Statistical Techniques in Robotics (16-831, F08) Lecture #23 (Nov 11, 2008) Kernel Methods / Functional Gradient Descent Lecturer: Drew Bagnell Scribe: Daniel Munoz

1 Goal

The high-level idea is to learn non-linear models using the same gradient-based approach used to learn linear models. Hopefully this will result in better models that improve classification.

2 Review

- Ultimately, we wish to learn a function $f : \mathbb{R}^n \to \mathbb{R}$ that assigns a meaningful score given a data point. E.g. in binary classification, we would like $f(\cdot)$ to return positive and negative values, given positive and negative samples, respectively.
- A kernel $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ intuitively measures the *correlation* between $f(\mathbf{x_i})$ and $f(\mathbf{x_j})$. Considering a matrix **K** with entries $K_{ij} = K(\mathbf{x_i}, \mathbf{x_j})$, then matrix **K** must satisfy the properties:
	- **K** is symmetric $(K_{ij} = K_{ji})$
	- $-$ K is positive-definite $(\forall x \in \mathbb{R}^n : x \neq 0, x^T K x > 0)$

Hence, a valid kernel is the inner product: $K_{ij} = \langle \mathbf{x_i}, \mathbf{x_j} \rangle$.

• A function can be considers as a weighted composition of many kernels centered at various locations $\mathbf{x_i}$:

$$
f(\cdot) = \sum_{i=1}^{Q} \alpha_i K(\mathbf{x_i}, \cdot),
$$
 (1)

where Q is the number of kernels that compose $f(\cdot)$ and $\alpha_i \in \mathbb{R}$ is each kernel's associated weight.

- All functions $f(\cdot)$ with kernel K that satisfy the above properties and can be written in the form of Equation 1 are said to lie in a Reproducing Kernel Hilbert Space (RKHS) \mathcal{H}_K : $f \in \mathcal{H}_K$
- The inner-product of two functions f and g is defined as

$$
\langle f, g \rangle = \sum_{i=1}^{Q} \sum_{j=1}^{P} \alpha_i \beta_j K(\mathbf{x_i}, \mathbf{x_j}) = \alpha^{\mathbf{T}} \mathbf{K} \beta,
$$
 (2)

where $\alpha \in \mathbb{R}^Q$ and $\beta \in \mathbb{R}^P$ are the kernel coefficients for f and g, respectively.

* By definition, the following property holds: $\langle K(\mathbf{x_i}, \cdot), K(\cdot, \mathbf{x_j}) \rangle = K(\mathbf{x_i}, \mathbf{x_j})$

- ∗ The reproducing property is observed by taking the inner-product of a function with a kernel: $\langle f, K(\mathbf{x_j}, \cdot) \rangle = \langle \sum_{i=1}^Q \alpha_i K(\mathbf{x_i}, \cdot), K(\cdot, \mathbf{x_j}) \rangle = \sum_{i=1}^Q \alpha_i \langle K(\mathbf{x_i}, \cdot), K(\cdot, \mathbf{x_j}) \rangle =$ $\sum_{i=1}^{Q} \alpha_i K(\mathbf{x_i}, \mathbf{x_j}) = f(\mathbf{x_j})$
- $*$ Note that due to positive-definite constraint, the squared norm of a function f is always positive when $\alpha \neq \mathbf{0}$. $(||f||^2 = \langle f, f \rangle = \alpha^{\mathbf{T}} \mathbf{K} \alpha > 0$)
- A functional $F : f \to \mathbb{R}$ is a function of functions $f \in \mathcal{H}_K$. Examples:
	- $F[f] = ||f||^2$ $-F[f] = (f(x) - y)^2$ $- F[f] = \frac{\lambda}{2} ||f||^2 + \sum_i (f(x_i) - y_i)^2$
- A functional gradient $\nabla F[f]$ is defined implictly as the linear term of the change in a function due to a small perturbation ϵ in its input: $F[f + \epsilon g] = F[f] + \epsilon \langle \nabla F[f], g \rangle + O(\epsilon^2)$
	- Example: $\nabla F[f] = \nabla ||f||^2 = 2f$

$$
F[f + \epsilon g] = \langle f + \epsilon g, f + \epsilon g \rangle
$$

=
$$
||f|| + 2\langle f, \epsilon g \rangle + \epsilon^2 ||g||
$$

=
$$
||f|| + \epsilon \langle 2f, g \rangle + O(\epsilon^2)
$$

3 More functional gradients

- Consider differentiable functions $C : \mathbb{R} \to \mathbb{R}$ that are functions of functionals $G, C(G[f])$. We will be minimizing these (cost) functions in the near future.
- The derivative of these functions follows the chain rule: $\nabla C(G[f]) = C'(G[f]) \nabla G[f]$
	- Example: If $C = (||f||^2)^2$, then $\nabla C = (2(||f||^2))(2f)$
- The evaluation functional evaluates f at the specified x: $F_x[f] = f(x) = e_x[f]$
	- Its gradient is $\nabla e_x = K(x, \cdot)$

$$
e_x[f + \epsilon g] = f(x) + \epsilon g(x) + 0
$$

= $f(x) + \epsilon \langle K(x, \cdot), g \rangle + 0$
= $e_x[f] + \epsilon \langle \nabla e_x, g \rangle + O(\epsilon^2)$

– Called a *linear functional* due to lack of multiplier on perturbation ϵ

4 Functional gradient descent

• Consider the regularized least squares loss function $L[f]$

$$
L[f] = (f(x_i) - y_i)^2 + \lambda ||f||^2
$$

\n
$$
\nabla L[f] = 2(f(x_i) - y_i)K(x_i, \cdot) + 2\lambda f
$$

• Update rule:

$$
f^{t+1} \leftarrow f^t - \eta_t \nabla L
$$

\n
$$
\leftarrow f^t - \eta_t (2(f^t(x_i) - y_i)K(x_i, \cdot) + 2\lambda f^t)
$$

\n
$$
\leftarrow f^t (1 - 2\eta_t \lambda) - \eta_t (2(f^t(x_i) - y_i)K(x_i, \cdot))
$$

- Need to perform $O(T)$ work at each time step
- Example: Figure 4 shows an update over 3 points $\{(x_1, +), (x_2, -), (x_3, +)\}\.$ The individual kernels centered at the points are independently drawn with colored lines. After 3 updates, the function f looks like the solid black line.

Figure 1: Illustration of function after 3 updates

• Representer Theorem (informally): Given a loss function and regularizer objective with many data points $\{x_i\}$, the minimizing solution f^* can be represented as

$$
f^*(\cdot) = \sum_i \alpha_i K(x_i, \cdot) \tag{3}
$$

- Alternate idea from class: perform gradient descent in the space of α coefficients: $\nabla_{\alpha}L$
	- Takes n^2 iterations to get same performance ($n =$ number of iterations of functional gradient descent)
	- Every iteration is $O(T^2)$

5 Kernel SVM

- General loss function: $L[f] = \frac{\lambda}{2} ||f||^2 + C_t(F_{x_i}[f])$
- General update rule: $f_{t+1} \leftarrow f_t(1 \lambda \eta_t) \eta_t C'_t(F_{x_i}[f]) K(x_i, \cdot)$
- SVM cost function: $C_t(F_{x_i}) = \max(0, 1 f(x_i)y_i)$

$$
\nabla C_t = \begin{cases} 0 & , 1 - y_i f(x_i) \le 0 \\ (C'(F_{x_i}[f]))(\nabla F_{x_i}[f]) = (-y_i)(K(x_i, \cdot)) & , \text{otherwise} \end{cases}
$$
(4)