
Statistical Techniques in Robotics (16-831, F09) Lecture #2 (Thursday August 27)

Filtering Theory

Lecturer: Drew Bagnell Scribe: Supreeth Achar

1 Filtering Problems

1.1 Overview

The goal of filtering is to maintain an online estimate of the state (xt) of a system. In a localization
problem this state would be the pose of the robot, in mapping the state would be a map of the
environment and in SLAM the state would be both the pose and map. A general filter would have
the following inputs

• A timestep indexed stream of data (d) containing observations (z1:t) and actions (u1:t) :
d = {u1:t, z1:t}

• A probability distribution modeling the initial state : p(x0)

• Action Model or Motion model
p(xt|xt−1, ut) (1)

• Measurement model or Observation model

p(zt|xt) (2)

At each timestep we want the filter to output a probability distribution of the current state xt

given all available information d = {u1:t, z1:t}, p (x0). This is the distribution p(xt|u1:t, z1:t, x0) and
is denoted by the shorthand notation Bel(xt).

Filters are defined recursively, with the output at time instant t being an input to the filter at t+1.

1.2 Other Notations

Filtering of the form described here has applications in many different domains including robotics,
electrical engineering and computer science. As a result, notations and terminologies used can vary.
State (x) may be denoted by s or if the state being estimated is a map, m might be used. Action u

is also called the control input (u) or the decision (a). Measurements (z) are also called observations
and may be represented by y, o or x. The motion model is also called the state transition function
or the plant dynamics.

1

2 Markov Assumptions

The amount of measurement and motion data (z1:t and u1:t grows as time progresses. Using all of
this data to calculate xt at each filter timestep is not feasible. To overcome this difficultly, it is
assumed that the observation model and action model are Markovian which means that measure-
ments made and state updates are independent of past states (x1:t−1) if the current state (xt) is
known

• Observation model Markov assumption

p (zt|x0:t, u1:t, z1:t−1) = p (zt|xt) (3)

• Action model Markov assumption

p (xt+1|x0:t, u1:t, z1:t−1) = p (xt+1|xt, ut) (4)

For a robot, the observations are dependent on the map (m), for simplicity this dependence is not
shown explicitly. These assumptions seem justified but may not always be true in practice. For
example the Markovian motion model may be innaccurate if the dynamics of the state are not
included. If the actual environment differs from the map used to generate expected observations
then the Markov assumption for the observation model does not hold. Even so, these Markovian
approximations are important as they are practical and make computation tractable.

3 Derivation of the Bayes Filter

This derivation gives an expression for the state distribution at time t, Bel(t) in terms of the
distribution at time t− 1 Bel(t− 1)

Bel(xt) = p(xt|z1:t, u1:t)
= η p(zt|xt, z1:t−1, u1:t) p(xt|u1:t, z1:t−1) Bayes’ Rule
= η p(zt|xt)p(xt|u1:t, z1:t−1) Markov Assumption
= η p(zt|xt)

∫

[p(xt|xt−1, u1:t, z1:t−1) p(xt−1|u1:t, z1:t−1)] dxt−1 P (A) =
∫

P (A|B)P (B)dB

= η p(zt|xt)
∫

[p(xt|xt−1, ut) p(xt−1|u1:t−1, z1:t−1)] dxt−1 Markov Assumption
= η p(zt|xt)

∫

[p(xt|xt−1, ut) Bel(xt−1)] dxt−1 Definition of Bel(xt)

4 Example: Piecewise Constant Filter

Figure 1 shows how a Bayes Filter can be used for robot localization. Consider an imaginary robot
that moves in one dimension along the length of corridor and has a sensor that tells it whether it is
in front of a door or not. The robot also has a ‘map’, a list of positions at which doors are located
along the corridor. The robot starts of with no clue to where it is on the corridor, so the initial
pose belief is a uniform distribution as shown in 1a. As door observations are made, the belief
distribution forms peaks which tend to flatten out as the robot moves.

2

Figure 1: Grid localization

5 Implementing a Bayes Filter

Implementing a Bayesian recursive filter for continuous state variables as shown above is usually
not possible computationally. The probability distributions desribed can in general take on any
form and so closed form solutions do not exist to the integrals. A number of different assumptions
and approximations can be made to design a filter based on Bayesian recursive estimation. Some
examples of practical techniques based on the Bayes Filter are

1. Kalman Filters (KF, EKF,UKF etc)

2. Histogram Filters

3. Particle Filters

4. Hidden Markov Models (HMMs) - These are just discrete Bayes Filters

3

6 Markov Localization (Grid-based Localization)

Markov localization uses a histogram filter. The basic idea is to discretize the (continuous) state
space into a number of bins. Each of these bins has a probability mass associated with it. If
the number of bins is sufficient, the probability mass distribution over these bins is an accurate
approximation of the underlying distribution in the state space. The integrals in the Bayes Filter
are replaced with summations which are easier to compute and which need to be calculated over a
finite number of cells.

