Statistical Techniques in Robotics (16-831, F08) Lecture #17 (Tuesday October 215%)

Gaussian Processes

Lecturer: Drew Bagnell Scribe: Veaceslav Arabagi

1 Motivational examples for Gaussian Processes (GP)

e State of the art nonlinear regressions done with GP Bayes filter
e Used in reverse kinematics, dynamics, modeling

e Concrete example: Modeling of soil properties !

— Task: Model the distribution of soil pH throughout Honduras land
— A limited set of datapoints of soil pH at fixed locations through the country is provided
— Variables influencing soil pH: sunlight, rainfall amount, topography, vegetation etc

— Used state of the art GP Bayes filter to predict the mean soil pH and the prediction
variance, or confidence (1)

Figure 1: Predicted map of pH in topsoil and 67% confidence interval.

1J. P. Gonzalez, S. Cook, T. Oberthur, A. Jarvis, J. A. Bagnell and M. Bernardine, Creating Low-Cost Soil Maps
for Tropical Agriculture using Gaussian Processes, JCAI 2007, Jan 2007.



2 High level idea behind GP’s

e Cconsider a function as a really long list of numbers, a vector of numbers
e For discrete set of locations build a Gaussian distribution on the vector
e Generalize discrete covariance to continuous functions

e Graphically

Generalizing the idea of a distribution of a vector
f(x) to continuous functions and using the expan-
sion of the matrix exponent:
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Consider f(x) = [f(z1), f(22), f(23),..., fF(10)]" (2)
then we can form a Gaussian distribution on this =~ we obtain a distribution of continuous functions:
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Figure 3: Sample function passing through train-
Figure 2: Sample points for GP filter ing points for GP filter

However, in the continuous function case the normahzer is effectively an integral over all functions,
which is infinite. This is a big problem, however there ex1sts a solution: marginalize all functions
by looking at a discrete number of points. To do that we apply the marginalization rules:

By = 0,
k(z1,z1) K(x1,22) - K(z1,20)
k(z2,x1) K(xe,z2) -+ K(x2,2p) (4)
fo = .
K(Tn, 1) K(Tp,x2) ... K(Tp,Tn)

where x(x,2’) is the kernel function and effectively portrays how each point z influences point .
The kernel function is one of the most important concepts in Gaussian processes and is used to
form the covariance X.



2.1 Kernel functions

Kernel functions must be positive definite and symmetric as the matrix ¥ they for has those
properties.
Sample kernel functions:
—(z—a')?
o k(z,2)=e" T
This is one of the simplest kernel functions that works surprisingly well. The parameter L is
the characteristic length and defines the distance over which the correlation of 2 points (z, z’)
is effective. The smaller the length scale, the less each point will influence its neighbor.

o k(z,2')=d(x— 1)

Effectively says that each point has no influence on its neighbor.
o k(z,2') =7 a
This kernel function results in Bayes linear regression.

3 How to apply algorithm
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Figure 4: Training datapoints x1,x2,x3 and one
unknown datapoint f(x*).

Let @ = [21, 22, 23]7 and f = [f(z1), f(z2), f(23)]T then we have the distribution of points:
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We are interested in the conditional distribution p = f(z*)|f(z1)f(2z2)f(z3) therefore we can com-
pute the mean and variance of the value f(x*) using rules for conditionalizing the Gaussian distri-
bution.
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