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Self-Supervised Online Learning 
Approaches for Robot Navigation
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Mobile Robot Navigation
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Local Perception System

Local 

Features

Perception systemSensors

Planner (D*)

Cost map
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Motivation

 Sensing range

 Onboard 
perception 
system loses 
effectiveness at 
longer ranges 
(past 12-15 
meters in this 
case)

 Results in 
inefficient and 
often 
dangerous 
exploration 
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How to Improve

 Use overhead data 
(imagery, elevation, etc.)
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Hand-Train Overhead Interpreter

 Hand-train 
overhead classifier 
/ cost predictor

 Apply to larger 
map

 Use resulting map 
for planning
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How to Improve

 Use overhead data (imagery, 
elevation, etc.)
 Difficult to interpret consistently

 Variations in terrain, lighting, 
weather, time of gathering

 Extend the range of the perception 
system
 Not enough data to accurately 

generate perception system’s 
features
 Can’t estimate ground plane, 

inaccurate density, etc.

 Features that are computable
are difficult to interpret 
consistently
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 Overhead data features

 Color, texture, clustering, elevation, PCA, 
neighbor features, etc.

 Far-range sensor data features

 Color, ladar point elevation spread / std, 
neighbor features, etc.

 How can we best use these potentially 
powerful, but difficult to generalize, 
features?

How to Improve

Scoped Learning

10
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The Algorithm

 Model the relationship 
between these features 
and measured traversal 
cost in a Bayesian 
probabilistic framework

 Online Bayesian 
Linear Regression

 Relate multiple data 
sources with different 
“scope” to each other

Blei, ’02
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The Algorithm

 Initialize the distribution to 
the prior distribution 

 We want to compute

 For every training 
example        , multiply 
the distribution by

 By computing                  , 
we are performing self-
supervised learning using a 
Bayesian linear regression 
model
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The Algorithm

 Learn to interpret these locale-specific features by taking 
advantage of the globally interpretable features from the 
perception system
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The Algorithm
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Results

 Overhead Online Learning

 Online use

 Offline use

 Far-Range Online Learning
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 Far-Range Online Learning
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Overhead Online Learning
Using features from 40cm color imagery and elevation data
Updating traversal cost map onboard robot in 65 m radius
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Overhead Online Learning
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Results
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 Online use

 Offline use

 Far-Range Online Learning
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Far-Range Online Learning
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Far-Range Online Learning
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Results

Far Range 
Online Learning

28

Results
Overhead 

Online 
Learning
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Results

 Overhead Online Learning

 Online use

 Offline use

 Far-Range Online Learning
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Overhead Online Learning (Offline)

Training course

2000m x 750m
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Overhead Online Learning (Offline)

Using 1m black and 
white imagery data

Using 35cm color 
imagery data

32

Overhead Online Learning (Offline)

 Data alignment
 Use                   to 

detect most likely 
map alignment

 Use alignment with 
the highest average 
log probability over 
all examples seen
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Additional Benefits

 Reversible learning

 Confidence-rated predictions

34

Reversible Learning

 Multiple estimates of single quantity

 Receive example

 Receive lower variance estimate 

 always takes into account only best 
estimates available for all examples 
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Additional Benefits

 Reversible learning

 Confidence-rated predictions
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Confidence-rated predictions

 Use variance 
estimate (HW3!) 
provided by 
algorithm for the 
probability of 
each estimate as 
measure of 
confidence

 “Surprise” at 
seeing set of 
features
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Far-Range Online Learning with 
Velodine

37

Movie…

Questions?

38
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A Self-Supervised Terrain Roughness 
Estimator for Off-Road Autonomous Driving

David Stavens and Sebastian Thrun

Stanford Artificial Intelligence Lab

“Combines” strengths of multiple sensors.

Ultra-Precise, No Range Precise, Long Range
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Velocity Planning for DGC 2005

 Mobile robotics traditionally focuses on steering.

 But speed is also important.

 Beyond stopping distance and lateral 
maneuverability.

 Stanley adapted its speed to terrain conditions, 
minimizing shock:

 Increases electrical and mechanical reliability.

 Mitigates pose error for laser projection.

 Increases traction for improved maneuvers.

 Correlated with slowing on “hard” terrain.

 Simple three state algorithm:

 Drive at speed limit until shock threshold 
exceeded.

 Slow to bring the vehicle within the 
shock threshold.

 Uses approx. linear relationship between 
shock and speed.

 Accelerate back to the speed limit.

Reactive Approach (used during 
DGC)
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Acquiring a 3D Point Cloud

Movie…

Errors in Pose and Projection

Goal: know amount of error that is expected so 
that actual rough terrain or obstacles may be 
better identified. 
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Z Error vs. Time

More than t

 “Spread” of plot implies more factors 
than t.

 Also related to:

 Amount/rate of pitching.

 Distance between the two scans.
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Comparing Two Laser Points

Uncertainty = pair =   

1| z | 2 –

3| t | 4 –

5| xy distance | 6 –

7| dpitch1 | 8 – 7| dpitch2 | 8 –

9| droll1 | 10 – 9| droll2 | 10

 Seven Features: z, t, xy distance, 
dpitches, drolls

 10 Parameters: 1 2 … 10  (generated with self-

supervised learning)

Estimate Roughness

 Combine points in estimated future 
locations of wheels to estimate a 
roughness score, R, for terrain 
patch.

 But how do we assign target values 
to R?
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Self-Supervised Learning

Actual shock when driving over 
terrain modifies belief about original 
laser scan.

Improves classifier for subsequent 
scans!
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Caveat: Must Correct for Speed

Mapping from R to Shock

Learn a simple suspension model 
in parallel with the classifier:

Rcombined = Rleft 
11

+ Rright 
11

Rleft and Rright is for the terrain 
under each wheel.
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Learning Parameters

 Tp = true positive rate

 Fp = false positive rate

 Maximize Tp – λFp

 Used λ = 5 to minimize false positives

 Optimized through coordinate ascent

 Greedily optimize each parameter 
individually, decreasing learning rate 
each cycle by factor of 2.

53
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Self-Supervised Monocular Road 
Detection in Desert Terrain

Hendrik Dahlkamp, Adrian Kaehler, 
David Stavens, Sebatian Thrun, and 
Gary Bradski

Stanford University, Intel Corporation



10/16/2008

29

Goal: Detect drivable surface 
for aiding speed calculations

57

Extract “training” area using 
laser data

58

 Project onto 
camera image

 Assume that area 
contains only 
drivable surface

 Remove sky and 
shadows

 Range: ~22m
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Learn visual model of nearby 
road

 Approximate using mixture of k 
Gaussians in RGB space

 Additional Gaussians describing 
training history

59

Score visual field by road model

 Use distance from each pixel to 
nearest Gaussian to assign a 
“roadness” score.

60
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Select identified patches

 Threshold image points further away than 3σ to 
get a binary drivability image.

 Run several filters to remove small non-
drivable areas (rocks, leaves) while preserving 
bigger obstacles.
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Usage

 Used as pre-warning system for capping 
speed (if can’t see clear road for 40m).

 Ran at 12fps on single processor on 320 x 
240 images.

 Extended road detection to up to 70m.

62
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Pretty video…

63


