
Statistical Techniques in Robotics (16-831, F08) Lecture #17 (Tuesday October 21st)

Gaussian Processes

Lecturer: Drew Bagnell Scribe: Veaceslav Arabagi

1 Motivational examples for Gaussian Processes (GP)

• State of the art nonlinear regressions done with GP Bayes filter

• Used in reverse kinematics, dynamics, modeling

• Concrete example: Modeling of soil properties 1

– Task: Model the distribution of soil pH throughout Honduras land

– A limited set of datapoints of soil pH at fixed locations through the country is provided

– Variables influencing soil pH: sunlight, rainfall amount, topography, vegetation etc

– Used state of the art GP Bayes filter to predict the mean soil pH and the prediction
variance, or confidence (1)

Figure 1: Predicted map of pH in topsoil and 67% confidence interval.

1J. P. Gonzalez, S. Cook, T. Oberthur, A. Jarvis, J. A. Bagnell and M. Bernardine, Creating Low-Cost Soil Maps
for Tropical Agriculture using Gaussian Processes, JCAI 2007, Jan 2007.

1



2 High level idea behind GP’s

• Cconsider a function as a really long list of numbers, a vector of numbers

• For discrete set of locations build a Gaussian distribution on the vector

• Generalize discrete covariance to continuous functions

• Graphically

Consider ~f(x) = [f(x1), f(x2), f(x3), . . . , f(10)]T

then we can form a Gaussian distribution on this
vector of the form:

p( ~f(x)) =
1
z
e−(~f−µf )T Σ−1(~f−µf ) (1)
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Figure 2: Sample points for GP filter

Generalizing the idea of a distribution of a vector
~f(x) to continuous functions and using the expan-

sion of the matrix exponent:

(~f − µf )TΣ−1(~f − µf ) =
∑
i

∑
j

(fi − µi)Σ−ij1(fi − µi)

(2)
we obtain a distribution of continuous functions:

p(f) =
1
z
e−

1
2

∫
dx

∫
dx′f(x)∆(x,x′)f(x′) (3)
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Figure 3: Sample function passing through train-
ing points for GP filter

However, in the continuous function case the normalizer 1
z is effectively an integral over all functions,

which is infinite. This is a big problem, however there exists a solution: marginalize all functions
by looking at a discrete number of points. To do that we apply the marginalization rules:

µf = 0,

Σff =


κ(x1, x1) κ(x1, x2) · · · κ(x1, xn)
κ(x2, x1) κ(x2, x2) · · · κ(x2, xn)

...
...

κ(xn, x1) κ(xn, x2) . . . κ(xn, xn)

 (4)

where κ(x, x′) is the kernel function and effectively portrays how each point x influences point x′.
The kernel function is one of the most important concepts in Gaussian processes and is used to
form the covariance Σ.
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2.1 Kernel functions

Kernel functions must be positive definite and symmetric as the matrix Σ they for has those
properties.
Sample kernel functions:

• κ(x, x′) = e
−(x−x′)2

L

This is one of the simplest kernel functions that works surprisingly well. The parameter L is
the characteristic length and defines the distance over which the correlation of 2 points (x, x′)
is effective. The smaller the length scale, the less each point will influence its neighbor.

• κ(x, x′) = δ(x− x′)
Effectively says that each point has no influence on its neighbor.

• κ(x, x′) = ~xT ~x′

This kernel function results in Bayes linear regression.

3 How to apply algorithm

Consider a few datapoints in R2 as shown on
right. We are interested in predicting the value
of f(x∗).
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Figure 4: Training datapoints x1,x2,x3 and one
unknown datapoint f(x∗).

Let ~x ≡ [x1, x2, x3]T and ~f ≡ [f(x1), f(x2), f(x3)]T then we have the distribution of points:(
~f

f(x∗)

)
∼ N

(
0,
[
K~x~x K~xx∗

Kx∗~x Kx∗x∗

])
(5)

We are interested in the conditional distribution p = f(x∗)|f(x1)f(x2)f(x3) therefore we can com-
pute the mean and variance of the value f(x∗) using rules for conditionalizing the Gaussian distri-
bution.

µf∗ = KT
~xx∗K

−1
~x~x
~f

Σf∗ = Kx∗x∗ −KT
~xx∗K

−1
~x~xK~xx∗
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