Statistical Techniques in Robotics (16-831, F08) Lecture #13 (Tuesday October 7^{nd})

Bayes' Linear Regression Part 2

Lecturer: Drew Bagnell

1 Bayes' Online Learning with Prior

- $p_i = \text{prior}$
- Set initial weights to each expert: $w_i = N p_i$
- Each expert makes prediction y_i
- Predict:
 - Predict 1 If:

$$\sum_{y=1} w_i \ge \sum_{y=0} w_i \tag{1}$$

- Else, Predict 0
- Update:
 - If expert e_i made a mistake, $w_i = 1/2w_i$
- Analysis of Algorithm:
 - Total weights of the experts $\mathbf{W} = \sum_i \mathbf{w}_i$
 - Weight of the best expert $w^* \leq W$
 - M is the total number of mistakes predicted by the algorithm, m^* are the number of mistakes made by the best expert:

$$w^* = 2^{-m^*} N p^* \tag{2}$$

$$W \le N(\frac{4}{3})^{-M} \tag{3}$$

– Thus, since $w^* \leq W$

$$2^{-m^*} N p^* \le N (\frac{4}{3})^{-M} \tag{4}$$

$$-m^* + \log p^* \le -Mc \tag{5}$$

Where $c = \log_2(4/3)$

- Therefore, the total mistakes made by the algorithm are bounded by:

$$M \le \frac{m^* + \log(\frac{1}{p^*})}{c} \tag{6}$$

- Weighted majority using prior thus has:
 - No dependence on N
 - Because of prior, infinite sets of experts are possible
 - If you see "log n" where n is some discrete set of experts, think hidden uniform distribution
 - Every learning algorithm has a prior some are more explicit than others
 - Priors in hypothesis space correspond to weights on experts

2 General Weighted Majority Update

- Bayes' Rule is a special case of weighted majority
- Predict:
 - Choose expert *i* in proportion to $\frac{w_i}{\sum_i w_j}$
 - Predict the same as what expert e_i predicts
- Receive Loss: $l_t(i)$
- Update Weights:
 - $-w_i = w_i e^{-\alpha l_t(i)}$
 - or, use first term of Taylor Series expansion:
 - $-w_i = w_i(1 \alpha l_t(i))$
- Expert i's prediction is a probability distribution: $p_i(y)$
- Standard loss for making a probabilistic prediction is log-loss:

$$l_t(i) = \log\left(p_i(y_t)\right) \tag{7}$$

Where y_t is the true observation

• Plugging the log-loss into the weight update rule:

$$w_i = w_i e^{-\alpha \log\left(p_i(y_t)\right)} \tag{8}$$

• This simplifies to:

$$w_i = w_i [p_i(y_t)]^{\alpha} \tag{9}$$

• Which, when $\alpha = 1$, is Bayes' Rule exactly. According to Bayes' Rule: p(i|y) = p(i)p(y|i). In this case, p(i|y) is equivalent to w_{t+1} , p(i) is equivalent to w_t , and p(i|y) is $p_i(y_t)$.

3 Bayes' Linear Regression

- θ = Weight Vector
- $x_t = \text{set of features}$
- $y_t = \text{outcome}$
- Use Gaussian distribution for likelihood term:

$$p(y|x,\theta) = \frac{1}{z} e^{\frac{-(\theta^T x - y)^2}{2\sigma^2}}$$
(10)

This is called the Moment Parameterization of a Guassian.

• Prior term is a multidemensional guassian:

$$p(\theta) = \frac{1}{z} e^{-(\theta - \mu)^T \Sigma^{-1}(\theta - \mu)}$$
(11)

Where Σ is positive-definite and symmetric

• The Natural Parameterization of (11) is:

$$p(\theta) = \frac{1}{z} e^{J^T \theta - \frac{1}{2} \theta^T P \theta}$$
(12)

• $p(\theta|y, x) = p(\theta)p(y|x, \theta) = (12)^*(10)$:

$$p(\theta)p(y|x,\theta) = \frac{1}{z}e^{\frac{-(\theta^T x - y)^2}{2\sigma^2} + J^T \theta - \frac{1}{2}\theta^T P\theta}$$
(13)

• Combining like terms leaves us with a form very similar to our prior expression (12). Thus, we can update the values of J and P:

$$J' = J + \frac{yx^T}{\sigma^2} \tag{14}$$

$$P' = P + \frac{xx^T}{\sigma^2} \tag{15}$$