
Statistical Techniques in Robotics (16-831, F08) Lecture #11 (Thursday October 1st)

Support Vector Machines and Learning by Constraints

Lecturer: Drew Bagnell Scribe: Lindsey Hines

1 Support Vector Applications

1.1 Little Dog walking robot

One example of a support vector application is crossing terrain with the robot Little Dog. At a high
level, we wish to find a set of footsteps that are likely to be successful, which can be accomplished
by optimizing body and leg trajectory to minimum cost while maintaining kinematic, dynamic, and
collision constraints. In this problem, we can choose a lowest cost sequence of footsteps in a greedy
way, each subsequent footstep minimizing the cost. In can be difficult, however, to determine the
cost function for footstep planning.

One method for determining the cost function is to utilize human expertise. Since guessing the
cost function is hard, a human user is given two pieces of terrain for comparison with the option of
choosing which would be better for robot foot placement. An area that is steep would be considered
expensive, while concave regions, that allow more stability, would be cheap. A cost function can
then be generated from the learned data using regression. Possible features in this particular
example include terrain filter response, triangle of support, stepping foot, etc.

1.2 Sports Examples

This technique for learning cost functions can be extended to other problems. For example, there are
continuous or discrete rankings of teams in sports. In football and basketball rankings are created
to decide which team might be ’better’, or more likely to win. Cost features can be generated for
two teams through their pairwise comparison.

2 Implementation

For each human compared terrain (i, j) where cost(i) ≤ cost(j), a constraint can be formed as
wTxi ≤ wTxj where w is a vector of weights and x is a feature set.

Multiple constraints can then be compiled in the form: wTx1 ≤ wTx2

wTx2 ≤ wTx3

wTx4 ≤ wTx5 . . .

There are several problems, however, with the constraints as they are now written.

1. There may not be a set of weights that satisfy all of the constraints. The human trainer may
not have been consistent.

1

2. There can be multiple solutions; weights can be scaled and still satisfy the constraints.

3. There is a trivial solution of w = 0.

Maximize Margin Approach
Both number 2 and number 3 can be solved with the maximize margin approach. By adding a
constant to the inequalities, one must not only satisfy them, but do so by a margin. One can then
attempt to maximize the size of the margin as suggested, but is equivalent, and simpler, to fix the
margins to a constant value and minimize the weights. The constraints can then be reformatted as
follows:

Objective function: min||w||2, subject to:

wTx1
i ≤ wTx2

i − 1
wTx1

i+1 ≤ wTx2
i+1 − 1

. . .
wTx1

T ≤ wTx2
T − 1

where the subscripts denote the constraint number and the superscripts distinguish the preferred
/ not preferred feature set in each particular constraint.

Constraint Softening
Problem number 1 can be solved with the addition of a slack variable ξi, where ξi ≥ 0. If a judgment
is wrong, the slack variable can be increased until the constraint is satisfied, though a price is paid
with an increase of the total cost. The objective function and constraints are now:

Objective function: minλ||w||2 +
∑n

i=1 ξi, subject to:

wTx1
i ≤ wTx2

i − 1 + ξi
wTx1

i+1 ≤ wTx2
i+1 − 1 + ξi+1

. . .
wTx1

T ≤ wTx2
T − 1 + ξT

where lambda:
λ← smaller = larger (growing) set of weights, longer to learn but do better.
λ← larger = smaller (constrained) set of weights, learn initially faster.
Bigger weight = tiny margin, and smaller weight = bigger margin.

Creating Online SVM
In practice, solving the objective function with the series of constraints can take a considerable
amount of time. We can, instead, turn it into an online problem, eliminating the constraints.

If we consider the case of conflicting assumptions, we can define a bound on our slack variables ξi. If
a constraint is met within the margin, ξi is not needed and is equal to zero. If wT (x2

i −x1
i) + 1 > 0,

where the assumption is wrong or not within the margin, ξi is required, but will never need to be
greater than wT (x2

i − x1
i) + 1. Our objective function can now be written as:

minλ||w||2 +
∑n

i=1max(0, wT (x2
i − x1

i) + 1)

2

At each time step, our loss function is now:

lt =||w||2 + λimax(0, wT (x2
i − x1

i) + 1)

This is, unfortunately undifferentiable, but it is not as scary as it sounds. As can be seen in Figure
??, the subgradient of the loss function can fall within one of three cases. When wT∇f< −1,
the subgradient is 2w, slope equal to zero. When wT∇f>= −1 the subgradient is 2w + (xpref −
xnotpref)λ. The third case, wT∇f= −1 can be placed in either of the two previous cases, since
there are multiple valid subgradients.

Figure 1: Loss function with discontinuity at -1

The function is convex, which is usually the case when one takes the max of a convex function.

3 Online Algorithm Outline

• Step 1: w− = 2αtw

• Step 2: If a misranking occurred, or it the constraint wasn’t satisfied by a margin, w− =
αtλ(xpref − xnotpref)
Else, nothing

• Iterate - May need to pass through data multiple times and data order should be randomized.

3

