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Extensions to Kalman Filtering
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1 The Extended Kalman Filter

Previously, we used a Kalman Filter which could only model linear transformations:

xt+1 = Axt + ε, where ε ∼ N (0, Q) (1)

yt+1 = Axt+1 + δ, where δ ∼ N (0, R) (2)

Now we would like to be able to model non-linear transformations with our filter:

xt+1 = f(xt) + ε, where ε ∼ N (0, Q) (3)

yt+1 = g(xt+1) + δ, where δ ∼ N (0, R) (4)

One way to deal with this non-linearity is to use the taylor expansion. In this case we approximate
the transformations using the first order taylor expansion evaluated at the mean estimate of x at
time t, µt:

xt+1 ≈ f(µt) +
∂f

∂x
(µt)(xt − µt) + ε (5)

yt+1 ≈ g(µt+1) +
∂g

∂x
(µt+1)(xt+1 − µt+1) + δ (6)

The first order derivative term ∂f
∂x

(µt), also referred to as the Jacobian, is used here as the linear
transformation, while the f(µt) term just serves to shift the mean of the transformation.

1.1 New Update Rules

Using the non-linear transformation above, we get the following new update equations for our mean
and variance estimates for the motion model:

µ−
t+1 = f(µ+

t ) (7)

Σ−
t+1 = JfΣ+

t JT
f + Q (8)

And for the sensor model:

µ+
t+1 = µ−

t+1 + Σ−
t+1J

T
g (JgΣ

−
t+1J

T
g + R)−1[yt+1 − g(µ−

t+1)] (9)

Σ+
t+1 = Σ−

t+1 − Σ−
t+1J

T
g (JgΣ

−
t+1J

T
g + R)−1JgΣ

−
t+1 (10)

where Jf = ∂f
∂x

(µ+
t ) and Jg = ∂g

∂x
(µ−

t+1).
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1.2 Problems with Extended Kalman Filtering

• Taylor expansion is a poor approximation of most non-linear functions.

• Very difficult to implement correctly: you will most likely get the Jacobian wrong on the first
try. Even when the Jacobian is wrong, it can be hard to tell whether your implementation is
incorrect or the poor filtering results are due to the Taylor expansion.

1.3 Example: Non-Linear Regression

In this example we want to use an EKF for a non-linear regression problem. In this case our state
vector is a set of weights w and we wish to estimate the mean and variance µw, Σw with our EKF,
which we will just refer to as µ and Σ from here on.

The motion model is for stationary weights:

µ−
t+1 = µ+

t (11)

Σ−
t+1 = Σ+

t (12)

For our observation model we want to use the non-linear sigmoid function σ(x) = 1
1+exp(x) :

yt = σ(wT x) + δ, where δ ∼ N (0, γ2) (13)

(14)

Note that our output in this case is a single value, so our Jacobian will be a vector. We can find
the Jacobian Jσ using the chain rule and the fact that ∂σ

∂x
= σ(x)(1−σ(x)). Here we actually want

to find the derivative of g(w) = σ(wT x), so we use the chain rule with z = wT x.

∂g

∂w
=

∂g

∂z

∂z

∂w
(15)

= σ(wT x)(1 − σ(wT x))xT (16)

Jσ =
∂g

∂w
(µ) (17)

= σ(µT x)(1 − σ(µT x))xT (18)

This gives update equations:

µ+
t+1 = µ−

t+1 + Σ−
t+1J

T
σ (JσΣ−

t+1J
T
σ + γ2)−1[yt+1 − σ(µ−

t+1
T
x)] (19)

Σ+
t+1 = Σ−

t+1 − Σ−
t+1J

T
σ (JσΣ−

t+1J
T
σ + γ2)−1JσΣ−

t+1 (20)

2 Other Non-linear Techniques

2.1 Statistical Linearization

One initial improvement on the linearization above is to use a method other than the Taylor
expansion to find a linear approximation for f and g. In statistical linearization we sample points
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around the mean estimate and then fit a line, plane, etc. to the sampled points and use that linear
approximation to run the Kalman filter.

2.2 Unscented Kalman Filter

Another sampling-based method for dealing with non-linearities is to use the unscented transform.
Here we simply sample points from the current mean and covariance and transform them according
to the non-linear function f in our model, and then fit a new Gaussian to these transformed
points, giving an updated mean and covariance matrix. This transformation is called the unscented
transformation, from which the UKF derives it’s name. For a pictorial comparison, see Figure 1.

Figure 1: A comparison of the actual transformation, and the approximations
given by the linear approximation and the unscented transformation. (Source:
http://cslu.cse.ogi.edu/nsel/ukf/node6.html)

Typically the points used are the mean, and then points sampled at set distances along the principal
axes of the Gaussian (the eigenvectors of the covariance matrix). The transformed points are also
usually weighted based on the original mean and covariance and selection of these points, and a
new distribution is fit to the weighted points.

The above method works for the motion model, but for the sensor model we need to operate a little
differently. Here we transform the sampled points according to our sensor transform g, and then
use the sampled points and the original points to estimate the unknown portions of the mean and
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covariance in block form:

N (

[

µx

µy

]

,

[

Σxx Σxy

Σyx Σyy

]

) (21)

For example, the matrix Σyy can be found by simply taking the covariance of the transformed
points. Once we have estimated all quantities above, the resulting conditional distribution is easily
found using the standard equations, E.G. the conditional mean is given as:

µx|y = µx + Σxy(Σyy)
−1[y − µy] (22)

There are a number of different filters that use this technique, but differ in how the select the
points used and how the points are weighted. This includes: Sigma Point, Unscented, and Central
Difference Filters.

2.2.1 Advantages / Disadvantages

• Advantage: You only need to implement the UKF once, as the implementation is independent
of the models (I.E. f, g) used. It’s also easier to implement correctly.

• Disadvantage: It will be slower than the regular Kalman filtering, and you don’t gain anything
if your transformation is linear.
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