
Statistical Techniques in Robotics (16-831, F08) Lecture #13 (Tuesday October 7nd)

Bayes’ Linear Regression Part 2

Lecturer: Drew Bagnell Scribe: Kevin Lipkin

1 Bayes’ Online Learning with Prior

• pi = prior

• Set initial weights to each expert: wi = Npi

• Each expert makes prediction yi

• Predict:

– Predict 1 If: ∑
y=1

wi ≥
∑
y=0

wi (1)

– Else, Predict 0

• Update:

– If expert ei made a mistake, wi = 1/2wi

• Analysis of Algorithm:

– Total weights of the experts W =
∑

iwi

– Weight of the best expert w∗ ≤W
– M is the total number of mistakes predicted by the algorithm, m∗ are the number of

mistakes made by the best expert:

w∗ = 2−m
∗
Np∗ (2)

W ≤ N(
4
3

)−M (3)

– Thus, since w∗ ≤W
2−m

∗
Np∗ ≤ N(

4
3

)−M (4)

−m∗ + log p∗ ≤ −Mc (5)

Where c = log2(4/3)

– Therefore, the total mistakes made by the algorithm are bounded by:

M ≤
m∗ + log( 1

p∗ )

c
(6)
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• Weighted majority using prior thus has:

– No dependence on N

– Because of prior, infinite sets of experts are possible

– If you see ”log n” where n is some discrete set of experts, think hidden uniform distri-
bution

– Every learning algorithm has a prior - some are more explicit than others

– Priors in hypothesis space correspond to weights on experts

2 General Weighted Majority Update

• Bayes’ Rule is a special case of weighted majority

• Predict:

– Choose expert i in proportion to wi∑
j wj

– Predict the same as what expert ei predicts

• Receive Loss: lt(i)

• Update Weights:

– wi = wie
−αlt(i)

or, use first term of Taylor Series expansion:

– wi = wi(1− αlt(i))

• Expert i’s prediction is a probability distribution: pi(y)

• Standard loss for making a probabilistic prediction is log-loss:

lt(i) = log (pi(yt)) (7)

Where yt is the true observation

• Plugging the log-loss into the weight update rule:

wi = wie
−α log (pi(yt)) (8)

• This simplifies to:
wi = wi[pi(yt)]α (9)

• Which, when α = 1, is Bayes’ Rule exactly. According to Bayes’ Rule: p(i|y) = p(i)p(y|i). In
this case, p(i|y) is equivalent to wt+1, p(i) is equivalent to wt, and p(i|y) is pi(yt).
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3 Bayes’ Linear Regression

• θ = Weight Vector

• xt = set of features

• yt = outcome

• Use Gaussian distribution for likelihood term:

p(y|x, θ) =
1
z
e
−(θT x−y)2

2σ2 (10)

This is called the Moment Parameterization of a Guassian.

• Prior term is a multidemensional guassian:

p(θ) =
1
z
e−(θ−µ)TΣ−1(θ−µ) (11)

Where Σ is positive-definite and symmetric

• The Natural Parameterization of (11) is:

p(θ) =
1
z
eJ

T θ− 1
2
θTPθ (12)

• p(θ|y, x) = p(θ)p(y|x, θ) = (12)*(10):

p(θ)p(y|x, θ) =
1
z
e
−(θT x−y)2

2σ2 +JT θ− 1
2
θTPθ (13)

• Combining like terms leaves us with a form very similar to our prior expression (12). Thus,
we can update the values of J and P:

J ′ = J +
yxT

σ2
(14)

P ′ = P +
xxT

σ2
(15)
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