For Markov localization, the state space is the pose of the robot. This space is quantized into
a rectangular grid and each cell (k) in the grid has a probability mass (pk,t) associated with
it that equals the probability of the robot being somewhere within that cell in the pose space.
Motion causes the pose distribution to shift and flatten out due to the increased uncertainity in
position while measurements tend to create peaks in the distribution. Figure 2 shows an example
of Markov Localization, a likelihood estimate is maintained for all the cells. The number of cells
grows exponentially in the number of dimensions, so for high dimensional states this method is not
practical.

Algorithm 1 grid based localizer({pk,t−1}, ut, zt,m)

1: for all k do

2: p′k,t =
∑

i pi,t−1motion model(xk, ut, xi)
3: pk,t = ηp′k,tmeasurement model(zt, xk,m)
4: end for

5: return {pk,t}

7 Forward Sensor Models

Bayesian Filtering techniques for robot state estimation require some probability density function
that gives the likelihood of a measurement from a certain pose. This is p(zt|xt,m) and is called
the forward sensor model. A typical range finding sensor like a laser will return a number of
measurements in a single scan zt = {z1

t , z2
t , . . . , zK

t }. In reality measurements in a scan will depend
on each other, but modeling this dependency is complicated so it will be assumed that scan readings
are independent although this can lead to overconfident likelihoods.

p(z|x,m) =

K
∏

k=1

p
(

zk|x,m
)

(5)

There are a number of sources of error in measurements (See Figure 3). These are

• Readings from objects not present in the map (people, furniture etc)

• Noise around a ’true’ measurement

• ’Random’ measurements

• Sensor returning maximum range

4

Figure 2: Localization in a Museum

Figure 3: Typical ultrasound errors

We would like to develop a model for the proximity sensors used that accounts for the various
sources of noise. It will incorporate four types of measurement errors shown in Figure 4:

1. Local measurement noise: Accounts for non-idealities in the measurement process (a)

5

2. Unexpected obstacles: Accounts for dynamic objects which are not represented in the static
map (b)

3. Max-range measurement: In the event that the sensor ‘misses’ the target and returns a max-
range measurement (c)

4. Random measurements: When the sensor is really having a bad day... (d)

Figure 4: Components of error model

We can use a linear combination of the distributions to get a “Pseudo-density” distribution (Fig-
ure 5). The mixing coefficients should sum to one and can be determined experimentally by
collecting ground truthed range data and finding the coefficients that provide the best fit.

Figure 5: Combined error model

6

8 From Localization to Mapping

Instead of doing localization, we will try to solve the opposite problem: Given the position of the
robot, find the map of the world.

8.1 Occupancy mapping

We will partition the world into cells, with each being one of two states: filled or not. The individual
grid cells are mi, and ~m is the vector of all grid cells. Unfortunately, the curse of dimensionality
prevents us from filtering ~m. Instead, we will filter each cell independently, assuming that they are
in fact independent. In truth, this is a very bad assumption to make, but it is practical.

8.2 Derivation

Let x represent the state of grid cell mi (essentially x← mi).

p(x|z1:t) =
p(zt|x)p(x|z1:t−1)

p(zt|z1:t−1)

=
p(x|zt)p(zt)

p(x)

p(x|z1:t−1)

p(zt|z1:t−1)

Here we need to use a trick because we have many nasty terms that are hard to calculate. We will
start by computing (by analogy) the likelihood for the opposite event x̄

p(x̄|z1:t) =
p(x̄|zt)p(zt)

p(x̄)

p(x̄|z1:t−1)

p(zt|z1:t−1)
, (6)

and then divide the two:

p(x|z1:t)

p(x̄|z1:t)
=

[

p(x|zt)

p(x̄|zt)

] [

p(x)

p(x̄)

] [

p(x|z1:t−1)

p(x̄|z1:t−1)

]

(7)

Taking the log of (7) gives us the log odds ratio of the belief. We can use this to turn a series of
multiplication and divisions into additions and subtractions (see page 96).

7

