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Gradient Boosting

Lecturer: Drew Bagnell Scribe: Sergio Valcarcel

1 Review Online Kernel Machine

1. Start
f = 0 (1)

2. Receive
xt (2)

3. Make prediction using
ft(xt) (3)

4. Receive
Ct(ft(xt)) (4)

5. Update
f(xt+1)⇐ ft − ηt i(f(xt)k(xtj) (5)

6. Optionally shrink all weights

Regret =
∑

t

(Ct(ft(xt))− Ct(f∗(xt))) | f∗ ∈ Hk (6)

Bound of the functional gradient time:

Regret ≤‖ f∗ ‖ · ‖ ∇Ct(f) ‖k
√
T (7)

‖ f∗ ‖ is the size of the function. How big can ‖ ∇Ct(f) ‖k be related to step 5? The answer is:
αTKα which reminds to Support Vector Machines: iT ()K(x, x)i();

About the size of the kernel if we take a Gaussian kernel we must normalize so the maximum
equals one. So:

Regret ≤‖ f∗
√
T (8)

And that is cool!

We compute with any function in the Hilbert space with the Gaussian kernel. Any function you
can write like this:

f =
∑

αiK(i, j) (9)

Being K the Kernel Matrix of αTKα.

There is a trade off:
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• the bigger the kernel width, the smoother but also the larger computations

• the smaller the kernel width, the more regret we will pay because all points will be constrained.

picture

2 Gradient Boosting

What happens if we hold the area but we do it narrower and narrower (l→ 0)?

picture

∫
ζ(x)ζ(x− x′)h(x) = h(x′) (10)

How to control the complexity? Compute this functional gradient and them picking some experts
which lead to higher inner product.

picture

We are going to take something highly correlated with our functional gradient, but simple!

2.1 Algorithm

The algorithm is:
ft+1 ← ft + ηtA[∇C(ft)] (11)

1. Try to find functional gradient

2. Try to find something simple and highly correlated

3. Apply

Note: If we think this as a cost, we should use ft − ηtA.

How to do that? What is the key?

A[∇Ct] = arg max
h∈H

< h(x),∇(Ct) > (12)
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What does the inner product of our hypothesis look like?∫
γxh(x)∇Ct(x) =

∑
i

h(xi)αi (13)

Where αi is the multiplier on the delta function.

The simplest case is when the functional gradient has only values h ∈ (−1, 1), in this case (−δ,+δ).

Note: If we call α1 ⇐ wi then we are dealing with a Classification problem. Also, if αi ∈ [0, 1] it is
a weighted classification.

How many times does h agree with the sign?
If we think now in h as the simplest case, then the Linear regression values will be huge!

Linear SVM leads to threshold output which is not linear by combining K branch h(xi)α on original
parameters.

2.2 Gradient Boost Functional Descent

Applying decision trees...

2.2.1 Algorithm

1. Start:
f = 0 (14)

2. Compute ft(xi) for all data points i and create a training set which looks like:

xi, sign(i(ft(xi)), |i(ft(xi))| (15)

3. Train the algorithm with the training set and get:

ht+1 (16)

4. Update:
ft+1 = ft − ηtht+1 (17)

Notes:

• ft has an output real value

• ηt is some scalar

• ht+1 is the output of that value
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2.3 Special cases

If Ct(f) = e−yt·f(xt) then

1. Aγa Boost, very popular vision. ηt controls the step in the direction of the sign.

2. ε−Aγa Boost. ηt is a small constant. Problem of overfitting.

3. Rank Boost:
max(0, f(xincorrect)− f(xcorrect))
The incorrect thing is going higher than the correct thing.
How does the functional gradient look like for this functions? It should look like:

picture

The result of the max function is:

• 0 when correct

• And for the things we score incorrectly we have a decision tree code:
xincorrect, +1, −1
xcorrect, +1, −1

We can do regression with SVM classifiers applying the same rule.
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