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Bayesian Linear Regression Pt. 2, Gaussian Properties

Lecturer: Drew Bagnell Scribe: Hans Pirnay

1 Parameterizations for Gaussians

There are two common parameterizations for Gaussians, the moment parameterization and the
natural parameterization.

The Moment Parameterization has the form

N (µ,Σ) = p(θ) =
1
z

exp
(
−1

2
(θ − µ) Σ−1 (θ − µ)

)
(1)

The Natural Parameterization is

Ñ (J, P ) = p̃(θ) =
1
z

exp
(
JT θ − 1

2
θTPθ

)
(2)

The matrix P of the natural parameterization has a graphical model interpretation. If there is a
non-zero entry for (z1, z2), then there is a correspondence.

P =
X X 0
X X X
0 X X

z1

z2

z3

1



Following the graphical model interpretation, P is in many cases highly structured. Consider for
example the graphical model of a markov chain

x1 x2 x3 x4 x5

This corresponds to a band structure in P :

P =


X X 0 0 0
X X X 0 0
0 X X X 0
0 0 X X X
0 0 0 X X

 (3)

Note: P−1 is, in general, not sparse! (this makes intuitve sense since P−1 = Σ the covariance
matrix, and the covariance of two states along the markov chain are not independent.)

2 Bayes Linear Regression Update

Scalar version of the likelihood field:

p(y|x, θ) = N (θTxt, σ2
t ) =

1
z

exp
(
−(θTx− y)(θTx− y)

2σ2

)
(4)

(Don’t worry about the weird notation of N as a function of σ2. This is an arbitrary definition)

2.1 Deriving the update rules

Apply Bayes’ Rule to the probability of a weight vector θ given a datapoint D.

p(θ|D) =
p(D|θ)p(θ)

z
(5)

This results in the multiplication of two exponential functions. Adding the exponent of the prior
to that of the likelihood yields

− 1
2σ2

(
θTx− y

)2
+ JT θ − 1

2
θTPθ (6)

collecting terms to find updates J ′θ and P ′θ:

= − 1
2σ2

(
θTxxT θ − 2θTxy + y2

)
+ JT θ − 1

2
θTPθ (7)

=
(
xT y

σ2
+ JT

)
θ − 1

2
θT
(
xxT

σ2
+ P

)
θ − y2

2σ2
(8)
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Since this all happens in the exponent of an exponential function, the constat y2-term can be shifted
into the regularizing z. Thus, the update rules for J ′θ and P ′θ are

J ′θ =
xy

σ2
+ J (9)

P ′θ =
xxT

σ2
+ P (10)

1. in a gaussian model, a new datapoint always lowers the variance - this downgrading of the
variance does not always make sense

2. if you believe there are outliers, this model won’t work for you

3. the variance is not a function of y. The precision if only affected by input not output. This
is a consequence of having the same σ (observation error) everywhere in space.

2.2 Transfer to moment parameterization

The update rules for the natural parameterization at timestep t are

J + =
ytxt
σ2

(11)

P + =
1
σ2
xxT . (12)

Having no prior knowledge about the data, we choose standard initial conditions

J0 = 0 (13)
P0 = I, (14)

I being the identity matrix. Given the transfer rules to the moment parameterization

Σ = P−1 (15)
µ = P−1J (16)

the moment parameterization after N timesteps is then

Σθ =

[
N∑
i=1

xix
T
i

σ2
+ I

]−1

(17)

µθ =

(
N∑
i=1

xix
T
i

σ2
+ I

)
N∑
t=1

ytxt
σ2

(18)

1.
∑N

t=1
ytxt

σ2 is the gradient of Bayes online linear regression

2. this looks just like Newton’s method

3. Computation time: o(d2) for update, o(d3) for mean (that can be reduced to o(d2) with tricks)
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2.3 Making predictions

Given all data D up to timestep t and xt+1, the probability of an observation ỹt+1 is

p(ỹt+1|xt+1, D) =
∫
p(ỹt+1|xt+1, D, θ) · p(θ|D)dθ (19)

=
∫
p(ỹt+1|xt+1, θ) · p(θ,D)dθ (20)

To know p(ỹt+1|xt+1, D), we only need y and σ2, because these parameters determine the gaussian.

xi

yi

θ

2.4 Marginal and Conditional Distributions in different parameters

These computations are crucial for gaussian processes and Kalman filters.

2.4.1 Moment parameterization

Given:

N
([

µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(21)

Marginal: computing p(x2)

µmarg
2 = µ2 (22)

Σmarg
2 = Σ22 (23)

Conditional: computing p(x1|x2)

µ1|2 = µ1 + Σ12Σ−1
22 (x2 − µ2) (24)

Σ1|2 = Σ11 − Σ12Σ−1
22 Σ21 (25)

2.4.2 Natural parameterization

Given:

N
([

J1

J2

]
,

[
P11 P12

P21 P22

])
(26)
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Marginal: computing p(x2)

Jmarg
2 = J2 − P21P

−1
11 J1 (27)

Pmarg
1 = P12 − P21P

−1
11 P12 (28)

Conditional: computing p(x1|x2)

J1|2 = J1 − P12x2 (29)
P1|2 = P11 (30)
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