
 

 
 

 

 

Conditional Models 

 
 

 P(y|x) is complicated   Bayes independence assumption 
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 Conditional (discriminative) description 
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Principle of maximum entropy 
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where p is the probability distribution over all the set P of probability distributions 

 

  

Average Properties 

  

 E[x] = 3.5  (additional constraint) 

  

 so for a given piece of data the task is to find the distribution that maximizes (1) 
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 Another Constraint 

  

 1])[( 2 =− µxE   

  

This problem originated from Statistical Physics where for e.g. Physicists had to 

find out the distribution of velocity of molecules of a gas and they estimated it 

from the pressure of the gas. 

 

 

Method of Lagrange Multipliers 

 

It is one of the ways of achieving our goal of finding an appropriate probability 

distribution. 

 

It penalizes the difference between objective function and constraint 
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Convex Fn   Linear constraint 

 

 

Hence there is only one global minimum. 
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 where z is a normalizer 

 

 so if our linear constraint is   E[f(x)] = a 
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Gaussian. 



 

 Hence, if we have a mean and variance then Gaussian is the distribution that 

makes least assumptions. 

 

  

 For finding out the value of λ we need to solve an optimization problem using 

gradient descent (or something else). 

 

 

 Gradient Descent 

 

  

 Suppose p(x|y) is a simple classification problem of whether x is a rock or a bush. 
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 i.e. expectation of f under the distribution 

 

  

 Hence the gradient rule states 
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