instead of the ground. Sim-
ply averaging the points in a grid cell performs poorly in
this case. One possible solution is to use the lowest point
in each grid cell instead. This correctly ignores the range
points that hit vegetation, but because there is inevitable
noise in the range points (especially at long distances), this
results in the lowest outlier in the noise distribution being
chosen, thus underestimating the true ground height.

4 Learning Vehicle Predictions
To overcome the difficulties associated with creating ve-

hicle and terrain models for a complex environment that
may be unknown or changing, a learning method is pro-
posed. At the highest level, this approach is about closing
the loop around vehicle predictions, as shown in figure 2. A
vehicle prediction is a mapping from environmental sensor
information and current vehicle state to future vehicle mo-
tion. This mapping is learned by observing actual vehicle
motion after driving over a given terrain. During training
and execution, the vehicle makes predictions about the fu-
ture state of the vehicle by reasoning about its current state
and the terrain in front of the vehicle. Then, when the ve-
hicle drives over that terrain, it compares its predictions to
what actually happened. This feedback is used for contin-
ual learning and adaptation to the current conditions.

By closing the loop around vehicle predictions and im-
proving the system models on-line, tuning a system to a
given application is easier, the system can handle changing
or unknown terrain, and the system is able to improve its
performance over time.

The learning vehicle predictions approach has been ap-
plied to the problem of finding the load-bearing surface
in vegetation. The system makes predictions of the load-
bearing surface from features extracted from the laser
range points. Then it drives over the terrain and mea-
sures the true surface height with the rear wheels. These
input-output pairs are used as training examples to a locally
weighted learner that learns the mapping from terrain fea-
tures to load-bearing surface height. Once the load-bearing
surface is known, parameters of interest such as roll, pitch,
clearance, and suspension limits can easily be computed
using a kinematic vehicle model as described in section 3.

This combination of kinematic equations with machine
learning techniques offers several advantages. Known
kinematic relationships do not need to be learned, so the
learner can focus on the difficult unknown relationships.
Also, the learned function can be trained on flat safe areas,
but is valid on steep dangerous areas. If we learned the

Time T+NTime T
m i j

Figure 2: Learning vehicle predictions. Features from map cell
mi j extracted at time T are used to make a prediction. Then, at
time T + N the vehicle traverses the area and determines if its
prediction is correct. This feedback is used to improve the model.

roll and pitch directly, we would need to provide training
examples in dangerous areas to get valid predictions there.

4.1 Feature Extraction

As described in section 2, the range points from the
ladars are collected over time in a world frame grid. In
addition to maintaining the average and lowest height of
points in each cell, we use an approach similar to [3] to
take advantage of the added information about free space
that a laser ray provides. We maintain a scrolling map of
3D voxels around the vehicle that records the locations of
any hits in a voxel, as well as the number of laser rays
that pass through the voxel. Each voxel is 50cm square by
10cm tall. We use a cell size of 50cm because that is the
width of the rear tires on our tractor, which are used for
finding the true ground height.

Four different features are extracted from each column
of voxels in the terrain map. The average height of range
points works well for hard surfaces such as roads and
rocks. The lowest point may provide more information
about the ground height if there is sparse vegetation. Vox-
els that have a high ratio of hits to pass-throughs are likely
to represent solid objects, so the average of the points in
these voxels may help determine the load-bearing surface.
As shown in figure 4, the standard deviation from a plane
fit provides a good measure of how “smooth” an area is,
and works well as a discriminator between hard things like
road and compressible things like weeds. We are currently
working on other features that use color and texture infor-
mation in addition to laser range points.

4.2 Learning

By closing the loop around vehicle predictions, this ap-
proach produces a large amount of input-output pairs of
training data. The system extracts features from the sen-
sor data when making predictions and then records the true
value when it drives over that area. This happens continu-
ously, so the more the vehicle interacts with the environ-
ment, the more training data the learning system has to
work with.

