
Statistical Techniques in Robotics (16-831, F08) Lecture #5 (09/09/08)

Graphical Models

Lecturer: Drew Bagnell Scribe: Ryan Waliany

1 Graphical Models

1.1 What is graphical model?

Graphical model is a language that can be used to represent uncertain quantities and the relation-
ships between them. Nodes represent random variables and edges represent the links, or causal
relationships between these random variables.

1.2 Key ideas of graphical models

• Communication tool that helps to compactly express my beliefs of a system.

• Reasoning tool that can be used to extract relationships that maybe were not obvious when
formulating the problem.

• Computational framework that helps organize how we perform inference.

2 Bayes’ nets

2.1 Introduction

One of the most common graphical models is called a Bayes’ net, also known as: a belief network,
directed graphical model, directed independence diagram. In short, a Bayes’ net is a directed
acyclic graph with nodes representing uncertain quantities.

In Figure 1, we have uncertain quantities A, B, C, and we draw directed arrows between them to
represent causal relationships. A bayesian network encodes a joint probability distribution over
all the nodes in the graph. In this case, our Bayes’ net encodes the joint probability distribution,
P (A,B,C,D).

The basic factorization of the probability distribution using the Chain Rule of Probability can be
seen in Equation 1. If no graphical model is specified, this factorization is always true.

P (A,B,C,D) = P (A) ∗ P (B|A) ∗ P (C|A,B) ∗ P (D|A,B,C) (1)

In particular with Figure 1, we can use the causal information contained in the graph to eliminate
unnecessary conditional dependencies, see equation 2.
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Figure 1: A Bayesian network.

P (A,B,C,D) = P (A)P (B|A)P (C|A,B)P (D|C) (2)

For an arbitrary Bayes’ net with nodes ∈ X where X is defined as x1, x2, ..., xn. We can derive the
joint distribution of such a graph, P (X) as the product of each node (xi) given it’s parents (π(xi)),
see equation 3.

P (X) =
∏

xi

P (xi|π(xi)) (3)

Looking back at equation 2, we can derive that quantity using equation 3 and 1.

The mental model of what a Bayes’ net should be that it is a language for encoding a causal
relationship. One should think that A is influencing B and C.

2.2 Communication tool

In the classical burglar problem seen in Figure 2, you have three states, earthquake, burglar, and
burglar alarm. Earthquake and Burglar are events that happen independently. If one of the two
things happen, then the burglar alarm goes off. One should think that if either happens, then the
burglar alarm should go off, but it doesn’t describe the actual relationship but what happens.

Whenever you write down a Bayes’ net, you are thinking of a simplified causal model of the world.
This will allow us to infer the probability of such quantities like when there is a burglar. There are
many algorithms that will learn Bayes’ nets from data, which we will see in this class. If you don’t
specific a Bayes’ net down deliberately you may get a Bayes’ net that is doesn’t preserve causality.
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Figure 2: A classic example in graphical models.

For example, there are many Bayes’ net factorization that can represent the same structure in
the data. In general, if we have an independent set of variables x1, x2, x3, we can always add
causal relationships (edges) in a Bayes’ net that are not necessarily without perturbing the data
incorrectly. However, removing dependencies in a Bayes’ net may destruct the validity of a joint
distribution. The primary reason to write down a Bayes’ net is to represent causality. But it
doesn’t necessarily have to be causal.

2.3 Reasoning tool

Bayes’ nets have the ability that you can read from them conditional independence relationships.
What is an example of a representation that can encode the Markov relationship between states?

x1 x2 x3

Figure 3: A Bayesian network that demonstrates the Markov assumption.

If you think of this as the robot location, x1 is causally influenced by x0. You don’t necessarily need
to know x1 to know x3 given information about x2. The key idea is that we are going to be able
to determine conditional independencies by operations on the graph. Conditional independence
can be defined as: Given C, A and B are independent of each other. This relationship is explored
mathematically in equation 4

P (A|B,C) = P (A|C) (4)

What about the case that A and B are independent? Does that necessarily mean that A and B are
conditionally independent? No.
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Let’s look at the burglar graph in Figure 2 and when we condition on the burglar alarm. If we
know that the burglar didn’t come, how does that influence the probability of the an earthquake
happening. It increases the probability of an earthquake, because we know that a burglar didn’t
arrive. This phenomena is called the explaining away effect.

Pretend you can get into CMU because your math GRE’s were really good, you wrote a really good
paper, or you like bag-pipes and that they were independent events. You may really like bag-pipes.
Now, I told you that you got into CMU. If I told you that you really liked bag-pipe music, the
probability of you having strong GRE scores may not go up as much. Your GRE math scores may
be higher than the normal population because you got into CMU, but they might be lower because
part of the reason you may have gotten into CMU was due to liking bag-pipes.

The idea behind reading conditional independencies is that you’re trying to find a path between
two random variables.

A

B

C

D

E

Figure 4: A is ⊥ to E given B and C.

Let’s say that you want to find the relationship between A and E in Figure 5, so there are two
paths (this is not just any path, but a directed path). For two things to possibly not be dependent,
you need to block all paths to E from A. That is, if there is a path from A to E, A and E are
dependent.

For the possibility of dependencies, there must be an unblocked path between the two variables.
A and B are said to be dependent on each other if there is an unblocked path.

