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1. REVIEW FROM PREVIOUS LECTURE
Note on Bayes Nets:

P (A,B) = P (A)P (B|A) = P (B)P (B|A) = φ(A,B)/z

This means that A→ B is equivalent to B → A and A−−B.

However, Bayes nets were originally made to encode causality. It is much easier for a doctor to tell the
symptoms given a disease, than to tell the disease given the symptoms (since many diseases shared the same
symptoms).

2. ON-LINE LEARNING
This area is concerned with making decisions from limited information. We begin by studying the problem of
“predicting from expert advice.” (Keep in mind that the word “expert” may be deceiving since many of these
“experts” may in reality have no clue.)

Let’s say each day we have the same n experts that predict yes (1) or no (0) on whether is going to rain.
After they make their prediction, the algorithm makes its own prediction, and then finds out if it actually it
rains. Our goal is do perform nearly as well as the best expert so far (being competitive with respect to the best
single expert).

2.1 Weighted Majority Algorithm
This algorithm maintains a list of weights w1, ..., wn (one for each expert x1, ..., xn), and predicts based on a
weighted majority vote, penalizing mistakes by multiplying their weight by half.

Algorithm

1. Set all the weights to 1.

2. Predict 1 (rain) if
∑
xi=1 wi ≥

∑
xi=0 wi, and 0 otherwise.

3. Penalize experts that are wrong: for all i s.t. xi made a mistake, wt+1
i ← 1

2w
t
i .

4. Goto 2

Analysis of Algorithm The sum of the weights is w ≤
(

3
4

)m
n =

(
4
3

)−m
n, wherem is the number of mistakes.

The weight of the best expert w∗i =
(

1
2

)m∗

= 2−m
∗ ≤ w. Therefore,

2−m
∗
≤ w ≤

(
4
3

)−m
n.

Taking the log2 and solving for m gives,

m ≤ m∗ + log2 n

log 4
3

= 2.41(m∗ + log2 n)

2.2 Randomized Weighted Majority Algorithm
In this algorithm, we view the weights as probabilities, and predict each outcome with probability to its weight.
We also penalized each mistake by β instead of just half.



Algorithm

1. Set all the weights to 1.

2. Choose expert i in proportion to wi.

3. Penalize experts that are wrong: for all i s.t. xi made a mistake, wt+1
i ← βwti .

4. Goto 2.

Analysis The bound is

E[m] ≤ m ∗ ln(1/β) + ln(n)
1− β

.

We want β to be small if we only have a few time steps available and vice-verse.

2.3 General Weighted Majority Algorithm
Algorithm

1. Set all the weights to 1.

2. Predict expert i in proportion to wi.

3. Receive the correct value yt.

4. Adjust weights s.t. wt+1
i → wti exp−εl(i,yt) ∀i, where l is the lost function, and ε is the penalizer.

5. Goto 2.

Analysis The bound is

E[R] ≤ ε
∑

l(i∗) +
1
ε

ln(n),

where R is the regret. If ε is large, we learn fast. If ε is small, we learn slow but we’ll have little regret.

3. INTRO TO NEXT LECTURE

In a convex set, the line between any two points in the set is also in the set. A convex function can be defined
s.t.

f(ax1 + bx2) ≤ af(x1) + bf(x2),

where a+ b = 1, and a, b ≥ 0.