! !"#$%&!'()'#!*#%&+#,&-.#!*#"()#'/0*%1)#!'#%#2-%&)#

! !*#!"#%''/3)'#"()#'%3)#$%-/)#!&#"4,#%0)%'5#"()&#!"#

%''/3)'#"()#'%3)#$%-/)#!&#"()#/&!,&#,*#"()#%0)%'6#

#

#

6. EXAMPLES
#

6.1 Ground Surface

7'#"()#2,!&"#+)&'!".#!'#)8"0)3)-.#(!9(#%0,/&+#"()#'1%&&)0#%&+#

+)10)%')'#4!"(#+!'"%&1)#%4%.#*0,3#"()#'1%&&)05# "()#0)9!,&#,*#

!&")0)'"# 4%'# ')-)1")+# %'# %&# %0)%# :;#3# 8# :;#3# %0,/&+# "()#

!&'"0/3)&"#",#0)+/1)#"()#%3,/&"#,*#&,#+%"%#%0)%'6###

#

<()# ')=/)&1)# ,*# 20,1)+/0)'# ",# +)")03!&)# "()# 90,/&+# !'#

(!9(-.# '/>?)1"!$)6# # <()# 9)&)0%-# 20,1)+/0)# *,--,4)+# ",#

+)")03!&)#"()#90,/&+#!&#"(!'#4,0@#4%'#A#

#

! 10)%")#%#3%'@#*!-)#B#*!-)#,*#2,!&"'#",#>-,1@#>!&'#%'#2%0"#

,*#"()#0)?)1"!,,1)''6###

! 2)0*,03# 90!++)+# >!&&!&9# ",# ')-)1"# !&!"!%-# 90,/&+#

2,!&"'#CD#3#90!+E6###

! 3)'(#%&+#'10))&#"()#90,/&+#2,!&"'#

! 3,4#,0!9!&%-#+%"%#*!-)#CD3E##

! '10))&#"()#3,4)+#*!-)#

! 10)%")#%#3%'@#*!-)#/'!&9#"()#3,4)+#*!-)#

! 2)0*,03# 90!++)+# >!&&!&9# ",# ')-)1"# ')1,&+# ')"# ,*#

90,/&+#2,!&"'#

! 3)'(#%&+#'10))&#"()#90,/&+#2,!&"'#

! 3,4#CD;#13E#"()#,0!9!&%-#+%"%#*!-)#/'!&9#"()#'/0*%1)#

9)&)0%")+#>.#"()#')1,&+#')"#,*#90,/&+#2,!&"'#

! 2)0*,03#90!++)+#>!&&!&9#",#')-)1"#"(!0+#')"#,*#90,/&+#

2,!&"'#

! 3)'(F'10))&#"()#90,/&+#2,!&"'#

#

<()# 0)'/-"'#,*# "4,#90,/&+# '/0*%1)'#%0)# '(,4&# !&#G!9'6#H#

%&+#I6##G!9/0)#I#'(,4'#%&#,$)0()%+#$!)4#,*#"()#90,/&+#'/0*%1)#

!&#%#4,,+)+#0)9!,&# !&#G"6# J&+!%&",4&#K%2#CG<JKE5#L76# #<()#

3,&,",&)# 90%.# 0)9!,&'# !&# "()# G!96# H># %0)# &,M+%"%# 0)9!,&'6##

G!9/0)#I#4%'#,>"%!&)+#%"#<,,)-)5#N<5#0)20)')&"%"!$)#,*#%&#%0!+#

)&$!0,&3)&"6# # <()# '/0*%1)# '(,4&# !&# G!96# I# !'# ,*# "()# +%3#

0)9!,&#B#"()#'%3)#0)9!,&#%'#'(,4&#!&#G!96#O6#

#

#

#
#

C%E L%&,0%3!1#2(,",#

#

#
#

C>E K0,/&+#'/0*%1)#

#

G!9/0)#H6##PQ#'/0*%1)#,*#0)9!,&#,*#!&")0)'"#CRMS",2#:E#!&#%#

4,,+)+#%0)%6##T,'"#,*#"()#"0))'#4)0)#'/11)''*/--.#0)3,$)+6##

#

#

#
#

G!9/0)#I6##K0,/&+#'/0*%1)#,*#+%3#0)9!,&6#

#

#

6.2 Vegetation ID
#

<()# ')=/)&1)# ,*# 20,1)+/0)'# ",# !+)&"!*.# "()# $)9)"%"!,&# 4%'#

'-!9("-.#-)''#!&$,-$)+#"(%&#"(%"#*,0#90,/&+#+)")03!&%"!,&6##<()#

9)&)0%-#20,1)+/0)#4%'A#

#

! 10)%")#%#3%'@#*!-)#B#*!-)#,*#2,!&"'#",#>-,1@#>!&'#%'#2%0"#

,*#"()#0)?)1"!,,1)''#

! 2)0*,03# 90!++)+# >!&&!&9# ",# ')-)1"# !&!"!%-# 90,/&+#

2,!&"'#CD#3#90!+E6###

! 3)'(#%&+#'10))&#"()#90,/&+#2,!&"'#

! "0))M>/'(#JQ#

#

J&#"()#4,,+)+#)&$!0,&3)&"5# "()#3,4!&9#")1(&!=/)#(%+#",#>)#

%22-!)+# %'# "()# "0))# 1%&,2.# 0)'/-")+# !&# U*%-')V# "0))'# >)!&9#

!+)&"!*!)+6#

#

I;#3#

Point of view of

photo (Fig. 7a)

Figure 1: Left: Tractor with ladar used to detect and upper bound the terrain supporting surface. (image from

Wellington and Stentz, 04). Right: A 3D representation of resulting terrain using a kernel algorithm.

Let’s explore using a kernel function (like that above) for modeling terrain supporting surface as an alternative
to the use of a factor graph model for ground plane estimation. We’ll model terrain height as a function in a
RKHS, that is f([x, y]) =

∑
i αik([x, y]i, [x, y]). Assume we get a ray from a laser that contacts the ground