There are two rules for blocked path:

2.3.1 Rule #1

Additionally, say you look at a node along a path and there are no converging arrows (see Figure
7), the path is then blocked. Figure 5 and 6 show the two cases in which conditional independence
is achieved absent of converging arrows. In these graphs, there are no conditional dependence
between A and B.
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Figure 5: BLOCKED A is ⊥ to C given B.
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Figure 6: BLOCKED A is ⊥ to C given B.

2.3.2 Rule #2

Remember the burglar example, if I knew that the burglar alarm went off, then what happens to
A (Earthquake) and C (Burglar)? The answer is that they become dependent! Knowing that a
burglar came, explains away the probability that the alarm was caused by an earthquake. The
general relationship for this case can be seen in Figure 7. This is the converging arrows case that
causes conditional dependencies in the landmark localization formulation, seen later in Figure 11.

Additionally, with the converging arrows case, we must be careful since any descendent of a node
with converging arrows point to it, such as B in Figure 7, will facilitate a path from A to C. This
can be seen more formally in Figure 8. We can model our intuition using the burglar alarm and by
adding a new variable D, which represents a police car. If, we observe that a police car is driving
by, there is a higher likelihood that there was an alarm. If there is a higher likelihood that there
was an alarm and there was actually a burglary–we could reason that there would be a lower chance
of an earthquake and thus, they would not be conditionally independent.

A

B

C

Figure 7: UNBLOCKED A is conditionally dependent on C given B.
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Figure 8: UNBLOCKED A is conditionally dependent on C given D.

2.4 Examples

2.4.1 Localization

x1 x2 x3

o1 o2 o3

Figure 9: A sample localization bayesian network with internal states xi and observations oi.

The standard localization model can be seen as represented in a Bayesian network in Figure ??.
Pretend that you are given where a robot is located at time x3. We may want to ask whether
two quantities are conditionally independent. For example, we may ask whether o2 is conditionally
independent of o1 given x3. We can write this more formally as seen in Equation 5.

o2 ⊥ o1|x3 (5)

We often use the symbol ⊥ to represent independence in graphical models. Equation 5 is actually
false. There exists a path from o1 to x1, x2, and back to o2. Similarly, can we say that o1 ⊥ o3|x3?
Yes, because the path from x2 to o3 is blocked by x3.
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2.4.2 SLAM

Let’s look at SLAM, how can we generalize this picture. See Figure 10.

x1 x2 x3

o1 o2 o3

m1 m2 m3

Figure 10: A sample localization and mapping bayesian network with internal states xi, observations
oi, and mapping states mi.

In this case, we’re thinking of two uncertain quantities, the position (xi) and the map (mi). Tell
me whether there exists conditional independence between o1 and o3 now, if I tell you x2. There is,
because the observation tells you something about the map, and the map influences the likelihood
of our future observation. There now exists a path from o1 to m1, m2, m3, and finally to o3.

7



2.4.3 Landmark

Now let’s think of a landmark map.

x0 x1 x2 x3

o0 o1 o2 o3

l1

l2

l3

Figure 11: A sample landmark bayesian network with internal states xi and observations oi and
landmarks li.

If we pose the case that we see all the observations, o0, o1, o2, ..., are the landmarks conditionally
independent of each other? That is, is l1 ⊥ l2|O? This is a tricky case, where the converging arrows
at oi create a path between l1 and x0. This path extends through x1 and back from o1 to l2. Thus,
l1 and l2 are not conditionally independent given o0 and o1.

We will see later that the more conditional independencies that our graphical models exhibit, the
simpler computationally complexity we will have. Likewise, if we can simply observe the values of
X, we can prevent conditional dependencies between l1 and l2. This formalization is called Fast
SLAM and can be seen in Figure 12. We will discuss this in more depth later.
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Figure 12: The Fast SLAM formulation.

3 Gibbs Field

A Gibbs Field is a collection of nodes that have undirected edges between them, this can be seen
in Figure 13.

x0

x1

x2 x3

x4

Figure 13: A Gibbs Field with nodes x0, x1, x2, x3, x4.

A clique is a fully connected subset of the the graph. x0,x1, and x2 forms a clique and x2, x3, and
x4 also forms a clique. These cliques are known as maximal cliques because they are not part of
any larger clique. We only need to pay attention to maximal cliques, even though several individual
cliques exist, e.g. x0, x1, ....
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We can represent a joint probability distribution, much like a Bayesian networks by multiplying a
set of clique potential functions φ (see Equation 6).

P (~x) =

∏
cliques φcliques(Xcliques)

Z
(6)

The first clique has a function representing the probability distribution of the set of three variables
x0, x1, x2: φ(x0, x1, x2). Unlike normal probability distributions, these potential functions need
necessarily normalize. There is also a potential function φ(x2, x3, x4). Since the potential functions
are not normalized, we must enforce a normalization constant, Z (see Equation 7) in our equation
6 to create a valid probability distribution.

Z =
∑

x

∏

cliques

φcliques(xcliques) (7)

Additionally, you might think of the potential functions as energy functions, such as φ(x1, x2) =
e−(x1−x2)2 . Lower energies are obtained when x1 and x2 have almost the same value. We could
derive the probability distribution then, by simply multiplying these cliques together and normal-
izing. The minimum energy state in this case is going to be flat. It’s often common to have bigger
cliques that capture the notion that not only is the ground flat, but it has constant slope.

3.1 Conditional Independence

In a Gibbs field, conditional independency is simple. If there is any unblocked path between a
set of nodes, they are conditionally dependent. Blocking is defined as simply observing a random
variable. Conditionally independent is then defined iff there is no path to get from A to B.
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