Statistical Techniques in Robotics (16-831, F09) Lecture #20 (Oct. 29)

Gaussian Processes (part 1)

Lecturer: Drew Bagnell Scribe: Alberto Rodriguez

1 Practical Kalman Filtering (continuation)

One of the problems with the formulation of Kalman Filter is that it only has nice closed form
update rules when the dynamics of the system is linear. There are two ways to deal with that
limitation:

1. Linearize the dynamics at every step (Iterative Linearization).

2. Do sample based estimation of the necessary statistics (Montecarlo Kalman Filter).

For the rest of the section we will suppose that we are dealing with the system:

zi41 = flz)+e, wheree ~N(0,Q) (1)
Y1 = g(ze1) +6, where § ~ N(0, R) (2)

1.1 Iterative Linearization

As seen in last lecture, the most straightforward way to apply Kalman Filtering whenever the
dynamics is not linear is to use first order approximation of both the motion and observation
models at every step.

0
T~ f(ue) + é(#t)(mt —) + € (3)
15)
Yirr = g(pes1) + %(Nwl)(l‘ﬂrl — pt1) +9 (4)

In the last lecture we saw how this approximation yields new update rules. In those update
rules, matrices A and C are iteratively being estimated by the Jacobian (best first order Taylor
approximation of the system) of the of the motion and observation models respectively. The problem
with this approach is that the first order Taylor expansion of the dynamic equations of the system
is not a robust approximation for most non-linear functions.

An Statistically Linearized Kalman Filter tries to overcome that limitation by approximating the
Jacobian matrix of the system in a broader region centered in the state of the system.

1.2 Montecarlo Kalman Filter

The second option for dealing with non-linear systems is to replace the update rules by sampled
based estimations.

Motion Model

Given the equation of the motion model z;11 = f(x¢) + €, p and X; we need to estimate p;_ 41 and
Y1, 1. For that we draw samples from the prior distribution 2! and pass them through f(x). That
way, and with the law of large numbers in hand, we can estimate:

1,
M = 3 f(ad) 6

=1
S = |2 (e - nn) - (16D -) |+ @ 0

NOTE: @ is additive noise, uncorrelated with x;.

Observation Model

Given the equation of the observation model y;11 = g(x411) + ¢ the update rules are be the same
as before:

MCIJ«“rt-;—l = u;t-kl + EXYz}_/%/ (yt - Ny) (7>
ho = B ExvEnyBvx (8)

But now we approximate i, Xyy and Xxy as:

N
Ko = NZ xt-‘,—l 9)
Yyy = N [Z 9(wi1) — my) - (9(@ —) | + R (10)

N
EXY = [Z xt+1 - :U’l‘t+1) : (g($i+1 - My)T] (11)

In comparison with a standard Particle Filter, a Montecarlo Kalman Filter forces some smoothing
on the uncertainty what simplifies the process to get a solution. On the other hand it will always
be unimodal, while a Kalman Filter can perfectly maintain several modes in the estimation of the
distribution.

1.3 Sigma-Point Filter

A Sigma-Point Filter has exactly the same formulation than a Montecarlo Kalman Filter but it
draws samples in a deterministic way from interesting locations. Suppose A; are the eigenvectors
of the covariance matrix ¥,,. Then we sample the points as:

where D is the dimension of z; and); is proportional to the eigenvalue correspondent to eigenvector
A;. Then, the update rule for the motion model becomes:

o = Y) (12)

=1
S = |2 (D = i) (7D -) |+ @ (13)

There are different versions of Sigma-Point filters and they all differ on how weights w; are selected.
All versions chose weights so that the method behaves perfectly for a gaussian model (linear dynam-
ics) and then optimize the weights for with a different criteria. Different versions include Unscented
Kalman Filter, Central Difference Kalman Filter, ...

The computational cost of Sigma-Point type filters is O(d?) for the eigenvector finding (usually
implemented by the SVD decomposition) plus 2d + 1 evaluations of the motion model f(z).

In comparison with a Montecarlo Kalman Filter, a Sigma-Point Filter needs less particles to run
and, hence, reduces the number of motion model evaluations, than can be costly. It only needs to
be implemented once because all the process is independent of the model (f,g). However, it can
perform really bad if facing an adversarial problem, because it samples the space in a deterministic
way.

2 (Gaussian Processes

[NOTE: State of the art for non-linear regression.]

A gaussian process is a random stochastic process where correlation is introduced between neigh-
boring samples (think of a stochastic process as a sequence of random variables). The same way
that an instance of a random variable is a single sample, an instance of a stochastic process can be
thought as vector of samples:

X = [z1,x9,23..] (14)

Gaussian Processes artificially introduce correlation between close samples in that vector in order to
enforce some sort of smoothness on the succession of samples. The way that correlation is introduced
is by constructing the joint probability distribution of the long vector of samples. Gaussian processes
assume that probability distribution to be a multidimensional gaussian:

- 1 -1
X1 = —eX—wE(X—p) 15
p(X) = (15)
The correlation between samples in the succession X* depends on matrix 3. In Gaussian Processes
the covariance matrix is constructed as the Gram matrix of the samples with some desired kernel
k(+,-) as the inner product:

k(r1,71) K(x1,22) - K(T1,20)
5 = /@(aﬁgz,wl) k(z2,x2) - m(xgs, Tn) (16)
K(Tn, 1) K(Tp,x2) ... K(Tp,zn)

In order to introduce correlation between neighboring samples, the kernel « is usually designed to
have small support and centered around zero (i.e. a triangular or a gaussian). The kernel usually
can be described as a function of the distance z; — x;.

2.1 Gaussian Processes as a prior in function space

A gaussian process can be used as a prior probability distribution over the space of functions when
using a Bayesian approach. By doing so, we are imposing that functions where neighboring samples
are correlated are more probable. We are enforcing functions to have some sort of smoothness.

Suppose we have some estimates (mean and variance) of the value of a function f(x) in certain
locations F' = [f(z1), f(x2), f(z3) ... f(zy)]. Then we can interpret vector F' as a gaussian process
and give it a specific probability:

1 —1
F) = —e(F—mX7 (F—p) 17
p(F) =~ (17)
With ¥ constructed the same way as in equation 16 so that we introduce correlation between the
values of f at neighboring locations x;, x;. This construction will allow us to infer the most probable
value of the function in other locations.

