Statistical Techniques in Robotics (16-831, F08) Lecture #14 (October 9)

Bayesian Linear Regression Pt. 2, Gaussian Properties

Lecturer: Drew Bagnell Scribe: Hans Pirnay

1 Parameterizations for Gaussians

There are two common parameterizations for Gaussians, the moment parameterization and the
natural parameterization.

The Moment Parameterization has the form
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The matrix P of the natural parameterization has a graphical model interpretation. If there is a
non-zero entry for (z1, z2), then there is a correspondence.
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Following the graphical model interpretation, P is in many cases highly structured. Consider for
example the graphical model of a markov chain
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This corresponds to a band structure in P:
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Note: P! is, in general, not sparse! (this makes intuitve sense since P~! = ¥ the covariance
matrix, and the covariance of two states along the markov chain are not independent.)

2 Bayes Linear Regression Update

Scalar version of the likelihood field:
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(Don’t worry about the weird notation of V' as a function of 2. This is an arbitrary definition)

2.1 Deriving the update rules

Apply Bayes’ Rule to the probability of a weight vector 6 given a datapoint D.
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This results in the multiplication of two exponential functions. Adding the exponent of the prior
to that of the likelihood yields
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collecting terms to find updates Jy and Py:
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Since this all happens in the exponent of an exponential function, the constat y2-term can be shifted

into the regularizing z. Thus, the update rules for Jj and Pj are
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1. in a gaussian model, a new datapoint always lowers the variance - this downgrading of the

variance does not always make sense

2. if you believe there are outliers, this model won’t work for you

3. the variance is not a function of y. The precision if only affected by input not output. This

is a consequence of having the same o (observation error) everywhere in space.

2.2 Transfer to moment parameterization

The update rules for the natural parameterization at timestep ¢ are
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Having no prior knowledge about the data, we choose standard initial conditions

Jo = 0
P = 1,

I being the identity matrix. Given the transfer rules to the moment parameterization

y = p!
p = P7lJ

the moment parameterization after N timesteps is then
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1. Zi\; 1 5t is the gradient of Bayes online linear regression

2. this looks just like Newton’s method

3. Computation time: o(d?) for update, o(d®) for mean (that can be reduced to o(d?) with tricks)



2.3 Making predictions

Given all data D up to timestep ¢ and z;41, the probability of an observation g1 is
p(Jt+1lwe41, D) = /p(gt+1’xt+1va9) -p(0]|D)do (19)
= /p(?]t+1’$t+179) -p(8, D)do (20)

To know p(§i+1|2¢11, D), we only need y and o2, because these parameters determine the gaussian.
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2.4 Marginal and Conditional Distributions in different parameters

These computations are crucial for gaussian processes and Kalman filters.

2.4.1 Moment parameterization

Given:
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Marginal: computing p(z2)
py = e (22)
Ny = ¥ (23)

Conditional: computing p(z1|z2)

M1z = p1+ S19%5, (22 — pia) (24)
S1p = S — $12555 S (25)

2.4.2 Natural parameterization

Given:
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Marginal: computing p(z2)

Conditional: computing p(zi|x2)
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