Statistical Techniques in Robotics (16-831, F08) Lecture #23 (Nov 11, 2008)

Kernel Methods / Functional Gradient Descent

Lecturer: Drew Bagnell Scribe: Daniel Munoz

1 Goal

The high-level idea is to learn non-linear models using the same gradient-based approach used to
learn linear models. Hopefully this will result in better models that improve classification.

2 Review

e Ultimately, we wish to learn a function f : R” — R that assigns a meaningful score given a
data point. E.g. in binary classification, we would like f(-) to return positive and negative
values, given positive and negative samples, respectively.

o A kernel K : R” x R" — R intuitively measures the correlation between f(x;) and f(x;).
Considering a matrix K with entries K;; = K(xj,X;), then matrix K must satisfy the prop-
erties:

— K is symmetric (K;; = Kj;)
— K is positive-definite (Vx € R" : x # 0,xTKx > 0)

Hence, a valid kernel is the inner product: Kj; = (xi,x;).

e A function can be considers as a weighted composition of many kernels centered at various

locations x;:
Q

O =) K (xi,), (1)

i=1
where @ is the number of kernels that compose f(-) and a; € R is each kernel’s associated
weight.

— All functions f(-) with kernel K that satisfy the above properties and can be written in
the form of Equation 1 are said to lie in a Reproducing Kernel Hilbert Space (RKHS)
Hri: f € Hi

— The inner-product of two functions f and g is defined as
Q P
(f.9) =D aifiK(x;,x5) = aTKB, (2)
i=1 j=1

where o € R? and 3 € R” are the kernel coefficients for f and g, respectively.
* By definition, the following property holds: (K (xj,-), K (-, x;)) = K(xi,X;)



* The reproducing property is observed by taking the inner- product of a function with
a kernel: (f, K(xj,7)) = (02 aiK (x,), K(x9)) = S aal K (xi,), K (. x5)) =
S ik (xi, ) = ;)

* Note that due to positive-definite constraint, the squared norm of a function f is
always positive when o # 0. (||f||? = (f, f) = aTKa > 0)

e A functional F : f — R is a function of functions f € Hy. Examples:

Flf] =[£I
Flf] = (f(z) —y)?
= Flf] =3P+ 2:(F (2:) — v:)?

e A functional gradient VF[f] is defined implictly as the linear term of the change in a function
due to a small perturbation € in its input: F[f + eg] = F[f] + ¢(VF[f], g) + O(€?)

— Example: VF[f] = V||f||? = 2f
Flf+egl = (f+eg,f+eg)

= [[fll +2(f.e9) + €lg]]
= [[fll +e(2f.9) +O(e)

3 More functional gradients

e Consider differentiable functions C': R — R that are functions of functionals G, C(G[f]). We
will be minimizing these (cost) functions in the near future.

e The derivative of these functions follows the chain rule: VC(G[f]) = C'(G[f])VG|f]
— Example: If C' = (||f][*)?, then VC = (2(||f]*))(2/)
e The evaluation functional evaluates f at the specified x: F.[f] = f(z) = es[f]

— Its gradient is Ve, = K (z, )

e[f+eg] = f(z)+eg(x )+0
= f(z)+€eK(x,-),g9)+0
- ex[f]+e<Vex,g>+0( %)

— Called a linear functional due to lack of multiplier on perturbation e

4 Functional gradient descent

e Consider the regularized least squares loss function L]f]

LIf] = (f(z:)—w)® + I
VL[f] = 2(f(zi) —y)) K(2i,) + 2\ f



e Update rule:
ft+1 - ft _ ntVL

= fP =m0 (20) — ) K (22,7) + 2 f°)
= S = 2mA) = ne (20" (20) — yi) K (i, ))

e Need to perform O(T') work at each time step

e Example: Figure 4 shows an update over 3 points {(z1,+), (22, —), (z3,+)}. The individual
kernels centered at the points are independently drawn with colored lines. After 3 updates,
the function f looks like the solid black line.

y_ 2

Figure 1: Ilustration of function after 3 updates

e Representer Theorem (informally): Given a loss function and regularizer objective with
many data points {z;}, the minimizing solution f* can be represented as

)= Z%K(%,‘) (3)

e Alternate idea from class: perform gradient descent in the space of « coefficients: VL

— Takes n? iterations to get same performance (n = number of iterations of functional
gradient descent)

— Every iteration is O(T?)

5 Kernel SVM

e General loss function: L[f] = 3||f||> + Ci(Fy,[f])
e General update rule: fip1 < fi(1 — M) — mCy(Fy, [f]) K (24, -)
e SVM cost function: Cy(Fy,) = max(0,1 — f(zi)yi)

VC, = {0 A —yif(r) <0
(C"(Fu, [f )V Ex,[f]) = (=yi) (K (24,+)) , otherwise



