Self-Supervised Online Learning
Approaches for Robot Navigation

16-831, Fall 2008
October 16

Mobile Robot Navigation
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Motivation

O Sensing range

® Onboard
perception
system loses
effectiveness at
longer ranges

(past 12-15
meters in this
case)

B Resultsin
inefficient and
often
dangerous
exploration
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How to Improve

[0 Use overhead data
(imagery, elevation, etc.)
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Hand-Train Overhead Interpreter

O Hand-train
overhead classifier
/ cost predictor

O Apply to larger
map

O Use resulting map
for planning

How to Improve

O Use overhead data (imagery,
elevation, etc.)
m  Difficult to interpret consistently

O Variations in terrain, lighting,
weather, time of gathering

O Extend the range of the perception

system

®  Not enough data to accurately
enerate perception system’s
eatures
O Can't estimate ground plane,

inaccurate density, etc.

B Features that are computable
are difficult to interpret
consistently
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How to Improve

O Overhead data features

m Color, texture, clustering, elevation, PCA,
neighbor features, etc.
[0 Far-range sensor data features
m Color, ladar point elevation spread / std,
neighbor features, etc.

[0 How can we best use these potentially
powerful, but difficult to generalize,
features?

Scoped Learning
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The Algorithm

O Model the relationship
between these features
and measured traversal
cost in a Bayesian
probabilistic framework
B Online Bayesian

Linear Regression

" O Relate multiple data
x; - computed locale-specific features sources with different

c; - true traversal costs n "
Z - estimates generated by perception system SCOPE" 0 €ach other

(3 - captures relationship between z; and ¢;

Eleng1] = Bra, 1
p(cn+11€1..ns 1. pt1)

Blei, 02 11

The Algorithm

O Initialize the distribution to
the prior distribution p(3)
O We want to compute
p(B|é;, x4, D)
B For every training
example (z;,&), multiply
the distribution by p(¢;|8, =;)
T

XiXi Gxi

PP+ — J <]+ —=
x; - computed locale-specific features o? ; o?
¢; - true traversal costs O By computing p(3|é, z;, D),
& - estimates generated by perception system —we are performing self-
3 - captures relationship between z; and ¢; supervised learning using a

Bayesian linear regression

E[Cn—l—l] - BT:": model

p(Cn+1181. . m 1. pt1)
P(BlE1. nx1..n) X P(C1. 0|8, 21 _n)P(5)

12



10/16/2008

The Algorithm

O Learn to interpret these locale-specific features by taking
advantage of the globally interpretable features from the
perception system
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Results

[0 Overhead Online Learning
B Online use
m Offline use

O Far-Range Online Learning
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Results

[0 Overhead Online Learning
B Online use
m Offline use

[0 Far-Range Online Learning
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Overhead Online Learning

Using features from 40cm color imagery and elevation data

Updating traversal cost map onboard robot in 65 m radius
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Overhead Online Learning
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Results

O Overhead Online Learning
B Online use
m Offline use

O Far-Range Online Learning
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Far-Range Online Learning

Without OLL
With Far-Range OLL

Far-Range Online Learning
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Results

—yithout OLL
= miith Cverhead OLL
Wyith Far Range OLL

Far Range
Online Learning
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Results
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== yfith Overhead OLL Onl!ne [
With Far Range OLL Learning
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Results

O Overhead Online Learning
® Online use
m Offline use

[0 Far-Range Online Learning
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Overhead Online Learning (Offline)

2000m x 750m

Training course

30
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Log-Probability of Perception Data

Overhead Online Learning (Offline)
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imagery data white imagery data

Overhead Online Learning (Offline
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O Data alignment

m Use p(c1,...,¢n)to
detect most likely
map alignment

B Use alignment with
the highest average
Io? probability over
all examples seen
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Additional Benefits

[0 Reversible learning
[0 Confidence-rated predictions

33

Reversible Learning

OO0 Multiple estimates of single quantity

B Receive example (x;,&)

T o~
XX} C, X
2

P«P+ ](—]'1'—2
a

a
B Receive lower variance estimate ¢’

i~ ~ T

X G X
Jel-—+—

a a

B (3 always takes into account only best
estimates available for all examples
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Additional Benefits

[0 Reversible learning
O Confidence-rated predictions
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Confidence-rated predictions

[0 Use variance
estimate (HW3!)
provided by
algorithm for the
probability of
each estimate as
measure of
confidence

OO0 “Surprise” at
seeing set of
features

36
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Far-Range Online Learning with
Velodine

Movie...

