
Statistical Techniques in Robotics (16-831, F09) Lecture #11 (Tuesday September 29)

Random fields for Ladar data and estimation

Lecturer: Drew Bagnell Scribe: Javier Hernandez Rivera

1 Portfolio optimization (continuation)

As we defined in the previous class, the update rule in this problem is:

wi
t+1 ← wi

t + α
ri
t∑

iw
i
tr

i
t

(1)

The projected sugradient descent would be:
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where the learning rate is defined as:
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F√
tG

(3)

Since
∑

iwi = 1, the maximum size of the space (F) will be
√

2.
Bounding the rate of return as rmin ≤ r ≤ rmax, the maximum gradient (G) will be achieved at
rmax
rmin

. Therefore:
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Note that if rmin decreases, α becomes smaller and the trader would look more conservative.

2 Markov Random Fields Applications

2.1 Range Sensing [1]

A new generation of range sensors combines the capture of low-resolution range images with the
acquisition of registered high-resolution camera images. Markov Random Field (MRF) are applied
for integrating both data sources. The intuition behind the MRF is that depth discontinuities in
a scene often co-occur with color or brightness changes within the associated camera image. Since
the camera image is commonly available at much higher resolution, this insight can be used to
enhance the resolution and accuracy of the depth image.

Figure 1 illustrates the proposed MRF. The potential functions are defined as:

Ψ = exp−C(D̃ −D)2 (5)

Φ = exp−wij(Di −Dj)2 (6)
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Figure 1: Markov Random Field for Range Sensing

where C is a constant weight placed on the depth measurements.

The weighting factors wij are a key element, in that they provide the link to the image layer in the
MRF. Each wij is a deterministic function of the corresponding two adjacent image pixels, which
is calculated as follows:

wij = exp−λUij (7)

Uij =
∑

c∈ color channels

(pixelci − pixelcj)2 (8)

Here λ is a constant that quantifies how unwilling we are to have smoothing occur across edges in
the image.

As explained in lecture 5, the probability of the latent variables can be computed as:

Pr(
→
D) =

1
Z

[
∏

i,j∈ neighbors of i

Φ(Di, Dj)][
∏

i

Ψi(Di)] (9)

where Z is the normalizing factor.

The parameters can be estimated with MAP:

max logPr(
→
D) ∝ 1

2
min
→
D)

∑
i

Ci(D̃ −Di)2 +
∑
ij

wij(Di −Dj)2 (10)

∇`i = Ci(Dj − D̃i) +
∑

j∈ neighbors of i

wij(Di −Dj) (11)
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This can be plugged into the convex optimization update rule we derived in class:

Di
t+1 ← Di

t + α∇`i (12)

There are some problems associated with this solution:

1. Flat surfaces with color changes will not be correctly estimated (e.g. wall posters).

2. Projection is required for some case such as out of range readings (e.g. mirrors).

3. Range readings are influenced by big areas of pixels.

2.2 Terrain Mapping

The objective in this problem is to estimate the height of the terrain observed with range sensors.
Let’s assume the set of heights can be described by a function Z = f(x, y) where Z = 0 corresponds
to the ground level. Figure 2 illustrates a MRF to solve this problem. Note that in this case, Z is
defined in 1D.
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Figure 2: Markov Random Field for Terrain Mapping

Similarly to the previous problem, we can define the potential functions as:

Ψ = exp−(D̃i −Di)2 (13)

Φ = exp−wij(Di −Dj)2 (14)

Moreover, we have the set of constraints ∀Di ≤ Ray heighti that require a projection function to
be satisfied. Note that the set of solutions is convex because it is defined with inequalities.
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Some problems may appear with puddles where the robot would believe there is a hole in the
ground.
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