
Statistical Techniques in Robotics (16-831, F09) Lecture #14 (Thursday October 8th)

Support Vector Machines, part 2

Lecturer: Drew Bagnell Scribe: Alan Kraut

1 SVM Review

We have a set of linear constraints, that a binary classifier give the right classification on all training
data. The linear classifier uses sign(wT fi), where w is a weight vector, and fi is a particular feature
vector. The desired output class is yi ∈ [−1, 1].

• These constraints can be expressed as

yiw
T fi ≥ 0 (1)

• This series of constraints has several problems. With any real data it will have either infinite
or zero solutions. We also can’t incrementally update it.

• To find a single solution if there are infinite, we find the w that allows the greatest possible
margin. That is, we want to minimize ||w||2 subject to

yiw
T fi ≥ 1 (2)

• To allow us to find a solution with inconsistent constraints, we introduce a flex variable, ξ.
We now want to minimize λ||w||2 +

∑
i

ξi subject to

yiw
T fi ≥ 1− ξi, ξi ≥ 0 (3)

• To make this online, we observe that ξ = max(0, 1− yiw
T fi). This allows us to generate the

loss function
lt = λ||w||2 + max(0, 1− ytw

T ft) (4)

• Our update for w is now as follows.

w ← w − 2αtλw (5)

And if the output for this time step was incorrect,

w ← w + αtytft (6)
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2 Implementing SVMs

2.1 Selecting αt

• Stock algorithm would be to set αt proportional to 1√
t
.

• If we have d elements, each with a maximum value of |f |max, the maximum gradient, G, is√
d|f |max.

• This is not as good as we could do.

• Notice that lt is an extremely good convex function. It is a quadratic plus a convex function.
In the same way all convex functions lie above a line (a subgradient) from every point, lt lies
above a quadratic from every point.

• Specifically, if it is always the case that

f(y) ≥ f(x) +
H

2
(y − x)2 +∇fT

x (y − x) (7)

then f(x) is said to be H-strongly convex.

• In this case lt is λ-strongly convex.

• If αt = G
Ht , then regret≤ G2

H (1+log t). log t is really good, and this learning rate and algorithm
is essentially the current best for this class of problem.

2.2 SVMs with Multiple Classes

We can represent problems with more than two classes by having a weight vector, wi for each class.

• When we get a classification of a particular example (for example, example i is of class 1),
we generate a set of constraints that can be expressed as either

wT
1 fi ≥ wT

2 fi + 1
wT

1 fi ≥ wT
3 fi + 1 (8)

wT
1 fi ≥ wT

4 fi + 1
. . .

or
wT

1 fi ≥ max
c 6=i

(wT
c fi + 1) (9)

• By the same argument as before

ξ = max(0,max(wT
c f + 1)− wT

1 f) (10)

• We want to update each w by gradient descent on the partial of the cost with respect to that
particular w.
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• Remember the cost is lt = λ||w||2 + ξ. We want the update step to be

wc ← wc − ∂wc lt (11)

• In the case that the example was classified correctly, ∂wc lt = 0. If it was misclassified, there
are three cases with different partials: the correct class, the class we incorrectly decided this
was an example of, and all others.

∂wc = −fi, yi = c (12)
∂wc = fi, c = argmax

c
(wT

c fi + 1) (13)

∂wc = 0, otherwise (14)

• That update is for the max representation. If we use the multiple constraints representation
it is similar, except we update both w1 and wc for all c which violate the constraint.
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