Gaussian Processes (Continued)

Scribe: Mishari Alarfaj

1. Kernel Function

- The kernel function can sometimes be called the 'Covariance Function'
- $distance(x_1, x_2)$ In this lecture, we will use $k(x_1, x_2) = e$, where l is the 'rate of decay', or in other ٠ words, how much x_1 and x_2 influence each other.
- If l is too small, \hat{f} will appear to look like a series of delta functions.
- If 1 is too large, \hat{f} will be over-fitted.

2. Deriving the algorithm

- We have:
 - $k(x_1, x_2)$, the kernel function
 - $x_1, x_2 \dots x_{10}$, the feature vectors
 - $f(x_1), f(x_2)...f(x_{10})$, the result vector
- We now derive $p(f|x) = \frac{1}{z} e^{(\vec{f})^{\vec{r}} K^{-1}(\vec{f})}$
- Where:

•
$$f$$
 = The vector of results

$$K = \begin{bmatrix} k(x_{1}, x_{1}) & \dots & k(x_{1}, x_{n}) \\ \vdots & \ddots & \vdots \\ k(x_{n}, x_{1}) & \dots & k(x_{n}, x_{n}) \end{bmatrix}$$

•
$$z = \sqrt{(2\pi)^n * det(K)}$$

Keep in mind that $\mu = 0$ for now

Aside: Why is this useful?

Consider the kernel function above with values of l = 1.0 and l = 0.5

$$k_1(x_{1,}x_2) = e^{\frac{-distance(x_1,x_2)^2}{1.0}} \quad k_2(x_{1,}x_2) = e^{\frac{-distance(x_1,x_2)^2}{0.5}}$$

- Which do we choose? •
- We want I by solving: $max \log(p(f|l)) + \log(p(l))$
- Which is the same as: $\min_{i} \frac{1}{2} \vec{f}^{T} K^{-1} \vec{f} + \log|K| + C$
 - The first term is the error in prediction, since it is not 0-mean
 - The second term is large if there is little overlap, and small if there is a lot of overlap

0.5

k₁,k₂ above are isotropic kernels, and are uniform over the space

Aside 2: 0-Mean does not matter... Why?

• Let mean $\mu = 0$ $f \sim GP(\mu(x), k(x, x'))$

 $f'=f(x)-\mu(x)$

f' = GP(0, k(x, x'))

• Also, μ is independent of covariance since it is only a bias.

3. Back to derivation

- Up until now, we have not considered noise.
- We attach the next result, f^* to the result vector and calculate its parameters as before:

$$\begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \\ f^* \end{bmatrix} = N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K_{xx} & K_{xx^*} \\ K_{x^*x} & K_{x^*x^*} \end{bmatrix} \right)$$

- When we condition, we get: $f^* | \vec{f} = N \left(K_{x^*x} * K_{xx}^{-1} * \vec{f}, ... \right)$
 - Where we set $\alpha = K_{xx}^{-1} * \vec{f}$

• posterior:
$$\mu(x|\vec{f}) = \sum_{i} \alpha_i * K(x_i, x)$$

- Another way of looking at it is: $\beta = K_{x^*x} * K_{xx}^{-1}$
 - posterior: $\mu(x^*|\vec{f}) = \sum_i \beta(x^*) * \vec{f}$
 - Where β is the 'equivalent kernel'
- However, we never see f's, we see 'y'
 - $y_i = f_i + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$
 - So we get: $\vec{y} = \vec{f} + \epsilon$ where $\epsilon \sim N(0, \sigma^2 I)$
 - Therefore: $p(\vec{y}) = N(0, K + \sigma^2 I)$ since Var(X + Y) = Var(X) + Var(Y) if X and Y are independent of each other.
 - Finally: $p(y^*|y_1, y_2, ..., y_n) = N(K_{x, x} * [K + \sigma^2 I]^{-1} * \vec{y}, ...)$

4. Computational complexity:

- Learning
 - $BLR = O(d^3)$
 - $GP = O(n^3)$
- Prediction (per point)
 - BLR = O(d)
 - $GP = O(n * \hat{d})$ where \hat{d} is dependent on the kernel used

5.Conclusion

- To Predict: •
 - $\alpha = K_{x,x^*} * [K + \sigma^2 \mathbf{I}]^{-1}$ •
 - $\mu = \sum_{i} \alpha_{i} k(x_{i}, x^{*})$ •
- •
- To prevent outfitting: More noise = less correlation
 - Cross-validate with a certain set of data points.