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1. Kernel Function
• The kernel function can sometimes be called the 'Covariance Function'

• In this lecture, we will use k  x 1, x2=e
distance x1, x2

l 2 , where l is the 'rate of decay', or in other 

words, how much x1 and x2 influence each other. 
• If l is too small, f will appear to look like a series of delta functions.  
• If l is too large, f will be over-fitted.  

2. Deriving the algorithm
• We have:

• k(x1, x2), the kernel function
• x1, x2 ... x10 , the feature vectors
• f(x1), f(x2)...f(x10), the result vector

• We now derive p  f ∣x = 1
z
e 

f T K−1 f 

• Where:
• f = The vector of results

• K=〚 k  x1, x1 ... k x 1, xn
⋮ ⋱ ⋮

k x n , x 1 ... k x n , x n〛
• z=2n∗det K 

• Keep in mind that =0 for now

Aside: Why is this useful?
• Consider the kernel function above with values of l = 1.0 and l = 0.5

• k 1 x1, x 2=e
−distance x1, x2

2

1.0 k 2 x1, x2=e
−distance x1, x2

2

0.5

• Which do we choose?
• We want l by solving: max

l
log  p  f ∣l log  pl 

• Which is the same as: min
l

1
2

f T K−1 flog∣K∣C

• The first term is the error in prediction, since it is not 0-mean
• The second term is large if there is little overlap, and small if there is a lot of overlap

• k1,k2 above are isotropic kernels, and are uniform over the space 



Aside 2: 0-Mean does not matter... Why?
• Let mean =0

•
f ~GP x  , k x , x ' 

f '= f x −x 

f '=GP 0,k x , x ' 
• Also,  is independent of covariance since it is only a bias. 

3. Back to derivation
• Up until now, we have not considered noise. 
• We attach the next result, f ∗ to the result vector and calculate its parameters as before:

〚
f 1

f 2

⋮
f n
f ∗

〛= N 〚0
0〛 ,〚 K xx K xx ∗

K x∗ x K x∗ x ∗〛
• When we condition, we get: f ∗∣f=N K x ∗ x∗K xx

−1∗f , ... 
• Where we set =K xx

−1∗f

• posterior:  x∣f =
i
i∗K  x i , x 

• Another way of looking at it is: =K
x ∗ x

∗K xx
−1

• posterior: x∗∣f =
i
 x∗ ∗f

• Where  is the 'equivalent kernel'

• However, we never see f's, we see 'y'
• y i= f i where ~N 0,2
• So we get: y=f  where ~N 0,2 I 
• Therefore: p  y =N 0,K2 I since Var  XY =Var X Var Y  if X and Y are 

independent of each other. 

• Finally: p  y∗∣y1, y2, ... yn=N K x , x ∗∗[K 2 I]−1∗y , ... 

4. Computational complexity:

• Learning
• BLR=O d 3
• GP=O n3

• Prediction (per point)
• BLR=O d 
• GP=O n∗d  where d is dependent on the kernel used
•



5.Conclusion
• To Predict:

• =K
x , x∗

∗[K2 I ]−1

• =
i

i k  x i , x
∗ 

• To prevent outfitting:
• More noise = less correlation
• Cross-validate with a certain set of data points. 