37

Questions?
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A Self-Supervised Terrain Roughness
Estimator for Off-Road Autonomous Driving

David Stavens and Sebastian Thrun
Stanford Artificial Intelligence Lab

“Combines” strengths of multiple sensors.

20
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Velocity Planning for DGC 2005

O Mobile robotics traditionally focuses on steering.
O But speed is also important.

B Beyond stopping distance and lateral
maneuverability.

O Stanley adapted its speed to terrain conditions,
minimizing shock:
B Increases electrical and mechanical reliability.
B Mitigates pose error for laser projection.
B Increases traction for improved maneuvers.
B Correlated with slowing on “hard” terrain.

Reactive Approach (used during
DGC)

O Simple three state algorithm:

B Drive at speed limit until shock threshold
exceeded.

B Slow to bring the vehicle within the
shock threshold.

O Uses approx. linear relationship between
shock and speed.

B Accelerate back to the speed limit.
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Acquiring a 3D Point Cloud

Movie...

benign

small error

large error

Goal: know amount of error that is expected so
that actual rough terrain or obstacles may be

better identified.
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3

2 3 4
ATime (in seconds)

More than At

0 “Spread” of plot implies more factors
than At.

O Also related to:
B Amount/rate of pitching.
B Distance between the two scans.

23
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Comparing Two Laser Points
Uncertainty = Ay, =

| AZ |*2 =
| At |74 =
| xy distance |*6 -
| dpitch: |“8 — o | dpitchz |“8 -
| drollz | — uo| drollz |

O Seven Features: Az, At, xy distance,
dpitches, drolls

0 10 Parameters: (generated with self-

supervised learning)

Estimate Roughness

[0 Combine points in estimated future
locations of wheels to estimate a
roughness score, R, for terrain
patch.

O But how do we assign target values
to R?

24
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Self-Supervised Learning

Self-Supervised Learning
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Shock (Z Acceleration) Increases Linearly with Speed
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Mapping from R to Shock

Learn a simple suspension model
in parallel with the classifier:

Rcombined = RIeft + Rright

Riere and Ry is for the terrain
under each wheel.

10/16/2008
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Learning Parameters

O Tp = true positive rate
O Fp = false positive rate

0 Maximize Tp = AFp
B Used A = 5 to minimize false positives
[0 Optimized through coordinate ascent

B Greedily optimize each parameter
individually, decreasing learning rate
each cycle by factor of 2.
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Classifying Rough Terrain
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Normalized Shock vs. Completion Time for 10 Miles of Grand Challenge
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Self-Supervised Monocular Road
Detection in Desert Terrain

Hendrik Dahlkamp, Adrian Kaehler,
David Stavens, Sebatian Thrun, and
Gary Bradski

Stanford University, Intel Corporation
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Goal: Detect drivable surface
for aiding speed calculations

Extract “training” area using

laser data

[0 Project onto
camera image

O Assume that area
contains only
drivable surface

[0 Remove sky and
shadows

0 Range: ~22m

57

ON COURSE : MILE 111.00
VELOCITY: 29.2 MPH
RDDF LIMIT: 30.0 MPH

10/16/2008
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Learn visual model of nearby
road

O Approximate using mixture of k
Gaussians in RGB space

[0 Additional Gaussians describing
training history

59

Score visual field by road model

[0 Use distance from each pixel to
nearest Gaussian to assign a
“roadness” score.

60
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Select identified patches

O Threshold image points further away than 3o to
get a binary drivability image.

O Run several filters to remove small non-
drivable areas (rocks, leaves) while preserving
bigger obstacles.

Usage

O Used as pre-warning system for capping
speed (if can’t see clear road for 40m).

O Ran at 12fps on single processor on 320 X
240 images.

0 Extended road detection to up to 70m.
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Pretty video...

63
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