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Mobile Robot Navigation
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Local Perception System

Local 

Features

Perception systemSensors

Planner (D*)

Cost map
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Motivation

 Sensing range

 Onboard 
perception 
system loses 
effectiveness at 
longer ranges 
(past 12-15 
meters in this 
case)

 Results in 
inefficient and 
often 
dangerous 
exploration 
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How to Improve

 Use overhead data 
(imagery, elevation, etc.)
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Hand-Train Overhead Interpreter

 Hand-train 
overhead classifier 
/ cost predictor

 Apply to larger 
map

 Use resulting map 
for planning
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How to Improve

 Use overhead data (imagery, 
elevation, etc.)
 Difficult to interpret consistently

 Variations in terrain, lighting, 
weather, time of gathering

 Extend the range of the perception 
system
 Not enough data to accurately 

generate perception system’s 
features
 Can’t estimate ground plane, 

inaccurate density, etc.

 Features that are computable
are difficult to interpret 
consistently
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 Overhead data features

 Color, texture, clustering, elevation, PCA, 
neighbor features, etc.

 Far-range sensor data features

 Color, ladar point elevation spread / std, 
neighbor features, etc.

 How can we best use these potentially 
powerful, but difficult to generalize, 
features?

How to Improve

Scoped Learning

10
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The Algorithm

 Model the relationship 
between these features 
and measured traversal 
cost in a Bayesian 
probabilistic framework

 Online Bayesian 
Linear Regression

 Relate multiple data 
sources with different 
“scope” to each other

Blei, ’02
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The Algorithm

 Initialize the distribution to 
the prior distribution 

 We want to compute

 For every training 
example        , multiply 
the distribution by

 By computing                  , 
we are performing self-
supervised learning using a 
Bayesian linear regression 
model
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The Algorithm

 Learn to interpret these locale-specific features by taking 
advantage of the globally interpretable features from the 
perception system
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Results

 Overhead Online Learning

 Online use

 Offline use

 Far-Range Online Learning
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Results
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 Offline use

 Far-Range Online Learning
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Overhead Online Learning
Using features from 40cm color imagery and elevation data
Updating traversal cost map onboard robot in 65 m radius
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Overhead Online Learning
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Far-Range Online Learning

26

Far-Range Online Learning
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Results

Far Range 
Online Learning

28

Results
Overhead 

Online 
Learning
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Results

 Overhead Online Learning

 Online use

 Offline use

 Far-Range Online Learning
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Overhead Online Learning (Offline)

Training course

2000m x 750m
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Overhead Online Learning (Offline)

Using 1m black and 
white imagery data

Using 35cm color 
imagery data
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Overhead Online Learning (Offline)

 Data alignment
 Use                   to 

detect most likely 
map alignment

 Use alignment with 
the highest average 
log probability over 
all examples seen
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Additional Benefits

 Reversible learning

 Confidence-rated predictions
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Reversible Learning

 Multiple estimates of single quantity

 Receive example

 Receive lower variance estimate 

 always takes into account only best 
estimates available for all examples 
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Additional Benefits

 Reversible learning

 Confidence-rated predictions
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Confidence-rated predictions

 Use variance 
estimate (HW3!) 
provided by 
algorithm for the 
probability of 
each estimate as 
measure of 
confidence

 “Surprise” at 
seeing set of 
features
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Far-Range Online Learning with 
Velodine

37

Movie…

Questions?

38
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A Self-Supervised Terrain Roughness 
Estimator for Off-Road Autonomous Driving

David Stavens and Sebastian Thrun

Stanford Artificial Intelligence Lab

“Combines” strengths of multiple sensors.

Ultra-Precise, No Range Precise, Long Range
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Velocity Planning for DGC 2005

 Mobile robotics traditionally focuses on steering.

 But speed is also important.

 Beyond stopping distance and lateral 
maneuverability.

 Stanley adapted its speed to terrain conditions, 
minimizing shock:

 Increases electrical and mechanical reliability.

 Mitigates pose error for laser projection.

 Increases traction for improved maneuvers.

 Correlated with slowing on “hard” terrain.

 Simple three state algorithm:

 Drive at speed limit until shock threshold 
exceeded.

 Slow to bring the vehicle within the 
shock threshold.

 Uses approx. linear relationship between 
shock and speed.

 Accelerate back to the speed limit.

Reactive Approach (used during 
DGC)
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Acquiring a 3D Point Cloud

Movie…

Errors in Pose and Projection

Goal: know amount of error that is expected so 
that actual rough terrain or obstacles may be 
better identified. 
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Z Error vs. Time

More than t

 “Spread” of plot implies more factors 
than t.

 Also related to:

 Amount/rate of pitching.

 Distance between the two scans.
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Comparing Two Laser Points

Uncertainty = pair =   

1| z | 2 –

3| t | 4 –

5| xy distance | 6 –

7| dpitch1 | 8 – 7| dpitch2 | 8 –

9| droll1 | 10 – 9| droll2 | 10

 Seven Features: z, t, xy distance, 
dpitches, drolls

 10 Parameters: 1 2 … 10  (generated with self-

supervised learning)

Estimate Roughness

 Combine points in estimated future 
locations of wheels to estimate a 
roughness score, R, for terrain 
patch.

 But how do we assign target values 
to R?
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Self-Supervised Learning

Actual shock when driving over 
terrain modifies belief about original 
laser scan.

Improves classifier for subsequent 
scans!

Self-Supervised Learning

Actual shock when driving over 
terrain modifies belief about original 
laser scan.

Improves classifier for subsequent 
scans!
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Caveat: Must Correct for Speed

Mapping from R to Shock

Learn a simple suspension model 
in parallel with the classifier:

Rcombined = Rleft 
11

+ Rright 
11

Rleft and Rright is for the terrain 
under each wheel.
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Learning Parameters

 Tp = true positive rate

 Fp = false positive rate

 Maximize Tp – λFp

 Used λ = 5 to minimize false positives

 Optimized through coordinate ascent

 Greedily optimize each parameter 
individually, decreasing learning rate 
each cycle by factor of 2.

53
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Self-Supervised Monocular Road 
Detection in Desert Terrain

Hendrik Dahlkamp, Adrian Kaehler, 
David Stavens, Sebatian Thrun, and 
Gary Bradski

Stanford University, Intel Corporation
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Goal: Detect drivable surface 
for aiding speed calculations

57

Extract “training” area using 
laser data

58

 Project onto 
camera image

 Assume that area 
contains only 
drivable surface

 Remove sky and 
shadows

 Range: ~22m
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Learn visual model of nearby 
road

 Approximate using mixture of k 
Gaussians in RGB space

 Additional Gaussians describing 
training history

59

Score visual field by road model

 Use distance from each pixel to 
nearest Gaussian to assign a 
“roadness” score.

60



10/16/2008

31

Select identified patches

 Threshold image points further away than 3σ to 
get a binary drivability image.

 Run several filters to remove small non-
drivable areas (rocks, leaves) while preserving 
bigger obstacles.
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Usage

 Used as pre-warning system for capping 
speed (if can’t see clear road for 40m).

 Ran at 12fps on single processor on 320 x 
240 images.

 Extended road detection to up to 70m.

62
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Pretty video…
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