
Statistical Techniques in Robotics (16-831, F08) Lecture #12 (Thursday October 2nd)

Support Vector Machines Continued

Lecturer: Drew Bagnell Scribe: Don Burnette

1 Support Vector Machine Tricks

• Phrase learning problems as constraints, or patches (e.g. ‘A’ is better than ‘B’)

• Soften Contraints - Account for mistakes (could be wrong), and removes constraints from
problem

• Add margin as a method to fix degeneracies and improve generalization

• Can use a unified batch method (randomization is key) or an online approach

• Take advantage of the fact that the max of a convex functions is convex

2 Binary Support Vector Machine

We consider the case of support vector machines where the result is binary. Suppose we can given
a set {(xi, yi)}, where xi is the input vector and yi is the true value.

• If yi = 1, we want wTxi ≥ 1, otherwise we want wTxi ≤ −1. This can be written more
compactly as

yiw
Txi ≥ 1 (1)

• As in the general case, we add a softening term ξi, where ξi ≥ 0. Our contraint then becomes

yiw
Txi ≥ 1− ξi (2)
ξi ≥ 1− yiwTxi (3)

• We wish to minimize λ||w||2
2 +

∑
imax(0, 1− yiwTxi)

• The loss for each data point is then li = λ||w||2
2 +max(0, 1− yiwTxi)

• If max(0, 1− yiwTxi) = 0, then the gradient becomes

∇li = λ~w (4)

• If max(0, 1− yiwTxi) = 1− yiwTxi, then the gradient becomes

∇li = λ~w − yixi (5)

• This loss function is often called the ‘Hinge Loss’

• Hinge loss is a convex upper bound on the ‘0/1’ Loss
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3 More Applications of Online Learning

Projected gradient descent applied to range images. Two neighbooring pixels in an image are likely
to be the same depth if they are the same color.

• Use a random field, one node per pixel

• Penalize depth changes

• We calculate the probability desity by taking the product over maximal cliques

p(~d) =
∏
i∈O

e−γ|zi−di|2
∏
i,j∈N

e−cij |di−dj |2 (6)

where O are the observed nodes, are N are neighbooring nodes. If Pixeli and Pixelj are
‘close’ then cij = 1, else cij = ε� 1

• We wish to compute argmax
(
p(~d)

)
= argmax

(
log p(~d)

)
(7)

= argmax

∑
i

−γ|zi − di|2 +
∑
i,j

−cij |di − dj |2
 (8)

= argmin

∑
i

γ|zi − di|2 +
∑
i,j

cij |di − dj |2
 (9)

(10)

• Calculate gradient
∂

∂di
l = −2γ(zi − di) +

∑
j∈N

2cij(di − dj) (11)

• Apply update rule
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