
Statistical Techniques in Robotics (16-831, F08) Lecture #2 (Thursday August 28)

Filtering Theory

Lecturer: Drew Bagnell Scribe: Felix Duvallet

1 Filtering Problems

1.1 Givens

Here is what we have:

• Stream of data: d = {u1, z2, u2, z2, . . . , ut, zt}

• Inititial distribution over states: p(x0)

• Motion model
p(xt|xt−1, ut) (1)

• Observation model
p(zt|xt) (2)

1.2 Compute

And this is what we want:

• Posterior state distribution
Bel(xt) = p(xt|d) (3)

NOTE: We never actually get states (xi) given to us, but since this is a recursive process having
p(x0) is enough.

1.3 Markov Assumptions

Both of these assume that past and future data are independent if one knows the current state.

• Observation model Markov assumption

p (zt|x0:t, u1:t, z1:t−1) = p (zt|xt) (4)

• Transition/Action model Markov assumption

p (xt|x0:t−1, u1:t, z1:t−1) = p (xt|xt−1, ut) (5)

Note that these assumption are not always true (for example if we have unmodeled dynamics not
included in the state), but they are practical and make computation tractable.

1

Figure 1: Grid localization

2 Derivation of the Bayes Filter

In this derivation, we assume that we correctly initialized the prior belief (Bel(x0)). It also requires
that controls be chosen at random.

Bel(xt) = p(xt|z1:t)
= η p(zt|xt, z1:t−1) p(xt|z1:t−1) Bayes’ Rule
= η p(zt|xt) p(xt|z1:t−1) Markov Assumption
= η p(zt|xt)

∫

[p(xt|z1:t−1, xt−1) p(xt−1|z1:t−1)] dxt−1 Law of Total Probability
= η p(zt|xt)

∫

[p(xt|xt−1) Bel(xt−1)] dxt−1 Markov Assumption

2

3 Bayes Filter as Algorithm

Here is the Bayes Filter implemented as an algorithm:

Algorithm 1 filter(Bel(x), data):

1: if data is a perception (z) then

2: for all x do

3: Bel′(x) = p(z|x)Bel(x)
4: η = η + Bel′(x)
5: end for

6: for all x do

7: Bel′(x) = 1

η
Bel′(x)

8: end for

9: else if data is an action (u) then

10: Bel′(x) =
∑

x̂ Bel(x̂) p (x|action, x̂)
11: end if

12: return Bel′(x)

4 Example: Piecewise Constant Filter

Figure 1 shows a simple 1D example. A sensor tells the robot the state of the door. Note that the
belief begins as a uniform distribution, and then changes as observations and actions are processed.

5 Markov Localization (Grid-based Localization)

In this simplistic implementation shown in Figure 2, one keeps track of the likelihood for all possible
states. As the robot moves, the uncertainty in position is reduced.

NOTE: This quickly becomes intractable as the number of dimensions increases.

6 Forward Sensor Models

• Beam-based sensors (lasers, sonars, stereo vision)

• Observations: A scan z consists of K measurements:

z = {z1, z2, . . . , zK} (6)

• Likelihood of observation (given map m):

p(z|x, m) =
K
∏

k=1

p (zk|x, m) (7)

3

Figure 2: Localization in a Museum

• NOTE: The individual measurements are independent given the position. This assumption is
not generally true, as this can lead to overconfident likelihoods, but it is (once again) practical
for now.

• Sources of measurement error (See Figure 3):

– Beams reflected by obstacles

– People

– Random measurements

– Max range measurements

We would like to develop a model for the proximity sensors used that accounts for the various
sources of noise. It will incorporate four types of measurement errors shown in Figure 4:

1. Local measurement noise: Accounts for non-idealities in the measurement process (a)

4

Figure 3: Typical ultrasound errors

2. Unexpected obstacles: Accounts for dynamic objects which are not represented in the static
map (b)

3. Max-range measurement: In the event that the sensor ‘misses’ the target and returns a max-
range measurement (c)

4. Random measurements: When the sensor is really having a bad day... (d)

Figure 4: Components of error model

We can do a linear combination of the distributions to get a “Pseudo-density” distribution (Fig-
ure 5).

5

Figure 5: Combined error model

7 From Localization to Mapping

Instead of doing localization, we will try to solve the opposite problem: Given the position of the
robot, find the map of the world.

7.1 Occupancy mapping

We will partition the world into cells, with each being one of two states: filled or not. The individual
grid cells are mi, and ~m is the vector of all grid cells. Unfortunately, the curse of dimensionality
prevents us from filtering ~m. Instead, we will filter each cell independently, assuming that they are
in fact independent. In truth, this is a very bad assumption to make, but it is practical.

7.2 Derivation

Let x represent the state of grid cell mi (essentially x← mi).

p(x|z1:t) =
p(zt|x)p(x|z1:t−1)

p(zt|z1:t−1)

=
p(x|zt)p(zt)

p(x)

p(x|z1:t−1)

p(zt|z1:t−1)

Here we need to use a trick because we have many nasty terms that are hard to calculate. We will
start by computing (by analogy) the likelihood for the opposite event x̄

p(x̄|z1:t) =
p(x̄|zt)p(zt)

p(x̄)

p(x̄|z1:t−1)

p(zt|z1:t−1)
, (8)

and then divide the two:

p(x|z1:t)

p(x̄|z1:t)
=

[

p(x|zt)

p(x̄|zt)

] [

p(x)

p(x̄)

] [

p(x|z1:t−1)

p(x̄|z1:t−1)

]

(9)

Taking the log of (9) gives us the log odds ratio of the belief. We can use this to turn a series of
multiplication and divisions into additions and subtractions (see page 96).

6