supporting surface. That provides us two pieces of information about the surfaces:
a) First, suppose the beam returns from the ground at point [xi, yi]end. Write a loss function (for just this
point) on the terrain surface that captures this information. lt =. (Hint: Make it simple– you’ll need to use
it as part of an update later.)

b) Second, suppose the beam starts at point [xi, yi]start. Given that the terrain supporting surface for the
robot is a function, we know that besides telling us a point where the surface is, the beam provides an upper
bound on where the terrain could be. Can you write down a simple loss function that penalizes the terrain
surface that lies above the ray ([xi, yi]start, [xi, yi]end)? (Hint: consider only the largest violation of the
constraint that the surface lies below the beam.)

1

c) Let’s write a kernel gradient descent algorithm that minimizes these loss functions. What is the functional
gradient of the sum of (a) and (b) above? (Hint: Remember that in general, the functional gradient will
look like ∇f lt(f) = l′t(f([xi, yi]t))k([xi, yi], ·) where the prime symbol means the regular derivative.
If you are confused by the functional gradient method, assume instead that the terrain supporting surface can
be written as a linear combination of features/basis b (perhaps fourier functions or wavelets) as f([xi, yi]) =
wT b([xi, yi]). Then compute the standard sub-gradient with respect to w instead.

d) Explain intuitively how such an algorithm works.

2

2 Gaussian Processes

Stranded on a desert island, the key to your survival is one last regression problem. Fortunately, you brought
your Gaussian Processes reading on your ill-fated flight, and even more fortunately the plane did not have
in-flight entertainment so you studied in in great detail this time.
Given the data x = {−2, 1, 2} and y = {0.5,−2, 1}, you need to come up with a mean estimate for arbitrary
locations x∗ ∈ [−8 . . . 8]. You may plot variance estimates if you wish, but are not required to. Assume a
prior mean of 0 on all y values, and assume some noise.
Note: We are not looking for exact answers, your survival depends on your ability to reason about and
understand kernel functions, not invert 3x3 matrices (trust us). You are welcome to write a computer
program to verify your intuition (not vice versa).

a) But before plotting, answer this one theoretical question: To be a covariance function, or equivalently a
kernel function, k(x, y) must be positive definite. What does this mean?

b) RBF/Squared Exponential Kernel: k(x, x′) = exp
(
− ||x−x

′||2
`2

)
for the length-scales 1.0, 0.2, and 5.0

(please write each length scale on its plot).

Figure 2: Squared Exponential / RBF Kernel

3

c) k(x, x′) = xTx′:

Figure 3: Linear Kernel

d) k(x, x′) = 1:

Figure 4: Constant Kernel

4

e) k(x, x′) = 1 (x == x′):

Figure 5: Indicator Kernel

Here are spare plots. If you use these, clearly mark which kernel you are plotting.

Figure 6: Spare plots.

f) What would happen if you tried to parameterize a Gaussian Process in the “natural” parameterization.
Can you make something like this work? Why or why not?

5

