Statistical Techniques in Robotics (16-831, FO8) Lecture #13 (Tuesday October 7¢)

Bayes’ Linear Regression Part 2

Lecturer: Drew Bagnell Scribe: Kevin Lipkin

1 Bayes’ Online Learning with Prior

e p; = prior

Set initial weights to each expert: w; = Np;

Each expert makes prediction y;

Predict:

— Predict 1 If:

ZwiZZwi (1)

y=1 y=0

— Else, Predict 0

Update:

— If expert e; made a mistake, w; = 1/2w;

Analysis of Algorithm:

— Total weights of the experts W = > . w;
— Weight of the best expert w* < W

— M is the total number of mistakes predicted by the algorithm, m* are the number of
mistakes made by the best expert:

w* = 27m*Np* (2)
W< NG Q0
— Thus, since w* < W
2 N < N(5) Y ()
—m* +logp* < —Mc (5)

Where ¢ = log,(4/3)
— Therefore, the total mistakes made by the algorithm are bounded by:

* 1
- m* +log ()
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e Weighted majority using prior thus has:

— No dependence on N

Because of prior, infinite sets of experts are possible

If you see ”log n” where n is some discrete set of experts, think hidden uniform distri-
bution

— Every learning algorithm has a prior - some are more explicit than others

Priors in hypothesis space correspond to weights on experts

2 General Weighted Majority Update

e Bayes’ Rule is a special case of weighted majority
e Predict:

— Choose expert ¢ in proportion to Zwiu
i Wi

— Predict the same as what expert e; predicts
e Receive Loss: 14(7)
e Update Weights:

— w; = wie—alt(z)
or, use first term of Taylor Series expansion:

— w; = w;i(1 — aly(7))
e Expert i’s prediction is a probability distribution: p;(y)

e Standard loss for making a probabilistic prediction is log-loss:

1(i) = log (pi(yt)) (7)
Where y; is the true observation

e Plugging the log-loss into the weight update rule:

w; = wye~ 108 (Pi(yr) (8)

e This simplifies to:
wi = wilpi(y)]* (9)

e Which, when o = 1, is Bayes’ Rule exactly. According to Bayes’ Rule: p(i|y) = p(i)p(y|i). In
this case, p(ily) is equivalent to w41, p(7) is equivalent to wy, and p(i|y) is p;(ye)-



3 Bayes’ Linear Regression

6 = Weight Vector
e 1; = set of features
e y; = outcome

e Use Gaussian distribution for likelihood term:

—(0Tz—y)2

Pyl 0) = Lo~ T (10)

This is called the Moment Parameterization of a Guassian.

e Prior term is a multidemensional guassian:

p(0) = lef(efu)TE”(@fu) (11)
z

Where ¥ is positive-definite and symmetric

e The Natural Parameterization of (11) is:

p(0) = leJTe—éeTpe (12)
zZ

 p(0ly,x) = p()p(y|e, 0) = (12)*(10):

1 —0Tz—y)? 1
p(O)p(yle,0) = —e— 2z 10730010 (13)
A

e Combining like terms leaves us with a form very similar to our prior expression (12). Thus,
we can update the values of J and P:
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