
Statistical Techniques in Robotics (16-831, F08) Lecture #23 (Nov 11, 2008)

Kernel Methods / Functional Gradient Descent

Lecturer: Drew Bagnell Scribe: Daniel Munoz

1 Goal

The high-level idea is to learn non-linear models using the same gradient-based approach used to
learn linear models. Hopefully this will result in better models that improve classification.

2 Review

• Ultimately, we wish to learn a function f : Rn → R that assigns a meaningful score given a
data point. E.g. in binary classification, we would like f(·) to return positive and negative
values, given positive and negative samples, respectively.

• A kernel K : Rn × Rn → R intuitively measures the correlation between f(xi) and f(xj).
Considering a matrix K with entries Kij = K(xi,xj), then matrix K must satisfy the prop-
erties:

– K is symmetric (Kij = Kji)

– K is positive-definite (∀x ∈ Rn : x 6= 0,xTKx > 0)

Hence, a valid kernel is the inner product: Kij = 〈xi,xj〉.

• A function can be considers as a weighted composition of many kernels centered at various
locations xi:

f(·) =
Q∑
i=1

αiK(xi, ·), (1)

where Q is the number of kernels that compose f(·) and αi ∈ R is each kernel’s associated
weight.

– All functions f(·) with kernel K that satisfy the above properties and can be written in
the form of Equation 1 are said to lie in a Reproducing Kernel Hilbert Space (RKHS)
HK : f ∈ HK

– The inner-product of two functions f and g is defined as

〈f, g〉 =
Q∑
i=1

P∑
j=1

αiβjK(xi,xj) = αTKβ, (2)

where α ∈ RQ and β ∈ RP are the kernel coefficients for f and g, respectively.

∗ By definition, the following property holds: 〈K(xi, ·),K(·,xj)〉 = K(xi,xj)

1

∗ The reproducing property is observed by taking the inner-product of a function with
a kernel: 〈f,K(xj, ·)〉 = 〈

∑Q
i=1 αiK(xi, ·),K(·,xj)〉 =

∑Q
i=1 αi〈K(xi, ·),K(·,xj)〉 =∑Q

i=1 αiK(xi,xj) = f(xj)
∗ Note that due to positive-definite constraint, the squared norm of a function f is

always positive when α 6= 0. (||f ||2 = 〈f, f〉 = αTKα > 0)

• A functional F : f → R is a function of functions f ∈ HK . Examples:

– F [f] = ||f ||2

– F [f] = (f(x)− y)2

– F [f] = λ
2 ||f ||

2 +
∑

i(f(xi)− yi)2

• A functional gradient ∇F [f] is defined implictly as the linear term of the change in a function
due to a small perturbation ε in its input: F [f + εg] = F [f] + ε〈∇F [f], g〉+O(ε2)

– Example: ∇F [f] = ∇||f ||2 = 2f

F [f + εg] = 〈f + εg, f + εg〉
= ||f ||+ 2〈f, εg〉+ ε2||g||
= ||f ||+ ε〈2f, g〉+O(ε2)

3 More functional gradients

• Consider differentiable functions C : R→ R that are functions of functionals G, C(G[f]). We
will be minimizing these (cost) functions in the near future.

• The derivative of these functions follows the chain rule: ∇C(G[f]) = C ′(G[f])∇G[f]

– Example: If C = (||f ||2)2, then ∇C = (2(||f ||2))(2f)

• The evaluation functional evaluates f at the specified x: Fx[f] = f(x) = ex[f]

– Its gradient is ∇ex = K(x, ·)

ex[f + εg] = f(x) + εg(x) + 0
= f(x) + ε〈K(x, ·), g〉+ 0
= ex[f] + ε〈∇ex, g〉+O(ε2)

– Called a linear functional due to lack of multiplier on perturbation ε

4 Functional gradient descent

• Consider the regularized least squares loss function L[f]

L[f] = (f(xi)− yi)2 + λ||f ||2

∇L[f] = 2(f(xi)− yi)K(xi, ·) + 2λf

2

• Update rule:

f t+1 ← f t − ηt∇L
← f t − ηt(2(f t(xi)− yi)K(xi, ·) + 2λf t)
← f t(1− 2ηtλ)− ηt(2(f t(xi)− yi)K(xi, ·))

• Need to perform O(T) work at each time step

• Example: Figure 4 shows an update over 3 points {(x1,+), (x2,−), (x3,+)}. The individual
kernels centered at the points are independently drawn with colored lines. After 3 updates,
the function f looks like the solid black line.

Figure 1: Illustration of function after 3 updates

• Representer Theorem (informally): Given a loss function and regularizer objective with
many data points {xi}, the minimizing solution f∗ can be represented as

f∗(·) =
∑
i

αiK(xi, ·) (3)

• Alternate idea from class: perform gradient descent in the space of α coefficients: ∇αL

– Takes n2 iterations to get same performance (n = number of iterations of functional
gradient descent)

– Every iteration is O(T 2)

5 Kernel SVM

• General loss function: L[f] = λ
2 ||f ||

2 + Ct(Fxi [f])

• General update rule: ft+1 ← ft(1− ληt)− ηtC ′t(Fxi [f])K(xi, ·)

• SVM cost function: Ct(Fxi) = max(0, 1− f(xi)yi)

∇Ct =

{
0 , 1− yif(xi) ≤ 0
(C ′(Fxi [f]))(∇Fxi [f]) = (−yi)(K(xi, ·)) , otherwise

(4)

3

